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Abstract: Genomic data can be used to infer private and sensitive information about individuals, which prevents it
from being shared publicly. Despite the use of data de-anonymization techniques, the release of statistical measures
from a genomic database can make it vulnerable to privacy-centric attacks. Genotype imputation, a technique de-
veloped from statistical genetics has recently found increasing usage in Genome-wide Association Studies (GWAS),
where it is used to increase the coverage of genotype information. The privacy-centric nature of genetic information
has led to the adoption of database governance that stonewalls it from public-access, limiting the access to information-
rich imputation reference datasets. In this research we propose mechanisms through which privately-held imputation
reference panels can be released without invalidating data privacy.
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1. Introduction
Whole-genome sequencing (WGS) of human genetic reference

population [7], [10] have all yielded quality reference datasets
that can be used for inferring untyped genotypes in study popula-
tions. This technique known as genotype imputation has proven
useful in revealing genotype information in an extremely cost-
effective manner, leading to its widespread adoption in Genome-
wide Association Studies (GWAS). A larger and more impor-
tantly, diverse reference panel is highly likely to contain rare vari-
ants and thus impute genotypes with higher accuracy. In this re-
search, we consider a scenario where a researcher is unable to to
access a high-quality imputation reference panel, stored in some
private genome data bank. We devise mechanisms through which
a data owner may release a privacy-preserving version of this
dataset without destroying its utility.

2. Related Works
The growing importance of Genome wide Association Studies

(GWAS) has led to the development of commercial SNP arrays
with known variants. The coverage of genotyping arrays is in-
creased through a technique known as genotype imputation, of
which several methodologies have been proposed in literature [1],
[2], [3].

As for privacy preserving mechanisms, differential privacy has
emerged as a robust privacy model with mathematically proven
guarantee of individual privacy [4]. Kasiviswanathan et al. [5]
proposed an exponential based mechanism to derive a synthetic
dataset that can answer any query set. Meanwhile, Blaum et al.
[6] proposed a similar approach over a discrete domain. Subse-
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quent research works by Dwork et al. [4] suggested the use of
boosting to improve the accuracy of synthetic dataset.

To the best of our knowledge, this research work appears to be
the only one that proposes a data release mechanism to construct
privacy-preserving imputation reference panels.

3. Methodology
The fundamental idea behind the creation of a privacy preserv-

ing haplotype reference panel is based on Li and Stephens model
of linkage disequilibrium [9]. This basic principle of representing
haplotypes as an imperfect mosaic of ancestral haplotypes forms
the basis through which we propose an algorithm for deriving pri-
vacy preserving panels.

3.1 Shuffling Based Algorithm
Given a reference panel D of 2N distinct haplotypes with k dis-

tinct markers or SNPs, we propose an algorithm Ms that creates a
new panel Ps with 2N∗ distinct haplotypes. We first represent the
2N haplotypes from D using a matrix-like data structure of size
k × 2N. We then divide this dataset into k/l segments for a series
of consecutive markers of fixed length, l and iterate through the
dataset. We then randomly select x haplotypes, through the use
of a user-defined parameter c , from each k/lth subset of D. The
selected haplotypes are then appended to the previous selection
at the end of each iteration.

3.2 Differentially-private Based Algorithm
Differentially private algorithm, Md is designed with the same

fundamentals as Ms while introducing a new privacy parameter
ε. However, instead of randomly selecting haplotypes, we iterate
through each k/lth segment and retrieve a set of unique haplotypes
z for and calculate its probability distribution. We then define a
utility function u(Dl, zi) based on exponential mechanism of dif-
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Fig. 1 Experimental Type I:
Dataset sourced from [8]

Fig. 2 Experimental Type II:
Dataset sourced from [7]

Fig. 3 Mean Overall Accuracy
(Alt. Alleles) l = 4000

Fig. 4 Mean Info Score l = 200,
c = 4

ferential privacy [4] that selects haplotypes from each segment.
The subsequent steps are the same as the shuffling algorithm, Ms.

4. Experiments
We carried out two experiments using datasets from two dis-

tinct sources as shown in Fig. 1 and Fig. 2. The dataset used in
experiment I was obtained from the phase3 data release of 1000
Genomes Project [8]. While for experiment II, we used a sam-
ple test dataset that is packaged along with IMPUTE2 imputa-
tion software [7]. In addition to the using datasets from varying
sources, the data processing pipeline that we adopted for both
these experiments was also slightly different.

For both these experiments, we then derived three kinds of ref-
erence panels from the reference panel, D:
• Reduced panel Dr

• Shuffled panel Ps

• Differentially-private panel Pd

We obtained the private Ps and Pd based on varying parameter
combinations of l, c and ε as shown in Fig. 1 and Fig. 2. Finally
for each experiment, we performed genotype imputation on the
study panel, S and repeated this process for a series of 10 ran-
domized trials.

5. Results
In experiment I, we report the result using the accuracy met-

ric. Since the true genotypes for each of the imputed markers is
already known, we compute the accuracy through a simple bi-
nary comparison. Since IMPUTE2 reports imputed genotypes
as a probability triple (x, y, z) | 0 ≥ x, y, z ≥ 1, while making the
comparison we simply call the max(x, y, z) regardless of its value.
Meanwhile for experiment II, the results are reported using info
metric [11], obtained from the info file generated by IMPUTE2.

Figure 3 and Fig. 4 shows the distribution of mean accuracy
and info scores across the 10 imputation runs for all the refer-
ence panels. In general, we noticed that increasing the value of
parameter l, leads to a better distribution of mean accuracy in Ps

and Pd. Importantly, this trend is more pronounced in sites where
alternate allele is expressed as shown in Fig. 3. Since parameter
l is correlated to the proportion of contiguous markers between
the reference and private panels, it is intuitive to expect better
accuracy at higher values of l.

In Experiment II, we notice a similar trend, that is the mean
info score gradually improves as we increase the values of pa-
rameter c and l as shown in Fig. 4. By increasing the size of the
private panels, Ps and Pd, we are effectively increasing the diver-
sity of information contained withing these panels. Once again,
we notice that both private panels Ps and Pd outperform the re-
duced panel, Dr on this metric. Since info score is a measure
of confidence, it is reasonable to expect higher measures of info
score at higher values of c and l.

6. Conclusion
We have thus, proposed two algorithms to derive privacy pre-

serving reference panels from haplotype release data. We have
also demonstrated that for certain parameter combinations, pri-
vacy preserving panels impute genotypes with a higher quality
than panels with a reduced set of haplotypes. This is indicative
of the fact that privacy-preserving panels can serve as an alter-
native in cases where there is a barrier to accessing high quality
haplotype reference panels. Future work in line with this research
should investigate the possibility of designing privacy-preserving
mechanisms which takes genetic and evolutionary processes into
account as it may lead to increasing the accuracy of imputation.
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Appendix

A.1 Privacy-preserving Algorithms

Algorithm 1: Shuffling Algorithm, Ms

Input: Reference panel D
// HAPS data format with k markers and 2N haplotypes
Input: c, l
/* User-defined parameters of type int, where c is the

number of haplotypes in Ps as a multiple of D and l is the number
of consecutive markers from D that are to be preserved during
segmentation */

Output: Private panel, Ps

// HAPS data format with k markers and 2N∗ haplotypes

D← ConvertToMatrix(D) // Converts D into a Dk×2N

matrix

Dl ← Segment(D) // Segments D into k/l chunks
P← empty
Ps ← empty

for i← 1 to c do
while not all segments traversed in Dl do

S elect ← SelectHaplotypes(Dl)
// Chooses 2N haplotypes from segment k/l of D
without replacement

if f irst segment (l equals1) then
P← S elect

else
P← Append(S elect) // Selected segments are
appended column-wise to P

end
go to segment k/l + 1

end
if i equals 1 then

Ps ← P
else

Ps ← Stack(P) along axis 0) // Ps is stacked with P
along axis 0

end
increment i

end
Ps ← ConvertToHaps(Ps) // Convert Ps into HAPS format

return Ps

Algorithm 2: Differentially Private Algorithm, Md

Input: Reference panel D
// HAPS data format with k markers and 2N haplotypes
Input: c, l, ε
/* User-defined parameters of type int, where c is the
number of haplotypes in Pd as a multiple of D and
l is the number of consecutive markers from D that
are to be preserved during segmentation. ε is the

privacy parameter that controls the degree of

randomization */

Output: Private panel, Pd

// HAPS format with k markers and 2N∗ haplotypes

D← ConvertToMatrix(D) // Converts D into a Dk×2N

matrix

Dl ← Segment(D) // Segments D into k/l chunks
Pd ← empty

while not all segments traversed in Dl do
Unique← Unique(Dl)
// Finds a set of unique haplotypes z in Dl

S core← Score(Unique)
// Assigns a score to each zi based on utility

function u(Dl, zi)
Prob← Exponential(Unique, S core, ε)
// Computes the probability of each element in

Unique using the exponential mechanism of
differential privacy

S elect ← SelectHaplotypes(Unique, Prob, c)
// Chooses c × 2N haplotypes from Unique based on
its computed probability

if f irst segment (l equals1) then
Pd ← S elect

else
Pd ← Append(S elect)
// Selected segments are appended column-wise

to Pd

end
go to segment k/l + 1

end
Pd ← ConvertToHaps(Pd) // Convert Pd into HAPS format

return Pd
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