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Abstract: We introduce a new type system to Emfrp, a functional reactive programming (FRP) language designed
for resource-constrained embedded systems. Functional reactive programming is a programming paradigm that allows
concise descriptions of reactive systems such as GUIs by combining time-varying values that express values changing
over time. Emfrp is a domain-specific language based on FRP, designed and developed for small-scale embedded
systems. Because the language can statically determine the amount of runtime memory and guarantee the termination
of reactive actions, a program written in Emfrp can safely continue reactive behaviors in resource-constrained envi-
ronments. To ensure these properties, Emfrp disallows the use of recursive data types and functions. However, such
restrictions often impose unnatural representations of data structures like lists or trees. The declarative characteristic
of FRP and these restrictions impel us to write poorly maintainable redundant codes or deter us from writing certain
types of programs. In this paper, we propose EmfrpBCT, an extended Emfrp with size-annotated recursive data types, to
overcome this problem. The proposed system is more expressive than Emfrp, yet, it retains the aforementioned static
properties. After explaining that through examples, we describe the features of EmfrpBCT, formalize the language,
present an algorithm for statically computing the runtime memory bounds, and prove its soundness. Moreover, we
implemented a compiler from EmfrpBCT to C, measured the translation time, and evaluated runtime overhead.
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1. Introduction

A reactive system responds to external inputs by continuously
producing outputs while changing its internal state. Graphical
user interfaces (GUIs) and programs that control home appliances
and robots are familiar examples of reactive systems. A program
for a reactive system is often written using polling and/or inter-
rupts (callbacks) to describe the responses to asynchronous in-
puts. However, such programs tend to be complex [2].

Functional reactive programming (FRP) [6] is a programming
paradigm that simplifies the description of reactive systems by
declaratively combining objects called time-varying values. A
time-varying value is an abstraction of a value that changes con-
tinuously over time. By describing the data flow from input to
output using time-varying values, programmers can concisely de-
scribe a process that continues responding to the input.

Since its invention [6], FRP has mainly evolved as a series of
domain-specific languages (DSLs) or libraries for the functional
programming language Haskell. For this reason, FRP libraries
(e.g., Refs. [1], [19], [28]) and language processors (e.g., Ref. [4])
developed thus far often require a certain amount of computa-
tional resources for their execution. The FRP language Em-
frp [27] is targeted at small-scale embedded environments such
as microcontrollers, where CPU performance and memory size
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are limited. Although FRP is useful in small-scale embedded en-
vironments, we should be aware of runtime errors due to resource
exhaustion. Emfrp is designed to have a small memory footprint
for compiled executables. The amount of memory used at the
runtime is determined statically (see Section 3.1), and dynamic
allocation of extra runtime memory is not required. Furthermore,
Emfrp guarantees the termination of the update process of time-
varying values (nodes); see Section 2.3. Thus, a program writ-
ten with Emfrp can safely continue its reactive behavior without
running out of memory resources, even in a resource-constrained
environment. Several restrictions are imposed on the language to
guarantee these properties, such as not treating time-varying val-
ues as first-class data, and disallowing higher-order functions as
well as recursion in data types and functions. However, in par-
ticular, disallowing recursion in data types and functions makes
it difficult to naturally express dynamic data structures such as
lists and trees, which are also valuable for embedded systems. In
addition, because FRP is based on declarative descriptions, intro-
ducing these restrictions may result in programs that are difficult
to maintain or modify. However, the unrestricted use of recursion
leads to programs that consume unlimited memory or those that
do not terminate the updating process of time-varying values.

In this study, to relax the restriction on recursive definitions
while maintaining the aforementioned properties of Emfrp, we
propose EmfrpBCT, an extension of Emfrp with recursive data
types that contain information about the maximum sizes of con-
structible structures. Furthermore, the language allows us to de-
fine restricted recursive functions (primitive recursive functions)
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whose arguments definitely decrease with recursive calls. The
recursive data types and the associated language mechanisms in-
troduced in EmfrpBCT can be regarded as an adaptation of Sized
Types [21] to the programming style in Emfrp, which actively uti-
lizes the previous values of time-varying values. A detailed com-
parison is given in Section 7.1.

In EmfrpBCT, the size of the data is checked statically as part
of type checking, so programs using unlimited memory will not
be compiled and executed. The termination of the update process
of an arbitrary node is also guaranteed. Thus, a program writ-
ten in EmfrpBCT can safely continue its reactive behavior without
running out of memory resources. Programs with recursive data,
such as lists and heap trees, must be written in an unnatural form
using tuples in Emfrp. In contrast, using EmfrpBCT, these pro-
grams can be written in a concise and maintainable manner. We
show this using examples in Section 4.

The main contribution of this research is the design of an FRP

language with recursive data types containing information about

the amount of memory to be used, along with an algorithm for es-

timating the memory usage of a program written in the language.
The specific contributions are as follows.
• We formally define the syntax, operational semantics, and

type system of EmfrpBCT and present an algorithm for esti-
mating the amount of memory required to evaluate expres-
sions.

• We prove that for an arbitrary node, the amount of resources
obtained by the algorithm is sufficient for updating if the
node is well-typed and passes the size validation.

• We implement a compiler from EmfrpBCT to C and mea-
sure the time required for type checking and estimating the
amount of memory, as well as the time and space overhead
of using recursive data types.

The structure of this paper is as follows. After briefly describ-
ing Emfrp in Section 2, we present the restrictions enforced by
the language and the problems caused by these restrictions in Sec-
tion 3, using some motivating examples. Section 4 introduces re-
cursive data types with size information and provides an informal
description of EmfrpBCT, an extension of Emfrp with the types. In
Section 5, we present the formalization of EmfrpBCT by providing
the operational semantics, type system, and an algorithm for esti-
mating memory usage. We also demonstrate the soundness of the
algorithm. Section 6 describes the implementation of EmfrpBCT

and examines the results of overhead measurements. In Section 7
we discuss related work and Section 8 concludes the paper with
future directions.

2. Emfrp

This section provides an overview of Emfrp [27], an FRP lan-
guage for small-scale embedded systems, followed by descrip-
tions of its execution model and memory management.

2.1 Overview
Emfrp is a statically typed pure FRP language used to de-

scribe reactive programs running on small-scale embedded sys-
tems. Programs written in the language are intended to run on en-
vironments such as microcontrollers with low-power CPUs and a

few kilobytes of memory (RAM or Flash) or bare-metal systems
without an operating system (OS). Emfrp is designed to avoid
FRP-specific problems called space leaks (an increase in memory
consumption due to the retention of past values of time-varying
values) and time leaks (an increase in computation time due to
the growth of the history required to update time-varying values)
by imposing several restrictions on the language. The restrictions
are as follows. Among the past time-varying values, only the last
value can be referenced. Time-varying values are not first-class
values and are always referred to by names. Higher-order time-
varying values are not allowed. Moreover, time-varying values
cannot be referenced within a function.

An Emfrp program is compiled into a pair of C source files.
One contains a single loop that implements continuous reactive
processing, and the other contains function skeletons for input
and output. By filling the latter with C code that implements in-
put and output to and from the external environment, the user
can complete an executable Emfrp module. The implementa-
tion of the input/output code generally depends on the runtime
environment. As the C code generated by the Emfrp compiler
is platform-independent, we can run Emfrp programs on various
platforms by preparing the input/output code.

2.2 Example Program
Figure 1 shows an Emfrp program that calculates the position

of a two-wheeled differential drive robot, which is an Emfrp ver-
sion of an example in Ref. [19]. The inputs of the program are
the velocities vl and vr of the left and right wheels, respectively,
the angle θ between the robot direction and the x-axis, and the
elapsed time t. The output x is the x-coordinate of the robot posi-
tion. The following equation expresses the relationship between
the inputs and output:

x(t) =
1
2

∫ t

0
(vl(u) + vr(u)) cos(θ(u))du (1)

An Emfrp program is written as a module. Line 1 in Fig. 1
specifies the module name. In Emfrp, time-varying values are
called nodes. Nodes are categorized into input nodes, output

nodes, and intermediate nodes. An input node takes values from
the external environment, and an output node provides its values
to the external environment.

Lines 2–5 in Fig. 1 are the declarations of the input nodes (vl,
vr, theta, t), and line 6 is the declaration of the output node (x),
which correspond to vl, vr, θ, t, and x in Equation (1), respectively.
The external environment provides the values to the input nodes.
In this example, we assume that the rotary encoders on the robot
provide the values of vl and vr (the speeds of the wheels), the ori-
entation sensor provides the value of theta (the angle from the
x-axis), and the CPU calculates the value of t (elapsed time since
system startup). The values of the intermediate and output nodes
are defined using the keyword node. Lines 10 and 13 are defini-
tions of the intermediate node dt and output node x, respectively.
The definition of a node is expressed in the form node n = e or
node init[c] n = e, where n is the name of the node, and e is
an expression to update the value of the node, called an update

expression. The optional init[c] specifies the initial value of
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Fig. 1 An Emfrp program for calculating the x-coordinate of a differential
drive robot.

the node, where c is a constant. A node name with @last is an
expression that represents the previous value of the node. For ex-
ample, t - t@last in line 10 provides the elapsed time since the
last node update. In lines 13–14, the x-coordinate of the current
position (derived from the integration over time) is calculated by
adding its small changes to x@last. Nodes whose previous val-
ues are referenced in the program must have their initial values
specified. In this example, the initial value of the input node t is
specified as 0 in line 5, and the initial value of the output node x
is specified as 0.0 in line 13.

2.3 Execution Model
If a node n′ is used in the definition of a node n (i.e., n′ occurs

in the update expression of n without @last), n is said to depend
on n′. Emfrp requires that the dependencies between nodes in
a program exclude cycles. In other words, the graph constructed
with the nodes as vertices and the dependencies of the nodes as di-
rected edges must be a directed acyclic graph (DAG). This graph
is called a dependency graph. Note that the occurrences of node
names with @last are not considered as dependencies. Figure 2
shows the dependency graph for Fig. 1. In this graph, the depen-
dencies are indicated by solid arrows, and reference relations with
@last are shown as dotted arrows.

The Emfrp compiler statically schedules the order of node up-
dates by topologically sorting the dependency graph. For exam-
ple, from Fig. 2, the sequence (t, dt, vl, vr, theta, x) can be
obtained as the node update order. The runtime system of the
language first receives input from the external environment, then
performs node updates along with the obtained update order, out-
puts the values to the external environment, and finally performs
memory management. This sequence of operations is called an
iteration. The reactive behavior of an Emfrp program is real-
ized by repeated iterations. The FRP execution model described
previously, in which node updates are performed along the order
obtained from the dependency graph, is called the push-based

model [2]. This model may cause unnecessary node updates, but
it can simplify the scheduling and runtime mechanisms. There-
fore, it is used in Emfrp, which is designed for small-scale envi-
ronments.

2.4 Memory Management
In the Emfrp runtime system, an array is statically allocated

for each tuple or variant type in the program. Objects of the type
are stored in the array (i.e., the array serves as a heap area for

Fig. 2 Dependency graph of the RobotPos module.

the type). Such a heap-allocated object is passed by the reference
when a function is called. Primitive types such as Int are repre-
sented as their C counterparts, and no heap areas are required for
data of these types.

To release objects allocated in heaps but no longer needed, a
variant of mark-sweep garbage collection (GC) is performed for
every iteration. Immediately after each node update, if the value
of the updated node is an object in a heap area, it is marked to
extend its lifetime. The necessity of a heap-allocated object is
determined according to the lifetime set at the time of allocation.
Objects that are temporarily used during node updates are not ex-
plicitly released. At the end of each iteration, the area in the heap
that stores the previous values is released. Then, for each node,
its current value is switched to the previous value for the next
iteration.

The total amount of runtime memory required by an Emfrp
program is the sum of the amount of memory used by the current
and previous values of each node, the maximum amount of mem-
ory used during node updates, and the amount of memory used
by the language runtime. Because these amounts of memory can
be determined statically, the Emfrp compiler can fix the sizes of
the heap area for objects and the stack area for local variables at
compile time. The heap area need not be expanded at runtime,
making it possible to execute a program with a fixed amount of
statically allocated memory.

3. Motivation

Emfrp has several language restrictions to ensure safe program
execution on embedded systems. This section describes the ef-
fect of these restrictions on the expressiveness of Emfrp and the
problems they cause.

3.1 Restrictions in Emfrp
Programs written in Emfrp are statically guaranteed to con-

tinue reactive behavior safely in resource-constrained environ-
ments because of the following two properties.

The first is the termination of the updating of nodes in a pro-
gram. The updating process propagates with the dependency
relation between nodes. The process proceeds without stalling
because the updating of each node always terminates. In other
words, we can statically guarantee that the iterations for reactive

behavior will be repeated without stalling.
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Second, the amount of memory required at runtime can be de-
termined statically, making it possible to determine in advance
whether the resources required to execute the program are avail-
able in the target environment. For example, in a bare-metal en-
vironment, because we cannot usually expect an OS functionality
that kills processes causing memory shortage, we occasionally
need to reset the hardware. Such behavior is generally difficult
to debug and can remain as a serious defect. A program written
with Emfrp allocates sufficient memory in advance based on the
amount of memory required at runtime. We can then guarantee
that the reactive behavior of the program will not be stuck due
to errors caused by an insufficient amount of memory. Conse-
quently, programs written in Emfrp can run safely in a bare-metal
environment.

However, to achieve these properties, Emfrp prohibits recur-
sive definitions when defining data types and functions. By pro-
hibiting recursive functions, it is easier to guarantee the termina-
tion of node updates. In addition, prohibiting recursive data types
makes it simpler to calculate the amount of memory required for
program execution. Emfrp allows only primitive data types such
as integer values and Boolean values, direct product types for tu-
ples, and direct sum types whose contents can be determined by
tags.

The problem with the current Emfrp is that it is difficult to
naturally express data structures where the number of elements
changes at runtime. Using the aforementioned direct product
type, defining a data structure with a fixed number of elements is
a straightforward process. However, defining a data structure that
changes the number of elements at runtime, such as lists or trees,
using the data types available in Emfrp, should be performed re-
dundantly or abandoned. In general, in functional programming
languages, where declarative descriptions are common as in FRP
languages, such data structures are usually defined by recursive
data types and are frequently used.

3.2 Motivating Examples
This subsection presents motivating examples to illustrate the

usefulness of lists or trees even in small-scale embedded systems,
and explains that such data structures require redundant descrip-
tions in the current Emfrp.
DupCheck Module
DupCheck is an example Emfrp module that checks whether a

value that is the same as the current input exists among the in-
puts obtained within the last certain period. In fact, the module
maintains the history of the integer values obtained in the last four
iterations. It checks whether the current input exists in the history
and outputs the result as a Boolean value. Figure 3 shows the
Emfrp source code of DupCheck.

This module has two input time-varying values: the reset sig-
nal reset and an input integer value v. An optional integer type
OptI is defined at the top of the module body. The input his-
tory is represented by node history as a 4-tuple of OptI data.
The reason for using the option type is that in the first four itera-
tions, history has elements without valid data. If reset is true,
history is cleared, and only the latest input is retained. If reset
is false, the update of history proceeds as follows. The first

Fig. 3 Implementation of the DupCheck module in Emfrp.

(oldest) element in history is deleted and shifted by one before
the latest input is added to the end. The node detect determines
whether the latest input value exists in the history. In the up-
date expression of detect, the history is decomposed by pattern
matching of tuples, and function check is used to find the desired
value. Note that history@last is decomposed to refer to the past
history.

In this program, because the history of inputs is represented as
a tuple, many code pieces need to be modified to change the his-
tory size. Specifically, we should modify the type, initial value,
and pattern match clause in the update expression of history,
and the pattern match clause in the update expression of detect.
After the code is modified thus, the variable names in the patterns
must be rewritten appropriately. If all of them have the same
type, as in history, it is difficult to detect human errors such as
misplaced variables. Thus, programs that use tuples to represent
variable-sized data are less maintainable and redundant, leading
to the occurrence of errors.
Top10Sum Module
Top10Sum is an Emfrp module that outputs the sum of the

10 largest input values obtained so far. In this example, as in
DupCheck, the input history is maintained to compute the result.
Figure 4 shows the Emfrp source code of Top10Sum that is also
defined using tuples and an optional type.

Node h holds the 10 largest input values in a descending order.
It is represented as a tuple of optional type data. When updating
node h, it decides whether v should be inserted in the manner of
an insertion sort by comparing the value of the elements in h with
the input value v. The output node sum calculates the sum of the
elements in h. Similar to DupCheck, this module has a redundant
description.

In the aforementioned example, the time complex-
ity of finding the insertion point of the input value v is
O(Number of elements in the history). If we can use a tree
structure (heap tree), the time required to find the minimum
value in a set can be reduced. Thus, when the capacity of history
increases, it is useful to manage it as a tree. However, it is
difficult to represent such a tree structure using the data types
(tuples and direct sums) available in the current Emfrp.
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Fig. 4 Implementation of the Top10Sum module in Emfrp.

These examples illustrate the drawback of Emfrp due to lan-
guage restrictions, which makes it difficult to handle data struc-
tures whose size can change at runtime. This not only leads to
redundancy in the source code, but may also adversely affect the
performance of node update calculations.

4. Method

4.1 Approach
The introduction of recursive data types to Emfrp solves the

problems described in the previous section. However, we cannot
naı̈vely introduce recursive data types and recursive function def-
initions in the same way as in other functional languages. Assum-
ing that we may use recursive data types and recursive functions
without any restrictions, we can define the following nodes and
functions:

Node r is initialized to Nil, which is the end of the list, and it
repeatedly adds the input value v to the head of the list each
time r is updated. Therefore, the memory usage increases over
time, resulting in memory shortage. As in node i, invoking a
non-terminating function such as infloop prevents the termina-
tion of node updating. In these examples, the properties of Emfrp,
such as statically determining the amount of runtime memory and
guaranteeing the termination of node updating, are lost. Conse-
quently, the naı̈ve introduction of recursive definitions that cause
these problems is unacceptable.

To address this issue, we introduce a new method for recur-

sive definitions to Emfrp that can limit the size of constructible
structures and the depth of recursive calls and propose a mecha-
nism that statically detects the violation of the limitation. Using
the proposed method to limit the size of constructible structures,
we can statically detect a code that builds indefinitely expanding
lists, as in the above example. In addition, by limiting the depth
of recursive calls using this method, we can guarantee the termi-
nation of recursive functions and statically determine the amount
of the call stack and other memory usages required at runtime.

4.2 Bounded Construction Types
In the proposed method, the maximum size of constructible

data structures of a type is specified in the type. We define the
size of a data structure as the number of constructors that form
the structure and belong to its type. We use the following OCaml
code to exemplify the definition. The sizes of l and n of type
ilist are 4 and 1, respectively, and the size of t of type otree
is 5:

Note that size is a positive integer, and only the number of con-
structors that belong to the target type is counted (e.g., we do not
count Some in t).

We introduce new recursive data types augmented with size in-
formation, called Bounded Construction Types (BCTs). The size
information associated with a BCT, called the size parameter of
the type, indicates the maximum size of constructible structures
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of the type.
The size parameter of a BCT is expressed as a superscript on

the type. For example, ilist4 denotes the type of integer list up
to four in length. Both l and n in the above example are of type
ilist4. As the sizes of l and n are 4 and 1, respectively, n is also
of type ilist2, whereas l is not. Similarly, t is of type otree8

but not of type otree4 because its size is five.
As described previously, for data structures of a type whose

size can change at runtime, we introduce a limit on the number
of constructors and express it as a part of the type. This allows us
to statically detect objects whose size can exceed the given limit
at runtime by performing type checking. In addition, by focusing
on the size parameter of an argument of a recursive function, we
can statically determine during type checking whether the size of
the argument is strictly decreasing during the recursive call. If the
size of the argument is guaranteed to decrease with each recursive
call, then the depth of the recursive call is at most that size. This
allows us to guarantee the termination of recursive functions stat-
ically. In other words, well-foundedness is required for recursive
function calls.

The type checking of BCTs includes the extraction of con-
straints for checking the consistency of the possible sizes of the
structure (size parameters), in addition to the generally performed
type checking. By examining the validity of the constraints, we
can check whether a given program violates the size of the data
structure or the limit on recursive calls.

4.3 EmfrpBCT

We propose EmfrpBCT, which is an extension of a subset of
Emfrp with BCTs. The basic execution model of EmfrpBCT is the
same as that of Emfrp, although there are differences in syntax
and runtime data representation. Functions in Emfrp may have
polymorphic types, but we do not deal with them in this study be-
cause we focus on the size parameter. As higher-order functions
are not available in EmfrpBCT, the polymorphic functions do not
generate size constraints on the data denoted by the type vari-
ables. Therefore, even if we were to introduce a polymorphism
similar to Emfrp, it would be sufficient to use the same level of
type checking for polymorphic functions as in the conventional
method, and its implementation would not be difficult.

In EmfrpBCT, if a program passes the type checking, the size
information of the values in the program is guaranteed to be con-
sistent. Using this information, we can statically estimate the
amount of memory that the program will need at runtime by ex-
haustively traversing its syntax tree. Thus, although EmfrpBCT

can use recursive data types (BCTs), it preserves the properties
of Emfrp, such as the termination of the update process of time-
varying values and the static estimation of memory usage at run-
time. In the following sections, we explain EmfrpBCT for each
feature.
Module Definition

The module definition includes the definition of data types,
functions, input nodes, output nodes, and intermediate nodes, as
in Emfrp. Although some type annotations can be omitted in Em-
frp because of the type inference, all variables must be annotated
in EmfrpBCT.

Type Definition
We can use BCTs as recursive data types in EmfrpBCT. Tu-

ple types, direct sum types, and variant types that are available in
Emfrp are emulated as non-recursive BCTs, hence they are not
introduced directly into the language. The type definition for the
BCT can be written as follows:

type ρ = χ1(T ρ ,. . ., T ρ) | . . . | χn(T ρ ,. . ., T ρ)

Here ρ is the type name, and χ is the constructor name. The type
name and constructor name are unique in the program. We use T ρ

to represent the constructor parameter, which can be a basic type,
ρ, or a BCT of another size. Here ρ plays a role of a placeholder
to indicate which position in the parameter is recursive. Mutual
recursions in BCT definitions are not allowed. In other words,
when defining a recursive type, its own type name will always
appear in the parameter of one of the constructors.

For example, an integer binary tree in BCT can be defined as
follows:

type TreeI = LeafI | NodeI(TreeI, Int, TreeI)

When defining a BCT, other BCTs are allowed to appear in the
constructor parameters. In such a case, the constant size param-
eter must be specified. As an example, the type definition of a
binary tree, whose elements are list types up to size 10, is as fol-
lows:

type TreeL = LeafL | NodeL(TreeL, ListI[10], TreeL)

When the name of a BCT appears in its own type definition, it
does not specify a size parameter, but when it appears in other
type definitions or as a type name in function arguments, it spec-
ifies a size parameter by adding [ψ] to the name. Here ψ is a
meta-variable that indicates the size parameter. The size param-
eters are integer constants greater than or equal to zero, the sum
and difference of the size parameters, and the size variable.

When the BCT constructor is applied to a value, the value has
a type whose size is the sum of the sizes of the applied val-
ues plus one. For example the value LeafI in the above ex-
ample has the type TreeI[1], and NodeI(NodeI(LeafI, 2,
LeafI), 1, LeafI) and NodeI(LeafI, 3, NodeI(LeafI,
2, LeafI)) have the type TreeI[5].
Function Definition

In addition to the function definitions allowed in Emfrp,
EmfrpBCT allows recursive function definitions. Note that mu-
tually recursive definitions are not allowed. Furthermore, there is
a restriction that the arguments of recursive functions reduce in
size during the recursive call.

The following defines a recursive function:

func f ( x1:π1 ,. . ., xn:πn ):τ where {A1, . . . ,Am}

[δ1, . . . , δl] = e

where f is the function name, xi is the parameter name, and πi

is a type that can be specified as a parameter of the function,
which is either a basic type or a BCT with a size variable as a
size parameter. The size variable introduced here is used in the
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adj expression (see below) of the function body. Here τ is the
result type, A is a logical formula for the size variable and rep-
resents a precondition that must be statically checked to describe
the function call, and δ is a size variable that appears in the pa-
rameters. The summation of size variable specified in [δ1, . . . , δl]

is the measure function of f and is used for verifying that the size
of parameters passed to the recursive calls decreases. We use e to
denote an expression of the function body. Reference to a node
or to the previous value of a node is not allowed in the function
definition.

The function definition is validated at type checking by judging
of the implication of the precondition specified in the definition
as the antecedent and the size constraint obtained from the body
expression as the consequent. Here, the size decrease constraint
on the recursive call is included in the constraint obtained from
the body expression.
Expression

This section explains the expression for EmfrpBCT. The prim-
itive binary operations are the same as in Emfrp. The local vari-
able definitions are also similar, even though the syntax is differ-
ent. We explain the expressions dealing with BCT, which are
unique features of EmfrpBCT, and some of the constraints ex-
tracted from them.

From the function call f(e,. . .,e), the extracted constraint is
the precondition of the function call as a constraint in addition
to the usual type checking for the consistency of the argument
types. If f is a recursive call, the constraint that the argument size
is decreasing monotonically according to the measure function
specified in the function definition is also extracted.

In the if expression whose result type is BCT, the result types
of then and else clauses are checked, and the constraint that their
sizes be equal is extracted. That is, for example, we must use adj
expression (see below) to adjust the size when the result value of
then clause is Nil and the result value of else clause is Cons
(1, Nil).

The decomposition expression case e return τ of branch1

|. . .|branchn decomposes the BCT for each constructor. Here
branch1, . . . , branchn must cover all the constructors of the tar-
get type. The τ denotes the type of the result. From the case

expression, the constraint that the size of the result for all
branches is equal to τ is extracted. Each branch is of the form
χ(x1:π, . . . , xn:π) -> e. In each branch expression, the value of
the constructor is bound to a variable name with a type annota-
tion. The type annotations are the same as for function arguments,
and new size variables can be introduced, and unused type anno-
tations can be omitted. This new size variable has a constraint
related to the size of the expression to be decomposed. We il-
lustrate the size constraints extracted from the branch using the
TreeL type described previously. When decomposing the values
of TreeL[5] by case expressions, the branch of NodeL is of the
form NodeL(l: TreeL[a],v: ListI[b], r: TreeL[c]) -> e.
In this case, the newly introduced size variable requires a >

0 ∧ b > 0 ∧ c > 0 ∧ 1 + a + c = 5 ∧ b = 10. Therefore, from this
branch the constraint ∀a, b, c.a > 0 ∧ b > 0 ∧ c > 0 ∧ 1 + a + c =

5 ∧ b = 10 → C ∧ (constraint on the size of the result) is ex-
tracted, where C is the size constraint obtained from e. When

the BCT values are produced, the information about the size of
the component BCTs is absent, so the size constraint of the case
expression reconstructs this information.

The size expansion expression e adj[ψ] adjusts the size of the
BCT of e to ψ. As the size of a BCT indicates the maximum num-
ber of the elements of the type, it is safe to consider a small size
value as a large size value. From this expression, the constraint
(the size of e) ≤ ψ is extracted.

A BCT value in EmfrpBCT contains runtime size information.
The size-cast expression fit e0 to x:ρk -> e1 | fail -> e2

branches the computation depending on the runtime size of e0.
If the runtime size of e0 is less than or equal to the constant size
k, the size-cast expression casts e0 to the type ρk and bind the cast
value to x which can be used in e1. If not, the expression e2 in the
fail clause is executed. This expression is mainly designed for
use with the previous value of a node in a node update expression.
Node Definition

We can define nodes in the same way as in Emfrp. Node defini-
tions cannot introduce new size variables as function definitions
because node definitions do not have arguments. Therefore, only
the size variables introduced in the case branch can be used.
Memory Usage Estimation

In Emfrp, memory usage at runtime of a program is estimated
by traversing the syntax tree of the program code and counting
the expressions that produce values such as constant values and
constructor applications. As there are no recursive calls in Em-
frp, all possible node updates can be covered by expanding all
function calls in the syntax tree.

Similar to Emfrp, EmfrpBCT estimates memory usage by
traversing the syntax tree and tracking the production of values.
Memory usage is estimated for modules that pass the type and
constraint checks. When traversing the syntax tree of an expres-
sion, the concrete values are assigned to the size variables that
appear in the expression. For each function call, it computes the
concrete value of the introduced size variable, assigns it to the
size variable, and expands the syntax tree. The same function
may be expanded by recursive calls, but the expansion of the syn-
tax tree stops after a finite number of times because a monotonic
decrease in size is guaranteed.

In case expression, each branch is traversed exhaustively for
all possible sizes. In a branch of case, a size variable is intro-
duced under the constraint on the size of the type to be decom-
posed. The branch expression is traversed by assigning all com-
binations of valuations that satisfy the constraints of the size vari-
ables introduced. When decomposing the values of BCTs, the
information about the sizes of the component BCTs is absent, so
the information is reconstructed by enumerating all the size tuples
that satisfy the constraints. In addition, if there is no assignment
that can satisfy the constraint, the branch is not traversed.

Finally, the memory usage for a node update is estimated by
traversing the syntax tree starting from the node update expres-
sion and assigning concrete values to the size variables. Three
categories of memory are required to continue executing the mod-
ule: the memory region that holds the current and previous val-
ues of the nodes, the largest memory region required to update
a single node, and the memory region required for the language
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runtime.

4.4 Examples
We implemented the two modules presented in Section 3 in

EmfrpBCT. Using these examples, we explain the extracted size
constraints and traversal of the syntax tree to estimate memory
usage.
DupCheck Module

Figure 5 shows the DupCheck module in EmfrpBCT. The in-
put of the module is the same as in the Emfrp example. Line 6
defines a BCT of type list with Int as an element. Lines 8–24 de-
fine the auxiliary functions for the list. Lines 26–31 define a node
history of type List[5] representing the history of inputs. Note
that the size is set to five to hold four histories, including Nil at
the end of the list. In the node update expression of history, the
runtime size of the list is obtained using the fit expression, with
the branch by its size. If there is enough space in history, the
input values are simply added to it. Otherwise, the first value of
history is removed, and the input value is added to the end. Line
33 defines node detect, which checks whether the current input
value exists in the previous history.

By representing the history using a list, Fig. 5 is more maintain-
able than Fig. 3 because the code is independent from the specific
history length. In addition, because the consistency of the size
is statically checked when the history length is modified, errors
related to size caused by the modification can be detected.

We use the insert function as an example to explain the con-
straints that are extracted when validating a recursive function
definition. First, a new size variable m is introduced from the
argument of the insert function. A precondition, m > 0, is re-
quired when calling this function.

Constraints for function definition expressions are extracted
bottom-up. In the Nil branch, � → 2 ≤ m + 1 ∧ m + 1 = m + 1
is extracted from the constraints for the constructor application,
adj expression, and the size of the result. Let X be this extracted
constraint. Next, in the Cons branch, a new size variable n is in-
troduced under the condition n > 0∧m = 1+ n to decompose the
variable l of size m. Focusing on the recursive call insert(x, t)
in the following expression, the conjunction of the precondition
for the function call (n > 0) and the constraint on the recursive
call (n < m) is extracted. The constraint on the recursive call is
specified by the measure function [m] at the end of line 9. This
implies that the total size of the actual arguments of BCT is less
than m. In other words, n > 0 ∧ n < m is extracted from this
recursive call. Noting the size of the constructor-applied result of
the recursive call and the size of the branch result, we obtain the
constraint 1+ (n+1) = m+1. Thus, the constraint extracted from
the entire Cons branch is ∀n.(n > 0 ∧ m = 1 + n)→ (n > 0 ∧ n <

m ∧ 1 + (n + 1) = m + 1). Let Y be this constraint.
Given the above constraints and the requirement that the size

of the function result be m + 1, the size constraint to be checked
in function validation is ∀m.(m > 0)→ (X ∧ Y ∧m + 1 = m + 1).
Note that the constraints shown here are not the actual constraints
extracted during the real type checking. The actual constraints are
more complicated than those shown here because of the addition
of tautological constraints (�) for variable references, but they

Fig. 5 Implementation of the DupCheck module in EmfrpBCT.

are essentially the same. For other function and node definitions,
similar type checking and constraint extraction are performed to
validate the definitions.

When estimating the memory usage for node updates, the value
of the size variable newly introduced by decomposing list struc-
tures is determined uniquely. Let m be the length of a list and n be
the length of the tail of the list satisfying the condition m = 1+ n.
When m is given, n is determined uniquely, and thus each branch
of case is traversed only once. In other words, no backtracking
is required, in contrast to the following example. For example,
in the case of the insert function, each time the body of the
function is traversed recursively, the size variable m is assigned
4, 3, 2, 1 in that order.
Top10Sum Module

Figure 6 shows Top10Sum module in EmfrpBCT. In the previ-
ous example (Fig. 4), we used tuples to manage the values, but
in this example we use a leftist heap [25]. The input and out-
put of the module are the same as those in the Emfrp example.
Lines 8–9 define the type of the heap tree. The third and fourth
parameters of the constructor T are recursive. Lines 11–36 de-
fine the auxiliary functions of the leftist heap. The node h de-
fined in lines 39–43 is a heap tree of size 21. This size can
accommodate 10 values. When updating the h node, if there
is space for additional elements, the input value is inserted into
the heap. If not, the input value is compared with the mini-
mum value in the heap. If the input value is larger than the
minimum value, the input value is included in the top 10, so
the input value replaces the minimum value; otherwise, the cur-
rent state is retained. The insertion into the heap and the dele-
tion of the minimum can be performed with a time complexity of
O(log(number of elements in the heap)), and the minimum of the
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Fig. 6 Implementation of the Top10Sum module in EmfrpBCT.

heap can be obtained with a time complexity of O(1). Lines 45–
51 define node sum, which calculates the sum. When a value is in-
serted into the heap, it calculates the difference between the input
value and the minimum value in the heap, and updates the total
value by adding it to its own previous value. This update process
can be done with complexity O(1). Overall, the module requires
a time complexity of O(log(number of elements in the heap)) to
update the nodes. Therefore, this program is more time efficient
than the Emfrp example, which takes linear time to update and
even if the number of elements is increased, the update process is
less time-consuming.

The recursive function in this program is the merge function
defined in lines 19–26. When this function is invoked, only one
of the arguments decreases in size. Thus, we set the measure
function as [n,m] and check that the sum of the sizes of the two
arguments is decreasing monotonically. This check guarantees
the termination of the merge function.

When estimating the memory usage of a node update, an ex-
haustive search for the shape of the tree is performed in the T
branch of the heap tree decomposition by the case expression.
To decompose a tree of size 21, (m, n), the third and fourth size

parameters of the constructor T, have the constraint 21 = 1+m+n.
Therefore, (m, n) = (1, 19), (2, 18), (3, 17), . . . , (18, 2), (19, 1) are
assigned as the sizes in order, and then the syntax tree is traversed.

The proposed memory usage estimation algorithm enumerates
all possible structures of the data type (size assignment) while
searching, which may lead to a combinatorial explosion. As
EmfrpBCT is designed for small embedded systems, the proposed
algorithm is expected to be applied to data types with relatively
small sizes. The execution time of the proposed algorithm is ex-
pected to be practical in most cases, but considering larger data
types is a topic for future work.

5. Formalization

In this section, we formalize the syntax, operational semantics,
and type system of EmfrpBCT. We then propose an estimation
algorithm for memory usage and demonstrate its soundness, that
is, the estimated amount of memory allows us to update all the
nodes.

5.1 Syntax
We define the syntax as Fig. 7. Most of the syntax is similar to

the concrete syntax of EmfrpBCT described in Section 4. It differs
from the concrete syntax in the following ways. First, the position
of the size parameter is a superscript of the type name. Second, a
type annotation must be added whenever a variable is introduced
in a branch of a case expression. In addition, output nodes are
not declared explicitly in the module.

In addition to the syntactic rules shown in the figure, there are
several other syntax requirements. First, the branches of the case
expression must cover all the constructors of the type to be de-
composed. Second, the function definitions should not contain
node references or previous value references. Third, the names
of the types, constructors, functions, variables, and size variables
must be unique. Finally, the node and function definitions should
be sorted according to the orders defined in the following.
Definition 1 (Dependency order on node definitions). For nodes
N and N′, we define N >N N′ if the update expression of a node
N (the second element of N(N)) contains a reference to a node
N′, i.e., N depends on N′. As there is no circular dependency of
nodes, the transitive closure >∗N of >N is a strict partial order.
Definition 2 (Dependency order on function definitions). For
functions f , g ∈ dom(F ), we define f ≥F g if the body of f

contains a call to g, i.e., f depends on g, or g = f . As mutual
recursions are not allowed, the transitive closure ≥∗F of ≥F is a
partial order.

The syntax of size constraints is as follows. We use k and δ

to denote a size constant and a size variable, respectively. A size
variable is a variable of a size parameter that takes a positive inte-
ger. A size constraint C is extracted by type checking and can be
the true literal, an arithmetic constraint, a universal quantification
over size variables, a conjunction of constraints, or an implica-
tion of constraints. HereA is a precondition for the function call
specified in its definition, and ψ is a size parameter for BCTs.

Next, we explain types in EmfrpBCT. We useB to denote a base
type, which is either an integer or Boolean type. Here ρ denotes
a name of a BCT. There are several variants of types because the
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Fig. 7 Syntax of EmfrpBCT.

allowed forms differ depending on the context. In particular, T ρ

is a type of constructors of ρ, and ρ without a size parameter is
used to declare ρ as the recursive type.

For expressions, case expressions should be annotated with
the result types. Nested pattern matching is not handled. Here
ce represents a constant expression, typically used for specifying
the initial value of a node. Although not declared explicitly here,
only integer values and constructor calls are allowed in constant
expressions. A module consists of five maps: type definitions,
function definitions, input nodes, intermediate or output nodes,
and initial values for these nodes. BCTs declared in the concrete
syntax with type are stored as the entries from type names to their
constructors.

5.2 Operational Semantics
Figure 8 shows the definition of the values, the environments,

and the auxiliary functions for the recursive indices. Here l rep-
resents the location of the heap area, and v represents a value that
can be an integer, a Boolean constant, or a BCT value. The BCT
value has the tag of the constructor, size information at runtime,
and a list of positions representing parameters. We use E to de-
note the environment from the local variable names to positions,
H to denote the environment from positions to values in the heap
area, and L to denote the environment from node names to posi-
tions in the heap. The previous-value reference of a node is also
referenced from L. Here Γ is the type environment and is used
for type checking, and Δ is the environment from size variables
to size constants and is used to estimate memory usage. The aux-
iliary function I(χ) returns the set of indices that appear in the
recursive type on the parameters of constructor χ.

Fig. 8 Values, environments, and recursive indices.

The operational semantics of the expressions are shown in
Fig. 9. As EmfrpBCT is a language that focuses on resource usage
during computation, some of the resource requirements are made
explicit in the semantics. The explicit resources are the number of
local variables to be referenced, the number of data to be stored in
the heap, and the number of function calls. The heap, local vari-
able environment and call stack have free spaces. A free space is
an integer which means the number of their unused entries. Here
[s]E denotes the local variable environment E with the free space
s. For example, we can add at most 5 entries to [5]E. The opera-
tional semantics are indicated by [s]E | [t]H �T ;F

L e ⇓u l′; [t′]H′.
This is read as “with type definitions T , function definitions F ,
and a node location environment L, evaluating an expression e

under a local variable environment E with free space s, a heap H

with free space t, and a call stack with free space u results in a
heap H′ with free space t′ which stores the result of evaluation at
l′.” Note that the evaluation result of the expression does not di-
rectly represent a value, but a position in the heap after evaluation.
The domain of L used in the evaluation of a node is the union
of the domains of N and I. Note that Emfrp has a restriction
that the current or previous value of a node cannot be referenced
inside the function. To reflect this restriction in EmfrpBCT, the
node location environment L is changed to ·, which represents an
empty environment, in the evaluation of the function body (rule
E-CALL).

Here E corresponds to a stack frame for local variables, and its
free space is represented by s. Similarly, H and H′ are the heap
areas for storing values, and their free spaces are represented by t

and t′, respectively. In addition, u indicates the free space of the
call stack, that is, the possible number of function calls. Each free
space s, t, t′, and u is a non-negative integer. If any free space be-
comes negative during the evaluation, the evaluation is stuck (i.e.,
abnormal termination). Furthermore, the evaluation fails to pro-
ceed even when a partial function used as an auxiliary function,
such as a reference to the environment, is applied to a value that
is not in its domain.

During the evaluation of an expression, values are stored in
the heap, but once stored, the values and their locations are not
changed. In other words, free space on the heap cannot be in-
creased in the absence of GC or other operations during the eval-
uation of an expression. Therefore, in the evaluation of an expres-
sion, the heap H′ after the evaluation includes the heap H before
the evaluation (H ⊆ H′) and the free space t′ of the heap after the
evaluation is the same size or smaller than the free space t of the
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Fig. 9 Operational semantics for expressions.

heap before the evaluation (t ≥ t′).
The environment E maintains the locations that must be stored

locally. Rules E-CASE, E-LET, and E-FIT-SUCCESS introduce
a new local variable, so binding is added to E by reducing the
free space during the evaluation of the subsequent expression. In
the rules E-CALL and E-OP, functions and binary operations are
applied after the arguments are evaluated, but it is necessary to
temporarily store the position of the result of the argument eval-
uation. This process can be understood as introducing local vari-
ables that cannot be referenced by other expressions. Therefore,
when evaluating the second and subsequent arguments, the local
variable environment is set to [s−(i−1)]E in E-CALL and [s−1]E
in E-OP to reduce the free space. Meanwhile, rule E-CTOR eval-
uates the parameters of the constructor assuming that the location
where the result in the heap is stored is allocated as an implicit
local variable. As the locations of the evaluation results of these
parameters are described sequentially in the allocated locations
in the heap, the evaluation is performed without allocating local

variables for the number of parameters as in a function call.
The rest of the rules are similar to those of a typical call-by-

value functional language. The size parameters described in the
program are not handled during evaluation, except in the fit ex-
pression. In the fit expression, a branch of evaluation is per-
formed using the runtime size information of the object, but the
comparison is made only with a constant, and no size variable
appears.

5.3 Type System
The definition of the auxiliary operators used in the typing rules

is given in Fig. 10. Here · ∼ · is an operator that generates the size
constraints required to unify the types. It generates constraints
that are constant true if both sides are of the same basic type,
and constraints that the size parameters are equal if both sides are
BCTs. The last pattern generates constraints for recursive types
that appear in the constructor (as placeholders). The operator τ ↓
extracts the size parameter from the type. The third set of rules is
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Fig. 10 Auxiliary operators for types and constraints: unification for types
(∼), size parameter for types (↓), and size substitution (over types).

the assignment rules for the size parameters. The last set of rules
generates a size parameter assignment from a pair of sequences
of types. It unifies the corresponding types with respect to size
and generates a size parameter assignment δ �→ ψ if the resulting
constraint has the form δ = ψ. Note that the constraint obtained
by unification may not have the form δ = ψ because the types of
the form π include primitive types.

The typing rules for expressions are shown in Fig. 11. Typing
rules are described with type judgments Γ �T ;F

f e : τ | C. This
is read as “with type definitions T and function definitions F ,
an expression e in a function f under a type environment Γ has
type τ and a size constraint C is extracted.” The typing rule for a
branch of a case expression is represented by the type judgment
Γ �T ;F

f ,ψ branch :∼ τ | C. This is read as “with type definitions
T and function definitions F , a branch branch that decomposes
an expression of size ψ in a function f under a type environment
Γ has type τ and a size constraint C is extracted.” In each type
judgement, a function name f is passed to indicate the function
being type-checked. For update expressions and initial values of
nodes, a special name − representing an empty is passed as the
function name.

The size constraint C extracted along with type checking con-
sists of addition, subtraction, and comparison of positive integers,
universal quantification over size variables, conjunctions, and im-
plications, as presented in Section 5.1. This is included in the
theory known as Presburger arithmetic. The validity of the Pres-
burger arithmetic expression is known to be decidable. Therefore,
the validity of the constraint is also decidable.

Here we explain some typing rules. In rule T-CTOR, each type
of constructor parameter is typed, and then the size of the result
is computed using the information about the recursive type.

In rule T-CASE, the constraint of the expression is a conjunc-
tion of that obtained from the decomposed expression and those

obtained from the branches. Each branch is examined by the rule
T-BRANCH. The size parameters are extracted from each of the
constructor parameters, and the constraint for these parameters is
introduced as C. The constraint C is composed of a constraint R
derived from the size of the type of the decomposed expression
and a series of constraints for the sizes of other BCTs. These
constraints, with the constraint C′ derived from the body of the
branch and the constraint τ′ ∼ τ on the size of the result, are used
to generate the final constraint.

Rule T-CALL performs type checking and constraint extrac-
tion for function calls. For type checking, it performs type check-
ing of function calls of the general first-order functions. For con-
straint extraction, we first generate a size variable assignment θ
from the size variables of the parameters of the function defini-
tion obtained from F and the size parameters of the arguments.
The preconditionA of the function call is appropriately replaced
by θ. If the call is recursive ( f = g), we generate the constraint R
that the result of the measure function substituted by θ (the size at
the recursive call) is less than the measure of the function param-
eters (the size at the beginning of the function). This constraint
guarantees the termination of recursive calls.

The rule T-IF adds a constraint that the size of the result of the
then and else clauses must match (τ ∼ τ′).

Figure 12 shows the size constraint for the validity of a mod-
ule definition. These rules generate constraints to be checked
for function definitions, node definitions, and node initial val-
ues based on the size constraints obtained from their defining ex-
pressions. For example, in the case of function definitions, the
generated constraints are implications universally quantified over
size variables introduced with parameters of functions, whose as-
sumptions are the precondition of the function calls, and whose
consequences are the constraints obtained from their bodies. The
validity of these constraints implies that the function definitions
are valid in the module. The validity of the entire module can be
checked by checking similarly the validity of the node definitions
and the initial values of nodes.

5.4 Memory Usage Estimation Algorithm
In Fig. 13, we define the auxiliary function used in the algo-

rithm to estimate the amount of memory used. It computes the
value of the size parameter under the size variable environment
Δ.

Next, Fig. 14 demonstrates the algorithm for estimating the
amount of memory used in the evaluation of an expression. The
algorithm comprises an algorithm M for traversing expressions
and an algorithmM for searching parameters in the case branch.
In the algorithm, the numerical max function is described by the
binary operator �.

The algorithm M takes as inputs a type definition T , a func-
tion definition F , a size environment Δ, and a type environment
Γ, and outputs the type τ of e, the free space s of the local vari-
able environment, free space t of the heap, and free space u of
the call stack required for the evaluation of e. It computes the
amount of memory that can be used by subexpressions of the tar-
get expression by scanning the syntax tree, accompanied by the
size environment, to obtain the memory required by the target ex-
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Fig. 11 Typing rules for expressions.

Fig. 12 Validation rules for module definitions.

Fig. 13 Evaluation rules of the size parameter.

pression. The required memory is calculated backward from the
rules of operational semantics. For example, in the case of the
expression let, the free space in the local variable environment
is required for e1 to be evaluated, and for e2 to be evaluated with
x bound to the environment, which is expressed in the second
output s1 � (1 + s2).

In the case of a function call, we build a new size environment
that binds the actual sizes of the arguments calculated using the
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Fig. 14 Memory usage estimation algorithm.

auxiliary function ev to the size variables declared in the callee
function. The environment is used in traversing the body of the
callee function.

InM, the size m of the type to be decomposed in the case is
also used as the input, and the branch is targeted instead of the
expression e. The outputs are the free space in the local variable
environment s, free space in the heap t, and free space in the call
stack u needed when this branch is evaluated. The algorithmM
finds the memory required in the evaluation of the expression e of
the branch in all cases in a set of size-parameter assignments A
that satisfy the conditions of the constructor decomposition. If the
conditions of the constructor decomposition cannot be satisfied,
that is, if it is statically known that the expression of the branch
will not be executed, s, t, and u are all set to 0. As the algorithm
M for the case expression uses the maximum values of all of the
results of the branches, ifM estimates resources as 0, the result
is just ignored.

As the algorithm expands the expression while calculating the
concrete values of the size parameters, the execution time varies
depending on the size of the expression type. The algorithm
searches for parameters in the constructor, so it is also affected by
the structure of the type. In particular, the search for the branch
requires the search for overlapping combinations of parameters
in the constructors, which may cause a computational explosion.
However, considering that EmfrpBCT is a language for small-scale
embedded systems, and assuming that the size of the code to be
handled is relatively small and the type structure is not complex,
this algorithm can still be practical.

We have demonstrated an algorithm for estimating the memory
usage of an expression. As described in Section 4.3, to estimate
the memory usage of the entire module, it is also necessary to
consider the memory used by the node, the node’s previous value,
and the runtime.
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Fig. 15 Typing rules for values on the heap.

5.5 Soundness
We demonstrate the soundness of typing expressions with the

operational semantics, the type system, and the memory usage
estimation algorithm defined so far. First, we show the termina-
tion of the algorithm for estimating the amount of memory used.
We define the consistency between the type environment Γ and
the size environment Δ, and the model of the size constraint as
follows.
Definition 3 (Consistency between the type environment and the
size environment).
When

⋃{FV(Γ(x) ↓) | x ∈ dom(Γ)} ⊆ dom(Δ) is satisfied, we say
“type environment Γ and Δ are consistent,” or (Γ,Δ)-consistent.
Definition 4 (Model of size constraint).
We assume that FV(C) ⊆ dom(Δ) for the size environment Δ and
the size constraint C. If the constraint that every free variable in
C is replaced by Δ is valid, “Δ is a model of C.”

Using these definitions, we show Theorem 5 for the algorithm
to estimate the amount of memory used.
Theorem 5 (Termination of the memory usage estimation algo-
rithm).
Assume that:
• Γ �T ;F

f e : τ | C;
• (Γ,Δ)-consistent;
• for any function name g in the expression e, f ≥∗F g is satis-

fied;
• Δ is a model of C.

Then, the following hold:
• MT ;F

Δ;Γ [[e]] terminates in a finite number of steps;

• whenMT ;F
Δ;Γ [[e]] = (τM, s, t, u), τM = τ.

Proof Sketch. By induction on the lexicographic order of the
triple ( f , evΔ[[

−→
δ ]], e), where f is the function name,

−→
δ is the mea-

sure function of f , and e is an expression. See Appendix A.1 for
details. �

For the node update expression, Corollary 1 holds with the type
environment for all the nodes on which the target node depends.
Corollary 1 (Termination of the memory usage estimation algo-
rithm for node update expression).
For any node N inN ,MT ;F

·;ΓN [[N(N)]] terminates in a finite number
of steps, where ΓN = I,N1 : σ1, . . . ,Nn : σn.

We show that the estimation algorithm terminates in a finite
number of steps. In the following, we implicitly use the termina-
tion property of the algorithm.

Next, we define the consistency between types represented by
the values in the heap and each environment. In Fig. 15, we show
the typing rules for location l on the heap H. This expresses the
value traced from l on the heap H would be typed. The definition
of consistency for the heap and each environment is as follows.
Definition 6 (Consistency between node location environment,
local variable environment, heap, type environment, and size en-

vironment).
When:
• (Γ,Δ)-consistent;
• for any x ∈ dom(E), H,T � E(x) : σ and σ ↓≤ evΔ[[Γ(x) ↓]];
• for any n ∈ dom(L), H,T � L(n) : σ′ and σ′ ↓≤

evΔ[[Γ(node name(n)) ↓]];
are satisfied, we say “node location environment L, local vari-
able environment E, heap H, type environment H and size en-
vironment Δ are consistent,” or (L, E,H, Γ,Δ)-consistent, where
node name(n) denotes a name of n *1.

Finally, we show soundness for the typing of expressions in
Theorem 7.
Theorem 7 (Soundness of typing of expressions).
Assume that:
• Γ �T ;F

f e : τ | C;
• (L, E,H,Γ,Δ)-consistent;
• for any function name g in the expression e, f ≥∗F g is satis-

fied;
• Δ is a model of C;
• MT ;F

Δ;Γ [[e]] = (τM, sM, tM, uM).
For any s ≥ sM, t ≥ tM, and u ≥ uM, there exist l, t′, H′, and σ
such that the following are satisfied:
• [s]E | [t]H �T ;F

L e ⇓u l; [t′]H′;
• t′ ≥ t − tM;
• H′,T � l : σ;
• σ ↓≤ evΔ[[τ ↓]].

Proof Sketch. This proved by induction on the lexicographic or-
dering of the triple ( f , evΔ[[

−→
δ ]], e), as used in the proof of Theo-

rem 5. See Appendix A.2 for details. �
Noting that there are no local variables and that Δ, C are empty

because there are no size variables at the beginning of a node up-
date, we obtain Corollary 2 for typing of nodes.
Corollary 2 (Soundness of typing of node).
Assume that:
• ΓN (N) = τN ;
• (L, ·,H, ΓN , ·)-consistent;
• MT ;F

·;ΓN [[N(N)]] = (τM, sM, tM, uM).
There exist l, t′, H′, and σ such that the following are satisfied:
• [sM]· | [tM]H �T ;F

L N(N) ⇓uM l; [t′]H′;
• H′,T � l : σ;
• σ ↓≤ τN ↓.
Based on these theorems and corollaries, the operational se-

mantics, type system, and memory usage estimation algorithm of
EmfrpBCT are sound. That is, for nodes that are typed correctly
and whose size constraints are valid (satisfiable), node updates
can be performed with the amount of memory obtained by the
algorithm without running out of resources.

*1 When n is a reference of the node, it returns n. When n is a previous-
value reference, it returns the name of the referred node.
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6. Implementation and Evaluation

We implemented the EmfrpBCT compiler. In this section, we
explain the details of the implementation. Then, the results of
various overhead measurements are discussed.

6.1 EmfrpBCT Compiler
The implemented compiler translates EmfrpBCT code into C

code. The executable binary (program) is obtained by compiling
the translated C code with a C compiler. The compiled program
is executed according to the operational semantics shown in Sec-
tion 5.2. To prevent unintended optimization by the C compiler,
the program manages its own local variable allocation and stack
pointers during function calls. It also follows Emfrp in the format
of external input and output, and in the code that needs to be filled
by users.

BCTs are compiled as variant type values in Emfrp with addi-
tional runtime size information. The language runtime includes
some kind of mark-sweep GC to manage BCTs, which is an ex-
tension of the memory management for variant types in Emfrp.
The memory usage estimation algorithm in the compiler also con-
siders the memory space used by the GC.

There is a difference between the formal definition and the im-
plementation of the runtime representation of the values of basic
types. In the formal definition, the values of basic types are placed
on the heap, similar to the values of BCTs, and are referenced via
pointers from the variable stack. In the implementation, however,
the values are copied and assigned directly to the variable stack.

To improve performance, the memory usage estimation algo-
rithm is implemented to avoid redundant traversals with the same
size parameter.

6.2 Evaluation Experiments
We performed evaluation experiments using the implemented

compiler. The compiler was implemented using OCaml (version
4.11.1), with satisfiability modulo theories (SMT) solver Z3 (ver-
sion 4.8.9.0) [3], [5] as an external library. The output C code
was compiled by clang (version 12.0.0). In compiling the code,
because the target system is a small-scale embedded system, the
-Os option was set to optimize the program size. All measure-
ments were performed on a MacBook Air (Intel Core i7 2.2 GHz
CPU, 8 GB RAM, macOS Catalina 10.15.6).
6.2.1 Compilation Time

The execution time of the algorithm proposed in Section 5.4
depends on the size of BCTs in the code and the number of recur-
sive types used inside the types. For DupCheck and Top10Sum (see
Section 4.4), we measured the time required to compile the code
by changing the size of the history nodes. The results are listed in
Tables 1 and 2. Each program code uses List[N + 1] type and
Heap[2N + 1] type.
DupCheck shows a slow change in memory usage estimation

time. When decomposing the List type by the case expression,
the size to be searched is uniquely determined, and the function
expansion is performed for at most the length of the list. There-
fore, it is expected that the computation time of the algorithm
increases slowly as the size increases, and this tendency was con-

Table 1 Comparison of the size of List and the compilation time in the
DupCheck module.

N Type check [sec] Memory estimate [sec] Total [sec]
4 0.015466 0.000049 0.015783

10 0.015334 0.000068 0.015680
20 0.015473 0.000128 0.015876
50 0.015486 0.000233 0.015993
100 0.015504 0.000530 0.016371
200 0.015121 0.000830 0.016227
300 0.015402 0.001312 0.016992
400 0.014178 0.001841 0.016312
500 0.015623 0.005209 0.021105

Table 2 Comparison of the size of Heap and the compilation time in the
Top10Sum module.

N Type check [sec] Memory estimate [sec] Total [sec]
10 0.018962 0.013779 0.033102
20 0.018160 0.192269 0.210782
30 0.019086 1.028855 1.048550
40 0.021169 3.467531 3.489383
50 0.016734 8.922994 8.940415
60 0.019698 19.372921 19.393433
70 0.028259 36.680560 36.710777
80 0.017129 64.181296 64.200058
90 0.017927 104.388627 104.408470

100 0.019529 163.357405 163.379870

firmed in actual measurements.
Top10Sum takes a long time to estimate the memory usage even

for relatively small sizes. This is because Heap has constructor
T that contains two Heap. When decomposing a tree in the case
expression, it is expected that the computation time will increase
drastically because the size variables are assigned and searched
exhaustively to satisfy the size constraint. This tendency was con-
firmed by actual measurements.

In both programs, the type checking time is almost constant
regardless of N. The form of extracted constraints during type
checking does not depend on the size of BCTs, so the satisfiabil-
ity checking of the constraints is performed in a constant time.
6.2.2 Execution Time and Program Size

We measured the effect of using BCTs on program size and
runtime overhead. We measured the program size (text, data, and
block starting symbol (bss)) and execution time for 107 iterations
of DupCheck and Top10Sum with random input for each of three
programs: one converted from the code shown in Section 3 us-
ing the current Emfrp compiler *2, one implemented using tuples
with EmfrpBCT, and one written using BCTs.

For DupCheck, we measured the modules whose history node
types are List[5] (N = 4) and List[31] (N = 30). The results
are listed in Tables 3 and 4, respectively. In both cases, the im-
plementation using tuples was faster than that using lists. In the
case of N = 4, there is no significant difference in the text area
where the program code is stored. However, when N = 30, the
text area of the program using tuples is larger. This is because
constructor applications are inline expanded, and the search for
duplicate elements is implemented as a series of if expressions.
Meanwhile, when a list is used, the size of the text area remains
almost the same as the number of histories changes, but the bss
area increases significantly. This is because the number of func-
tion calls and the stack space used increase with the number of
histories managed. In terms of whole program size, the example

*2 https://github.com/sawaken/emfrp
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Table 3 Comparison of the execution time and the program size of
DupCheck (N = 4).

N = 4 Exec [sec] text [byte] data [byte] bss [byte]
Emfrp 0.358 1,374 56 240
Tuple 0.840 2,419 48 384
List 1.702 2,395 56 640

Table 4 Comparison of the execution time and the program size of
DupCheck (N = 30).

N = 30 Exec [sec] text [byte] data [byte] bss [byte]
Emfrp 1.467 6,312 64 1,280
Tuple 5.045 8,149 56 1,840
List 12.063 2,417 56 3,552

Table 5 Comparison of the execution time and the program size of
Top10Sum (N = 10).

N = 10 Exec [sec] text [byte] data [byte] bss [byte]
Emfrp 0.484 3,397 56 472

Insertion 2.339 5,547 48 720
Heap tree 2.090 3,582 56 3,024

Table 6 Comparison of the execution time and the program size of
Top10Sum (N = 30).

N = 30 Exec [sec] text [byte] data [byte] bss [byte]
Emfrp 1.409 11,585 56 1,272

Insertion 6.692 22,976 56 1,840
Heap tree 5.533 3,573 56 8,784

using lists saves more memory.
For Top10Sum, we measured the modules whose history node h

has the types Heap[21] (N = 10) and Heap[61] (N = 30). The
results are listed in Tables 5 and 6, respectively. In terms of exe-
cution time, the example using a heap tree runs faster even when
the number of elements changes. The program size shows the
same trend as that of DupCheck. When N = 30, the implementa-
tion using insertion sorting of tuples enlarges the text area. This
is because the constructor is applied to every element number in
order so that the value is inserted at the appropriate position in
the tuple.

A common point among the measurement results of both the
DupCheck and Top10Sum modules is that the existing Emfrp pro-
gram is fast and relatively memory-saving. In the existing Emfrp,
variables and function calls on Emfrp are transformed to corre-
spond to those in the C language. Therefore, it is easy to optimize
local variables by assigning them to registers, and the computa-
tion is fast. Meanwhile, the current EmfrpBCT compiler has the
overhead of managing its own stack to adapt its behavior to its
formal semantics. In addition, the existing Emfrp compiler ana-
lyzes the live information of the nodes and releases the memory
occupied by the nodes at an early stage, so that the computation
can be performed with less memory.
6.2.3 Execution Time per Iteration Phase

Tables 7 and 8 list the results of measuring the execution time
of the program for each phase in the iteration. This is a cumula-
tive measurement of the time spent on node update (update), mark
phase for GC (mark), sweep phase or memory refresh (refresh),
and total program execution time (total) for each implementa-
tion of examples at N = 30. The unit of time is seconds. The
time measurement was performed by inserting the measurement
C code (using the clock function) into the iteration loop. Owing
to the overhead caused by the measurement code, the overall time

Table 7 Execution time of each phase in the program DupCheck (N = 30).

N = 30 update [sec] mark [sec] refresh [sec] total [sec]
Tuple 14.174 5.293 5.980 45.962
List 19.612 7.087 5.959 53.227

Table 8 Execution time of each phase in the program Top10Sum (N = 30).

N = 30 update [sec] mark [sec] refresh [sec] total [sec]
Insertion 15.850 5.300 5.975 47.651
Heap tree 11.376 7.743 6.600 46.210

increased compared with the results in Tables 4 and 6.
For the DupCheck module, the time to refresh the memory was

approximately the same because the number of history nodes
allocated in the heap area was approximately the same for the
list and tuple cases. However, we could measure the overhead
of marking the list, and the node update took longer to execute
when using a list. By comparing the programs, the tuple im-
plementation requires only one pattern match to update the his-
tory, whereas the list implementation requires a number of pattern
matches in proportion to the length of the history. Therefore, from
the results, it can be observed that the node update time increases
in the list implementation compared with the tuple implementa-
tion because of the increased number of function calls and pattern
matches.

For the Top10Sum module, the number of objects allocated in
the heap area is N in the case of the insertion sort implementa-
tion using tuples, but 2N + 1 in the heap tree version. The heap
tree implementation requires more mark and refresh time for the
objects on the heap than the insertion sort implementation. Com-
paring the two implementations, the insertion sort implementa-
tion requires pattern matching proportional to the history length,
whereas the heap tree version requires it to be proportional to the
height of the tree. As the height of the tree is smaller than the
history length in many cases, the node update time is shorter in
the heap tree implementation.

6.3 Discussion
From the measurements, it can be observed that the code size of

the program using BCT does not increase because the repetition
of the process is expressed as a recursive function and that there is
some overhead in marking the objects of BCTs. We cannot make
a simple comparison of the node update time because the calcu-
lation method (algorithm) is different in each case. In the case
of the DupCheck module, the implementation using lists is a pro-
gram that is robust to the changes in the number of histories, but
the access to the elements is done by using a recursive function
and pattern matching, which is more time-consuming than the tu-
ple implementation. In the case of the Top10Summodule, we used
a heap tree, which was difficult to represent in the existing Em-
frp; thus, we were able to write a more time-efficient process. To
improve the responsiveness of reactive systems, it is useful to use
more efficient data structures to improve the performance.

Compared with tuple-based naı̈ve data management, BCT-
based programs are expected to use many recursive function calls
and pattern matching. To improve the performance, it is neces-
sary to accelerate the function calls and pattern matching. In ad-
dition, because the upper bound of recursive function calls can be
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statically determined using the size parameter, inline expansion is
expected to enhance the performance. However, inline expansion
can lead to elaborate program code, so it should be optimized for
each environment on a case-by-case basis.

7. Related Work

7.1 Sized Types
The proposed method, BCTs, is strongly influenced by Sized

Types [21]. In Sized Types, in addition to the maximum object
size similar to BCTs, a minimum size is included in the type.
Using the Sized Type system, we can guarantee that streams al-
ways produce values and other properties, allowing the safe use
of functional languages in embedded systems.

The most significant difference between Sized Types and our
proposed method is that BCTs can handle the size information at
runtime using a fit expression. In Emfrp, a node often refers to
its own previous value by @last. When the node type is BCT,
the current and previous values have the same type, so it is nec-
essary to match the type and size well when defining nodes. In
EmfrpBCT, the size can be cast in the direction of size reduction
using the size information at runtime in the fit expression, so that
processes such as adding elements can be described concisely. In
a Sized Type system, such casts require dummy data as elements
so that the size is always the same, resulting in unnatural handling
of the data.

Simplified code fragments of the h node in the Top10Sum mod-
ule are listed in the following as an example:

If we simply introduce Sized Types to Emfrp, that is, if we de-
scribe node h without using fit expression, there are several pos-
sible ways to describe it. The first is to set a dummy data structure
in advance, as follows, and always reduce the size by delMin:

This method requires DUMMY_HEAP to be set with the correct struc-
ture and size and, in some cases, it is difficult to assign it as an
initial value. In addition, for some applications, it may not be
appropriate to provide dummy data of type Int; therefore, an Int
Option type may be used, which may increase the complexity

of delMin.
The second method uses the function size to calculate the size

of the heap tree at runtime and branch the process with if expres-
sion:

When there is enough space in the heap tree, it is necessary to
match the type (size) of the arguments to call the insert function
on h@last. In this code fragment, the CAST_SIZE function repre-
sents the size parameter decrementing operation while preserving
the structure, but it is not possible to write such an operation as

a function of existing Sized Types. This can be represented as an
expression by repeating decomposition using case expressions
until the required size is obtained. By decomposing the value of
BCTs using the case expression, the size parameter can be re-
duced. Therefore, for a simple data structure such as a list, a list
with the required size parameter can be obtained by nesting the
case expression as many times as necessary. However, when the
tree structure is decomposed to obtain the required size, as in the
case of node h, a complex expression that considers all possible
forms of the tree structure is required instead of a simple nesting
of case expressions. Although expressions can be generated us-
ing macros, for example, the large number of branches given by
the case expression duplicates the code for both cases where the
required size is obtained and where it is not obtained, resulting in
a bloated program. In this study, which targets small-scale em-
bedded systems, this bloating of the program by code duplication
must be avoided.

Therefore, the introduction of fit expressions is useful for
adapting to the programming style using @last in Emfrp, and
the actual size information is stored in the runtime representation
of BCTs for use in fit expressions.

Combining Sized Types and region-based memory manage-
ment [29], Hughes et al. proposed a method to determine the
amount of resources consumed at runtime [20]. By allocating re-
gions with their size information and considering the number of
stores on the stack or heap as effects, they showed that a type-
checked program can be computed in a fixed memory area. In
their language, when an object is allocated to the heap, it is al-
ways indicated explicitly in which region it will be allocated, so
there is no need to search for an upper bound on resource usage
in case expression, as in this study. However, it is necessary for
the user to specify the proper size of the region in advance.

7.2 Data Representation by Arrays
In procedural languages, data structures whose number of ele-

ments change at runtime are often represented using arrays. Data
structures such as trees can be represented by treating the index
number of the array as a pointer, but the array needs to be mutable
for such usage to be memory efficient. We did not introduce ar-
rays in our extension to preserve Emfrp as a pure FRP language.
If we were to introduce arrays, we expected some restrictions to
be introduced that are difficult to use, such as limiting to a con-
stant of loop iterations to guarantee termination of node updates.
This led to the introduction of recursive data types with size in-
formation and primitive recursive functions.

Futhark [7], [16], a functional language for graphics processing
units (GPUs), is an attempt to handle arrays in a memory-efficient
manner on a pure functional language. In Futhark, arrays are
typed by linear types, which allows for in-place updates. Apply-
ing this feature to matrices allows us to write efficient programs
for GPUs in functional languages. Recently, a new mechanism
called Size Types [14], [15] was introduced to describe the type
of a function with matrix size information, which can statically
determine the size of some objects. Although its purpose is dif-
ferent from that of BCTs in this study, a similar notation was
used.
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7.3 FRP Languages and Dataflow Languages
Hume [10] is a DSL for real-time embedded systems, which

consists of event-driven state machines called Boxes and de-
scriptions of their cooperative behavior. Hume has several lev-
els for each language feature supported, and Emfrp corresponds
to the level called FSM-Hume. EmfrpBCT corresponds to the
level of PR-Hume and supports primitive recursive functions
and recursive data structures. FSM-Hume and PR-Hume have
a cost model [11], which is defined by an operational semantics
with the remaining capacity and remaining time of the resource
area [9], [30], similar to EmfrpBCT. To analyze the amount of
resources, the Sized Types approach and Automatic Amortized
Resource Analysis (AARA) approach (described in the follow-
ing) have been proposed [22]. Unlike EmfrpBCT, Hume does not
comprise the actual size of the data structure in the language, so it
is not possible to directly express fit to check if the size is within
the upper limit. Therefore, this approach needs to be handled dif-
ferently, such as by using a function to measure the size of the
data structure. Hume combines many static analyses to analyze
the amount of resources; however, it is difficult to accurately de-
termine that a function represents the size of the data structure by
static analysis, and it is also difficult to accurately inherit the size
condition in the analysis for each branch.

Juniper [13] is an FRP language for small-scale embedded sys-
tems designed especially for Arduino, a board using a microcon-
troller (ATmega328). In addition to the usual type parameters, a
capacity variable can be specified in Juniper’s mechanism, which
is equivalent to C++ templates [12]. Using this capacity variable,
it is possible to specify the size of the arrays within the records
(structures in C++). Juniper can also define recursive data types,
but it does not provide a mechanism to specify the data size stati-
cally for them.

The FRP language proposed by Krishnaswami et al. [23] is an-
other approach to resource management. In their language, spe-
cial values representing resources are prepared before the start
of the program, and these values are used to perform calcula-
tions with a fixed amount of memory. If the programmer man-
ages the resources (the special values) properly, it can handle list
structures. In addition, linearly typed resource values can han-
dle higher-order functions and higher-order time-varying values
without space leaks, enabling expressive descriptions of FRP.

Lustre [8], [24] is a synchronous dataflow language for real-
time reactive systems. This language has many points in com-
mon with Emfrp, such as describing processes using combina-
tions of time-varying values and features to obtain the value one
step earlier (@last in Emfrp, pre in Lustre). The worst-case com-
putation time and memory usage can be estimated by prohibiting
loops such as recursive calls and the use of recursive data types,
as in Emfrp. Lustre provides arrays and special instructions (map,
reduce, etc.) for manipulating arrays to perform similar actions
on multiple data. In Lustre, the example of DupCheck can be writ-
ten concisely using these instructions, but it is not suitable for
programs dealing with tree structures. In contrast, in EmfrpBCT,
by defining a list type using BCTs, we can use the same features
as arrays in Lustre.

7.4 Other Resource Estimation Methods
Dependent types and Indexed Types [32] can include size infor-

mation of objects in types. Indexed Types is a type system that al-
lows size annotations and constraints to be specified for algebraic
data types. The difference between Indexed Types and our BCTs
is that flexible constraints can be described in type definitions,
but in our research, we focus on the amount of resources required
at runtime rather than consistency regarding size, so we let the
user describe how much resource a type occupies at runtime. De-
pendent type systems allow the description of types that depend
on values and are known to correspond to predicate logic. Using
dependent types, it is possible to define and use types with size in-
formation, but these types require proofs about the size informa-
tion as well as program code, which is a burden on the users. To
reduce the burden, it is possible to solve the constraints obtained
by dependent types automatically using SMT solvers [26], [31].
When taking such an approach, it is important to choose the class
of constraints. Otherwise, type checking will be undecidable. In
our method, constraints to be solved are in the category of Pres-
burger arithmetic, so that the type checking is decidable. As the
type checking is decidable, when the solution of a constraint is
not found (type checking fails), the constraint is unsatisfiable, and
an error can be reported properly.

AARA [18] is a statistical analysis method for program re-
source usage introduced by Hofmann et al. AARA statically esti-
mates the amount of required resources by a type system with
numerical values called a potential and a linear programming
solver, rather than using object size information, as in our study
or Sized Types. Hoffmann et al. recently applied this method
to OCaml [17]. AARA assigns potentials to types, which makes
it difficult for users to intuitively set the amount of resources.
Therefore, in our study, we adopted the approach of assigning di-
rect size information of the data structure to types. The proposed
method traverses the syntax tree exhaustively to determine the
resource usage, depending on the size and type structure, which
may take a long time to analyze. As AARA took a different ap-
proach, solving the constraints obtained by typing using linear
programming to estimate resource usage, it is expected to accel-
erate our algorithm by integrating this method.

8. Conclusion

In this study we proposed a new FRP language, EmfrpBCT,
which employs a type system called BCTs that statically spec-
ify the maximum size of constructible structures. The language
is an extension of the existing FRP language Emfrp, designed
for small-scale embedded systems. With the BCTs, programs
that required redundant descriptions in Emfrp can now be writ-
ten concisely, and data management can be performed efficiently.
Despite the availability of recursive data types, EmfrpBCT retains
the properties of Emfrp, such as the termination of node updates
and the ability to statically estimate the amount of memory used
at runtime. We proved these properties by formalizing the oper-
ational semantics, type system, and memory usage estimation al-
gorithm of EmfrpBCT and demonstrated their soundness. Further-
more, we implemented a compiler for EmfrpBCT and measured
the overhead of compilation and execution times.
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For future work, we plan to enhance EmfrpBCT by introduc-
ing: (1) type polymorphism and size polymorphism, (2) mutually
recursive definitions of functions and types, (3) flexible measure
functions other than size for defining recursive functions, and (4)
a code optimizer for EmfrpBCT that incorporates existing opti-
mization techniques. Presently, the size parameters are constants.
By statically parameterizing them on a per-module basis, we can
increase the reusability of the modules. The current algorithm tra-
verses the syntax tree of a program with size information, which
increases the time required for estimation when the program size
is large or when dealing with complex BCTs. If a fast but inaccu-
rate algorithm is available, its use during development will help
reduce the development time. To improve the quality of the final
product, the (accurate but time-consuming) algorithm proposed
in this work can then be used for deployment in the production
environment. The development of different memory usage esti-
mation algorithms is also considered a future challenge.
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Appendix

A.1 Proof of the Termination of the Memory
Usage Estimation Algorithm

Theorem 5 (Termination of the memory usage estimation algo-
rithm).
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Assume that:
• Γ �T ;F

f e : τ | C;
• (Γ,Δ)-consistent;
• for any function name g in the expression e, f ≥∗F g is satis-

fied;
• Δ is a model of C.

Then, the following hold:
• MT ;F

Δ;Γ [[e]] terminates in a finite number of steps;

• whenMT ;F
Δ;Γ [[e]] = (τM, s, t, u), τM = τ.

Proof. Define the triple ( f , evΔ[[
−→
δ ]], e). Here f is a function

name, and the order of the functions is defined as ≥∗F ∪{(−, f ) |
f ∈ dom(F )}. Here, − is a placeholder to check the node update
expression. Next,

−→
δ is the measurement function of f . Finally,

for expression e, subexpressions of e are ordered as less than e.
The proof of termination proceeds by induction of the lexico-

graphic ordering of the triple. The case is divided according to the
rule applied at the end of the type derivation (Γ �T ;F

f e : τ | C).
If the last applied typing rule is T-CONST, T-VAR, T-NODE,

or T-ATLAST, then the statement clearly holds.
In the case of T-CTOR, T-LET, T-IF, T-OP, T-ADJ, or T-FIT,

the third element of the triple decreases in each assumption of the
rules, and the statement follows immediately from the induction
hypothesis.

In the case of T-CASE, let e be the entire case expression and
let ei be the expression in each branch. For the expression to
be decomposed in e, the third element of the triple is decreas-
ing, so the induction hypothesis is applicable to the expression.
Each branch is processed byM. HereM generates a set of size-
variable assignments A for the size variables contained in the con-
structor. The union of Δ and the assignment in A is a model of the
constraint extracted during type checking of the branch expres-
sion ei. As A is a finite set,M is called a finite number of times
insideM for the expression ei of the branch. Here ei is a subex-
pression of e, so the third element of the triple is reduced. From
the above, the induction hypothesis is applicable to ei. Hence, the
execution of M also terminates in a finite number of steps. In
addition, the type of the entire e obtained by typing and the type
obtained as a result of M(e) are identical. Therefore, the state-
ment holds for the expression to be checked in e, as well as for e

as a whole because the execution of each branch also terminates.
In the case of T-CALL, the expression is g(e1, . . . , en). For

the actual arguments e1, . . . , en of the function call, each one is a
subexpression of g(e1, . . . , en), so the third element of the triple
is reduced, and the induction hypothesis is applicable to these ar-
guments. From this, the type of the expression is identical for the
typing rule andM. In the case of g � f , because f ≥∗F g by the
assumption of the statement, the first element of the triple is re-
duced in the call toM for the body of g. Therefore, the induction
hypothesis is applicable for the body of g. If g = f , then this func-
tion call is a recursive call. Here, we show that the second element
of the triple, the measure of the recursive call, decreases. Based
on this assumption, Δ is a model of

∧
i∈1...n Ci ∧

∧
i∈1...m(θAi)∧R.

Thus, it is also a model of R. Therefore, from the constraint R,
evΔ[[Σ

δ∈−→δ (θδ)]] < evΔ[[
−→
δ ]]. From the definitions of θ and

−→
δ , it

follows that θδ = τi ↓ for some i. The value of the measure inM

for the body of g is ev{πi↓ �→evΔ[[τi↓]]}i∈1...n [[
−→
δ ]]:

ev{πi↓ �→evΔ[[τi↓]]}i∈1...n [[
−→
δ ]]

= ev{πi↓ �→evΔ[[τi↓]]}i∈1...n [[Σ
πi↓∈
−→
δ
πi ↓]]

= Σ
πi↓∈
−→
δ

(ev{πi↓ �→evΔ[[τi↓]]}i∈1...n [[πi ↓]])

= Σ
πi↓∈
−→
δ

(ev{πi↓ �→evΔ[[τi↓]]}i∈1...n [[evΔ[[τi ↓]]]])

= Σ
πi↓∈
−→
δ

(evΔ[[τi ↓]])

= Σ
δ∈−→δ (evΔ[[θδ]])

= evΔ[[Σ
δ∈−→δ (θδ)]]

< evΔ[[
−→
δ ]]

With the above transformation, the measure in M for the func-
tion body is reduced compared with the measure in the origi-
nal expression. As the second element of the triple is reduced,
the induction hypothesis is applicable to the function body. In
both cases, the execution ofM for the function body terminates.
Therefore, the statement holds. �

A.2 Proof of Soundness of Typing

Theorem 7 (Soundness of typing of expression).
Assume that:
• Γ �T ;F

f e : τ | C;
• (L, E,H,Γ,Δ)-consistent;
• for any function name g in the expression e, f ≥∗F g is satis-

fied;
• Δ is a model of C;
• MT ;F

Δ;Γ [[e]] = (τM, sM, tM, uM).
For any s ≥ sM, t ≥ tM, and u ≥ uM, there exist l, t′, H′, and σ
such that the following are satisfied:
• [s]E | [t]H �T ;F

L e ⇓u l; [t′]H′;
• t′ ≥ t − tM;
• H′,T � l : σ;
• σ ↓≤ evΔ[[τ ↓]].

Proof. The proof is given by induction on the triple lexico-
graphic ordering used in the proof of Theorem 5. The cases are
divided according to the rule applied at the end of the type deriva-
tion.

If the last rule applied is T-CONST, we can set H′ = H,
l �→ cB, t′ = t − 1, and σ = B.

For T-VAR, T-NODE, and T-ATLAST, H′ = H, t′ = t, and σ
should be the corresponding types.

For T-CTOR, let H = H0, t = t0, and e = χ(e1, . . . , en). For
1 ≤ i ≤ n, let MT ;F

Δ;Γ [[e]] = (τMi, sMi, tMi, uMi). From the def-
inition of M, for 1 ≤ i ≤ n, s ≥ sM = 1 +

⊔
sMi > sMi,

u ≥ uM ≥ uMi holds. From t0 ≥ tM = 1 + Σi∈1...ntMi ≥ tM1

and the induction hypothesis, there exist t1, l1, H1, and σ1 such
that [s − 1]E | [t0]H0 �T ;F

L e1 ⇓u l1; [t1]H1, t1 ≥ t0 − tM1 ≥
1+ Σi∈2...ntMi, H1,T � l1 : σ1, and σ1 ↓= evΔ[[τ1 ↓]] are satisfied.
Repeating this for the arguments of the constructor, we obtain
tn ≥ t0 − Σi∈1...ntMi ≥ 1 and Hn. Applying the rule of operational
semantics E-CTOR, we obtain t′ = tn − 1 ≥ t0 − (1+Σi∈1...ntMi) =
t − tM and H′ = Hn, l �→ χ[k](l1, . . . , ln).

For T-LET, the form of the expression is let x = e1 in e2.
Let MT ;F

Δ;Γ [[e1]] = (τM1, sM1, tM1, uM1) and MT ;F
Δ;Γ,x:τ1

[[e2]] =
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(τM2, sM2, tM2, uM2). Then, sM ≥ sM1, uM ≥ uM1, sM ≥
1+ sM2, uM ≥ uM2, and tM = tM1 + tM2. Let s ≥ sM, t ≥ tM, and
u ≥ uM. From the induction hypothesis with e1, we obtain l1, t1,
H1, andσ1 such that [s]E | [t]H �T ;F

L e1 ⇓u l1; [t1]H1, t1 ≥ t−tM1,
H1,T � l1 : σ1, and σ1 = evΔ[[τ1 ↓]] are satisfied. In addition,
because H ⊆ H1, (L, (E, x �→ l1),H1, (Γ, x : τ1),Δ)-consistent
holds. Thus, from the induction hypothesis with e2, we obtain l2,
t2, H2, and σ2 such that [s − 1](E, x �→ l1) | [t1]H1 �T ;F

L e2 ⇓u

l2; [t2]H2, t2 ≥ t1 − tM2, H2,T � l2 : σ2, and σ2 = evΔ[[τ2 ↓]] are
satisfied. Thus, we have t′ = t2 ≥ t−(tM1+ tM2), l′ = l2, H′ = H2,
and σ = σ2.

For T-IF, T-OP, and T-ADJ, the proofs proceed in the same
way as that for T-CTOR. The case of T-FIT is the same as T-LET.
In the case of T-CALL, the actual arguments are treated in the
same manner as T-CTOR. The consistency of the size variables
for the arguments is treated as in T-LET. Finally, the reduction
of the triple for the body of the function is shown as the function
call in Theorem 5. From these results, the statement of the entire
function call expression is shown.

In the case of T-CASE, let the decomposed expression be e0.
Let MT ;F

Δ;Γ [[e0]] = (τM0, sM0, tM0, uM0). Let the branches be

branchi for 1 ≤ i ≤ n and M
T ;F
m;Δ;Γ(branchi) = (sMi, tMi, uMi).

In this case, sM ≥ sM0 and sM ≥ sMi for 1 ≤ i ≤ n. In addi-
tion, for uM ≥ uM0 and uM ≥ uMi for 1 ≤ i ≤ n. Furthermore,
tM = tM0 + Σi∈1...ntMi. Let s ≥ sM, t ≥ tM, and u ≥ uM. Here,
from the induction hypothesis with e0, there exists t0, l0,H0, σ0

such that [s]E | [t]H �T ;F
L e0 ⇓u l0; [t0]H0, t0 ≥ t − tM0,

H0,T � l0 : σ0, σ0 ↓= evΔ[[ρψ ↓]], and H0(l0) = χ[k](l1, . . . , lm).
In M, branches are searched by M. Here M generates a set of
assignments A to the size variables that appear in the construc-
tor. It also generates assignments b for fixed-size size variables.
Let C be the size constraint on the size variables introduced in
the constructor, and C′ be the size constraint obtained by typ-
ing the expression of the branch; then, {(Δ, a, b) | a ∈ A} is
a set of models of C ∧ C′. Thus, for d ∈ {(Δ, a, b) | a ∈ A},
(L, (E, {xi �→ li}i∈1...m),H0, (Γ, {xi : πi}i∈1...m), d)-consistent holds.
Hence, the induction hypothesis is applicable with the expression
in the branch, and we can prove the statement using the same
procedure as that for T-LET. �
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