Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

SVTester: Finding DoS Vulnerabilities of Virtual Switches

Son Duc NGuyen!-®

MaMoRrRU MIMURA

1,b) 1,c)

HmeEMA TANAKA

Received: December 1, 2020, Accepted: June 7, 2021

Abstract: Nowadays, virtualization is being deployed in many companies and institutions’ systems. However, a
noticeable security problem of virtualization is the fact that multiple virtual machines are run on one physical host
machine called hypervisor. Hypervisors often implement a virtual switch to manage network connections between the
internal virtual network and the external physical network. However, an adversary could exploit virtual switch flaws
and use them to sabotage the entire virtual network. As a consequence, the attack could make all applications running
on virtual machines unavailable. In this paper, we present SVTester, a fuzzing-based testing tool that can automatically
identify possible vulnerabilities of a virtual switch that can be exploited for certain types of Denial-of-Service attack.
We used an initial version of SVTester to check several hypervisors that implement the virtual switch. The results
show that SVTester was able to rediscover DoS weaknesses on an old version of VMware hypervisor and found a
novel possible vulnerability in the Oracle VirtualBox hypervisor. Our results also prove the effectiveness and potential

of SVTester in evaluating virtual network security.

Keywords: virtual network, security testing, DoS attack

1. Introduction

As computer networking technologies continue to evolve, net-
work security has an important role in today’s networked world.
However, improper implementation of network applications and
the complexity of many network protocols make errors inevitable.
The errors can become vulnerabilities of the network system and,
in consequence, attackers can exploit those vulnerabilities and
deploy severe attacks. The cost to recover the damage from
attacks can be very high. For example, a survey from Corero
shows that Denial-of-Service (DoS) attacks can cost enterprises
up to $50,000 and also the loss of their customer trust and con-
fidence [6]. Therefore, identifying possible bugs and vulnerabili-
ties of a network’s system before zero-day attacks is essential.

DoS attack is one of the most intimidating attacks on any net-
work system. A typical method to initiate a DoS attack is sending
overwhelming amounts of seemingly legitimate traffic to the tar-
get and flood the target’s network layer [17]. When the attacker
employs multiple infected systems which are often part of a bot-
net, the attack is called Distributed Denial of Service (DDoS) [5].
With the development of network technologies, DDoS attacks are
growing in scale and frequency each year. Recently, in Febru-
ary 2020, the largest DDoS attack in terms of traffic to date has
been launched against Amazon Web Services, with a peak flow
of 2.3 terabits per second (Tbps). Another famous DoS attack
with 1.3 Tbps was recorded in 2018 against GitHub, a popular
online code management service [3]. Furthermore, with other
approaches in attack methods such as Slow DoS Attack, DoS

National Defense Academy of Japan, Yokosuka, Kanagawa 239-0811,
Japan

¥ ed19006@nda.ac.jp

Y mim@nda.ac.jp

© hidema@nda.ac.jp

© 2021 Information Processing Society of Japan

attacks have also become more sophisticated and harder to de-
tect [9].

DoS attacks can also cause serious damage to any virtual net-
work system. Shea and Liu prove that virtual networks are more
vulnerable under TCP SYN DoS attacks [18]. In particular, a light
DoS attack can lead to a 50% decrease in the virtual server’s per-
formance when compared to the non-virtualized system using the
same amount of resources. In 2016, Somani et al. show more re-
sults of the effect of DoS attack on cloud computing [10]. Their
research shows that when a virtual machine (VM) is targeted with
a DoS attack, other non-targeted VMs and servers sharing the
same host machine are also affected. They also demonstrate that
some features of cloud computing such as resource race and auto-
scaling increase the effect of DoS attacks on cloud infrastructure.

The decline of DNS and NTP Amplification DDoS attacks
proves that proper understanding of exploitable vulnerabilities
can help in mitigating DoS attacks [16]. Therefore, it is impor-
tant to have effective methods and tools to discover new possible
vulnerabilities that can lead to a new DoS attack. One of the well-
known approaches for testing tools is fuzzing. Fuzzing techniques
can be various, but they share the same advantages of simplicity
and effectiveness over other complex testing approaches.

This paper is a continuation of our works presented in
Refs. [22] and [23]. In the first work, we proved that some be-
haviors of the virtual switch could become possible vulnerabili-
ties that might be exploited for DoS attacks [22]. In the following
work, we introduced different DoS attack scenarios abusing those
possible vulnerabilities [23]. However, our previous works only
focused on one susceptible hypervisor, which is VMware Work-
station Pro 12.0.0. This leads to the fact that other hypervisors
might also have the same possible vulnerabilities. Therefore, we
need to further investigate the TCP retransmission behaviors of
various hypervisors.

Electronic Preprint for Journal of Information Processing Vol.29

In this paper, we introduce a network testing tool called
SVTester, which can be used for testing intermediary servers and
network software. Motivated by the general idea of fuzzing and
Kuhrer method in exploiting TCP three-way-handshake for am-
plification DoS attack in the physical network [16], SVTester can
automatically generate and monitor a half-open TCP session be-
tween a client and a TCP host. In this paper, we used SVTester
to investigate retransmission flaws of virtual switches that can be
exploited for certain types of TCP DoS attacks. Our testing result
on VMware 12.0.0 shows that SVTester was able to automati-
cally rediscover 2 possible vulnerabilities found in the previous
research [22]. Furthermore, SVTester found a new possible vul-
nerability in a recent version of the Oracle VirtualBox hypervisor.

In summary, we make the following contributions:

(1) We consider Kuhrer method of abusing TCP three-way-
handshake and design a testing tool that can test the behavior
of retransmitting TCP packets from different hypervisors.

(2) We perform testings and evaluate the security of various hy-
pervisors.

(3) We discover a novel possible vulnerability in the VirtualBox
hypervisor that can be abused for DoS attacks.

(4) We propose DoS attack schemes and evaluate the impact of
the attacks on the targeted hypervisors.

This paper is organized as follows: Section 2 presents the back-
ground information of this research. We review the related works
in Section 3. Section 4 explains our testing method and the algo-
rithm of SVTester. We show our testing experiments and results
in Section 5. Section 6 describes our DoS attack schemes based
on the possible vulnerabilities found and also analyzes our exper-
imental attacks. Section 7 evaluates the security of various hyper-
visors and also discusses the limitation of our methods. Finally,
Section 8 concludes and discusses future works.

2. Background

2.1 Virtualization

Virtualization is a technology that helps users create a
software-based representation of hardware platforms, servers,
storage, or computer network. This technology has changed the
network industry through its powerful capability in balancing de-
mands for resources. Recently, the number of newly installed
virtual systems has surpassed the number of newly installed phys-
ical servers. A recent survey showed that 90% of organizations
use virtualization in their IT infrastructures and a further 34%
of organizations are using virtual servers to meet the majority of
server needs [2], [8]. Virtualization technology has also opened
the gate to virtual private network (VPN), software-defined net-
work (SDN), and cloud computing. One well-known example in
the industry is Cloud Computing Amazon EC2, which provides
customers with secure, resizable computational resources [29].

One of the main components of virtualization is virtual ma-
chine manager (VMM), also known as hypervisor. A hypervisor
is computer software, firmware, or hardware that enables virtu-
alization. The hypervisor operates one or more virtual machines
on a physical computer called host machine while each virtual
machine is called a guest machine. The guest operating systems
often require special drivers or to be specifically designed to be

© 2021 Information Processing Society of Japan

run on the hypervisor. However, in some cases, an operating sys-
tem can run native and unaltered on the hypervisor necessarily
knowing it is virtualized [4]. The hypervisor provides the guest
systems a virtual operating platform and supervises the execution
of the guest systems. The hypervisor also makes sure resources
are allocated to the guests as necessary. In 1974, Popek and Gold-
berg classified hypervisors into two types [11]:

Type-1, native or bare-metal hypervisors: These hypervi-
sors run directly on the host’s hardware to control the hardware
and to handle VM’s operating systems. It is responsible for the
allocation of all resources, such as disk, memory, and CPU, to
its VM. These hypervisors only require a small footprint and oc-
casionally, they have very limited driver databases limiting the
hardware on which they can be installed. Some also need a priv-
ileged VM, known as a Domain-0 or Dom0, to provide access
to the management and control interface to the hypervisor itself.
The Type 1 hypervisor is typically being used in the server virtu-
alization environment. Modern examples include Xen, XCP-ng,
Oracle VM Server for x86, Microsoft Hyper-V, Xbox One system
software, and VMware ESX/ESXi.

Type-2, hosted hypervisors: These hypervisors operate on a
common operating system just as other computer programs do.
In other words, it is installed on top of the host operating sys-
tem. Type-2 hypervisors abstract guest operating systems from
the host operating system and make the guest system run as a pro-
cess on the host. Therefore, it typically has fewer hardware/driver
issues because the host operating system is responsible for in-
terfacing with the hardware. However, the additional overhead
can cause a hit on performance compared to Type 1 hypervi-
sors. Type-2 hypervisors are often being used in small companies
and workgroups due to their convenience in creating and manag-
ing virtual machines without an additional management console.
Some examples of this type are VMware Workstation, Oracle Vir-
tualBox, Parallels Desktop for Mac, and QEMU.

The hypervisor uses a virtual switch to control all VM’s Eth-
ernet connections. The virtual switch is a software construct that
performs Ethernet frame switching functionality and runs within
the active memory of the hypervisor. The virtual switch can em-
ploy one or many physical network adapters to communicate with
other computers in the physical network. It can provide several
virtual network adapters, which are also software constructs that
are responsible for receiving and transmitting Ethernet frames
into and out of their assigned VM. If an attacker sabotages the
virtual switch with a DoS attack, the entire virtual network will
be broken down.

The virtual switch often has 2 options to allow network con-
nections from a VM to the external physical network. They are
called Bridged mode and NAT mode. Bridge mode is the option
when the virtual switch directly connects the VM to the physical
network and allows the VM to get its IP address from a physical
DHCP server. On the other hand, NAT mode is the option when
the virtual switch uses Port Address Translation (PAT) to assign
the VM’s IP address from a virtual DHCP server. Figure 1 il-
lustrates a virtual switch in NAT mode allowing connections be-
tween VMs and an external physical network. In this mode, when
a VM sends a packet to a server on the external network, the

Electronic Preprint for Journal of Information Processing

Hypervisor

— e
=

Physical Network

pPaT Virtual Switch

B

[(

| 1
Virtual | Virtual | Virtual
Machine i Machine 1\ Machine

N VN VAN o

Fig. 1 Virtual switch in NAT mode.

N
.
. Executl Y
Start Generating o Exeeuting TG ton? |
input application

Fig.2 An example of a fuzzing process.

virtual switch translates the VM’s IP to the hypervisor’s IP and
assigns a port number used for the transmission. The hypervi-
sor then employs a dynamic port number assigned by the virtual
switch to send a new packet to the physical server. With that
transmission process, a NAT mode virtual switch can be consid-
ered as an intermediary server between the VM and the external
servers [24].

The fact that multiple VMs are operated on one physical host
machine can create security issues. In 2009, Ristenpart et al. in-
troduced a threat scenario when the customer’s VM is assigned
to the same hypervisor as their adversary [25]. According to their
research on Amazon EC2, the attackers can check if their VM is
on the same hypervisor with the target’s VM. Furthermore, the
attackers can create and delete their VM multiple times until the
adversary VM is operated on the same hypervisor with their tar-
get. After that, the attackers can proceed to attack the target VM
with side-channel or DoS attacks.

2.2 Fuzzing

Fuzzing is a famous automated black-box approach to the se-
curity testing and vulnerability finding of applications. During
the fuzzing process, the tested system is provided with random
or unexpected input, which can trigger some flaws contained in
the application [7], [13], [26]. A fuzzing process often has four
main steps: generating random or unexpected data that could lead
the tested application into an invalid state; executing the applica-
tion with the generated input; observing the output caused by the
generated input; and finally analyzing the exception. Figure 2
indicates a general example of a fuzzing process.

A fuzzing process starts with the generation of inputs, which
are also called testcases. There are two different strategies for
creating inputs. The generation strategy generates a set of valid
input values according to a configuration file that predefines the
file format. The inputs are then modified with fuzzing primitives
to obtain faulty input data. On the other hand, the mutation strat-
egy extracts a set of valid input values from the normal sessions
and modifies the inputs with fuzzing primitives [12].

The inputs are fed to the target application after generated in
the previous step. Fuzzer automatically executes the target appli-
cation and observes all outputs. When violations such as crashes

© 2021 Information Processing Society of Japan

Vol.29

or abnormal behaviors are captured, fuzzer stores the input for
later analysis. In some cases, fuzzer also needs to perform sev-
eral intermediate steps in order to bring the system to a certain
state that could expose flaws of the system.

Fuzzing’s greatest advantage is the fact that it only relies on
the input and output of the tested application without requiring
any knowledge of its internal structure. Therefore, if the tested
system is completely closed, fuzzing is the only method to check
that system’s quality. Even though it is not expected to expose
all faults in the tested application, bugs found through fuzzing are
guaranteed to correspond to some flaws in the tested application’s
source code.

Hypervisors fuzzing has some challenges because it requires
interacting with different devices using various protocols and in-
terfaces. Therefore, there appears to be a lack of research on
fuzzing hypervisors. One example of a state-of-the-art hypervi-
sor fuzzing tool is HYPER-CUBE [19]. This fuzzer has to rely on
a fully custom OS called HYPER-CUBE OS booting inside the
target hypervisor. This specified OS can give the authors full con-
trol over the fuzzing process. As a consequence, this fuzzer has
greater performance than previous coverage-guided fuzzers such
as VDF[1]. Another hypervisor fuzzer example is NYX, which
uses coverage-guided fuzzing with fast snapshots and affine types
to accelerate the fuzzing process [20]. The drawback of NYX is
that it is slightly more complex to set up than HYPER-CUBE, as
the target hypervisor needs to run inside a modified hypervisor
called KVM-PT.

In our research, we only focus on the behavior of the virtual
switch in handling TCP retransmission. Therefore, we follow a
simpler approach than state-of-the-art hypervisor fuzzing meth-
ods. Our approach shares some elements of network protocol
fuzzing, which is to send malformed data to the target through
socket APIs and observe the exceptions. One example of a test-
ing tool that borrows the notion of network protocol fuzzing is
DELTA [21]. DELTA is a SDN penetration tool that randomizes
the control flow sequence and the priority data in the FLOW_MOD
message of the OpenFlow protocol. With the malformed packets,
DELTA was able to reproduce many attack scenarios and also dis-
cover new vulnerabilities on different SDN controllers. However,
our testing tool has a different approach to DELTA. Instead of uti-
lizing malformed packets, we aim to create a disruption in TCP
handshake that could expose the behavior of the virtual switch in
an abnormal situation.

3. Related Work

3.1 TCP Amplification Attack

Among DoS attack techniques, abusing UDP-based public
servers like DNS or NTP for reflective amplification attacks is
commonly being used. In this attack, the attacker sends com-
paratively small requests with the victim’s source IP address to
the hosts that reflect significantly larger responses to the vic-
tim. These hosts are defined amplifiers [16]. For example, the
attacker, which is spoofing the victim’s IP address, generates and
sends 1 Mbps of DNS queries to an exploitable DNS server. The
DNS server then returns 100 Mbps of traffic to the victim. This
makes the victim’s servers become busy handling the attack traf-

Electronic Preprint for Journal of Information Processing Vol.29

fic. As a consequence, the victim server cannot service any other
request from legitimate users and the attacker achieves a denial-
of-service.

On the other hand, TCP-based public servers are not known
to be abused for DDoS amplification attacks[5]. Comparing
with UDP, the attacker apparently cannot use TCP-based pub-
lic servers as amplifiers because of the three-way-handshake se-
quence. If the attacker spoofed the victim’s IP address, the vic-
tim would not acknowledge an unknown SYN/ACK packet. Sub-
sequently, the three-way-handshake would not complete and the
TCP/IP framework does not allow payload data for amplification
attacks.

However, Kiihrer et al. show that the attacker can still abuse the
TCP retransmission function during the handshake for a reflective
amplification DoS attack [15]. When the client does not send any
responses after receiving a SYN/ACK packet from the server, the
server will consider that the SYN/ACK packet has been lost and
will resend the SYN/ACK packet again in a timeout interval un-
til it receives any responses. The retransmission of SYN/ACK can
make an amplification situation as UDP-based servers. Further-
more, because the TCP handshake is not completed, the SYN/ACK
packets can be reflected to the victim by IP spoofing techniques.
In fact, thousands of TCP-based public servers that can be abused
for amplification attack as amplifiers have been found [16].

Motivated by Kuhrer’s findings on physical TCP hosts, we
want to evaluate the potential of this attack on virtual network
environments. In our previous work, we proved that the virtual
switch of a hypervisor could be used as an amplifier because of
its TCP retransmitting behavior [22]. The following section re-
views our finding of virtual switch’s behaviors on retransmitting
TCP packet.

3.2 Virtual Switch’s TCP-retransmitting Behaviors

As mentioned in Section 2.1, the virtual switch in NAT mode
can be considered as an intermediary server between VMs and
external physical hosts. Theoretically, an insider attacker could
abuse the virtual switch as an amplifier for TCP Amplification
Attack to disturb the other virtual machines on the same physical
machine.

In our previous research, we observed TCP retransmission in
VMware Workstation Pro 12.0.0[22]. We chose VMware Work-
station Pro for the following two reasons. First, VMware Work-
station Pro is the industry standard Type-2 hypervisor that can run
multiple operating systems simultaneously on a single host ma-
chine [38]. Second, with the Shared VM feature, we can config-
ure the host machine as a VMware Workstation Server and share
VMs over the local network.

In order to make the virtual switch retransmit TCP packets,
we followed Kiihrer method[15] to trigger the retransmission
(Fig. 3).

e Step-1: From a virtual machine, we send a single SYN packet

((1) SYN in Fig. 3) to a TCP host in the local subnet.
e Step-2: TCP hosts reply by sending SYN/ACK packet ((2)
SYN/ACK in Fig. 3).

e Step-3: In order to activate TCP retransmission in the three-

way-handshake, we set that virtual machine does not reply

© 2021 Information Processing Society of Japan

B-Line A-Line
Virtual Virtual
Machine Switch TCP Host
(1) SYN
(1) SYN
(2) SYN/ACK
(2°) SYN/ACK (") ACK
___________ » (INoreply £, Connection Established &
4
(al)retransmitting !
SYN/ACK !
1
i Timeout
i
i
v (2) FIN/ACK
B (03) ACK
§ Comnection Closed §

Fig.3 Observing TCP retransmission from a virtual switch.

RST packet to TCP hosts ((3) in Fig. 3).

‘We observed communication situations in external (“A-line” in
Fig. 3) and internal (“B-line” in Fig. 3) of the virtual network us-
ing Wireshark [39] on the host PC. From some experiments, we
found the following [22]:

(1) In A-line, the three-way-handshake is established between
the virtual switch and the external TCP host. This three-
way-handshake is normal, therefore no retransmissions are
found in the external communication.

(2) In B-line, we observed many retransmitting SYN/ACK pack-
ets from the virtual switch ((@1) in Fig. 3). This retransmis-
sion executes in a time-out interval, which is 30 seconds
since the first SYN/ACK packet was sent. We deduce that
this is VMware Workstation’s retransmission default setting.
After stopping retransmit SYN/ACK packet to the virtual ma-
chine, we observed from A-line that the virtual switch sent a
FIN/ACK packet to the hosts in order to end the established
TCP connection ((a2) in Fig. 3).

(3) The retransmitting frequency from our experiments is far dif-
ferent from Kuhrer’s observation on physical servers. In the
real network, the SYN/ACK retransmitting frequency is only
5 packets in 30 seconds [15]. However, the VMware Work-
station Pro 12.0.0 hypervisor retransmits 300 packets in 30
seconds, which is much larger than a physical server in a real
network.

From the observation above, we theorized that the virtual
switch itself could become an amplifier with a high amplifica-
tion factor for reflective DoS attacks targeting the internal virtual
network. However, our previous research was limited to VMware
Workstation Pro 12.0.0. Therefore, in this work, we intend to
expand the investigation to various hypervisors. For that pur-
pose, we designed an automated testing tool that could gener-
ate a half-open TCP session and analyze the retransmission from
the targeted virtual switch. From the retransmission behaviors
observed, our tool can identify possible vulnerabilities of the tar-
geted virtual switch that could be exploited for DoS attacks.

Electronic Preprint for Journal of Information Processing Vol.29

Altering VM’s
firewall

Generating
SYN packet

Start

Monitoring

TCP server

Restoring
VM’s firewall

Capturing
received packets

Sending to

Unusual? . Secure

y

Vulnerable

Analyzing

Fig. 4 Working process of SVTester.

4. SVTester Description

4.1 Working Process in General

In this section, we describe the process and algorithm of our
testing tool, which is called SVTester. In the current imple-
mentation, SVTester can operate on any VM running Linux OS.
SVTester’s working process consists of 4 main stages, which are:
altering VM’s firewall, generating TCP packet input, monitoring
the TCP transmission, and analyzing the result. Figure 4 shows
the working process of SVTester.

The principle of SVTester is related to the method of trigger-
ing TCP retransmission mentioned in Section 3.2. To summarize,
SVTester initiates a TCP handshake with an external TCP server
but does not respond to the incoming SYN/ACK packet. Normally,
if there are no TCP listening sockets for a specified port, any TCP
packet coming for that port will trigger a RST packet from the OS
kernel. To prevent this event, in the first stage, SVTester alters the
tested VM’s firewall by blocking all outgoing RST packets.

In the second stage, SVTester generates a raw TCP SYN packet
from the Linux socket. This SYN packet’s structure follows the
standard TCP protocol specification [28]. After the generation,
SVTester sends the SYN packet to a specified TCP server con-
necting to the hypervisor. At stage 3, SVTester monitors and cap-
tures all incoming packets from the TCP server. In the final stage,
SVTester checks for violations and reports any abnormal behav-
iors of the virtual switch based on the number of retransmitted
packets and the timeout of the TCP session. Finally, SVTester
restores the VM’s firewall to its previous settings.

4.2 Assigning Unusual Thresholds

In our initial version of SVTester, we assign two unusual
thresholds of a TCP session. The first unusual threshold is de-
cided by the number of retransmitted packets (RP) measured in
60 seconds counting from the start of the fuzzing process. If RP
exceeds a specific value, then we determine that the retransmis-
sion is abnormal. Since RFC793 and RFC1122 do not specifi-
cally mention the upper bound value of SYN/ACK retries, we used

© 2021 Information Processing Society of Japan

a suggestion in the Linux TCP manual as a reference to specify
our threshold. According to the manual, the number of retrans-
mitted SYN/ACK should not be higher than 255 [27]. Therefore,
we design that if the number of RP is larger than 255, the tested
hypervisor is reported having an unusual threshold in TCP re-
transmission.

The second unusual threshold is decided by the timestamp of
the last incoming TCP packet. According to Ref. [28], the default
timeout for TCP retries should be 5 minutes. Therefore, we deter-
mine that if the timestamp of the last TCP packet captured from
the testing TCP session is above 300 seconds, the tested hyper-
visor might have a possible vulnerability that could be exploited
for DoS attacks.

4.3 Main Algorithm

Algorithm 1 shows more insight into the working process of
SVTester. S is an attribute set for specifying the source of the
SYN packet such as VM’s IP address, source port number, and
virtual network interface. D is an attribute set for specifying the
destination of the SYN packet such as destination IP address and
destination port number. 7 is the observation time. Since the
timeout validation is 300 seconds, 7" should be much longer than
300 seconds so that SVTester can fully observe any retransmit-
ted packet beyond the 300 seconds timestamp. In this paper, we
chose T = 3,600 seconds to observe the generated TCP sessions
in 1 hour.

V is the state output of SVTester, which can suggest that
whether the tested hypervisor is having unusual TCP retransmis-
sion or not. For further analysis, we design SVTester to also show
the number of retransmitted packets in 60 seconds (RP) and the
timestamp of the last TCP packet captured from this session (7'S).

Variable ¢ represents the current time while #; is the starting
time.

To set up RST blocking rule for testing VM’s firewall, SVTester
alters the iptables, which is a Linux utility that allows configuring
the IP packet filter rules of the Linux kernel firewall. For sniff-
ing task, SVTester is implemented with Scapy module [36]. Each

Electronic Preprint for Journal of Information Processing

Vol.29

Local Subnet

Algorithm 1: SVTester algorithm
input : S,D, T
output: RP, TS,V
modify iptables;
generate TCP SYN packet with S, D;
to = time.time();

4 RP=0;

send SYN packet;

¢ whiler <t + T do

W =

n

7 sniff incoming TCP packets p;
8 if p source = D then
TS =t—ty;
10 write p to log file;
11 if 7S < 60 then
12 | RP+1;
13 end
14 end
15 end
16 if RP > 255 or TS > 300 then
7 | V=true
18 else
19 V = false
20 end

21 return V, RP, TS,
22 restore iptables;

time a TCP packet coming from the specified TCP server (D) is
captured, SVTester computes 7'S by subtracting the starting time
to from the current time 7.

5. Testing Experiments

5.1 Experimental Environment

We conduct testings on various well-known hypervisors that
implements NAT mode virtual switch for network communica-
tion such as VMware Workstation Pro (v15.5.6) [38], Oracle Vir-
tualBox (v6.1.12) [32], Parallels Desktop 15[33], Hyper-V (on
Windows 8.1) [31], KVM QEMU (v2.11.1) [35]. We also include
testing on the susceptible VMware 12.0.0, which has possible
vulnerabilities found in our previous research [22]. The reason
to include testing on this hypervisor is that we want to check
whether our testing tool can reproduce the possible vulnerabili-
ties found on this hypervisor or not.

In order to test each hypervisor, we created representative test
networks and systems in our subnet. We decided to perform ex-
periments on our customized systems instead of rented resources
for several reasons. The first reason is that we want to completely
gain access to the hypervisor and therefore could observe all of its
connections with the external network. Secondly, cloud providers
such as Amazon EC2 do not permit DoS related testing on their
systems. And finally, using our custom system, we could ensure
the hardware resources remain constant during our experiments.

Figure 5 indicates our experimental model. We used a modern
mid-range PC with an Intel Core i7-4790 core processor running
at 3.60 GHz as our host PC. The network interface is a 1 Gbps
Ethernet adapter attached to the PCI-E bus. The host used Win-
dows 8.1 64 bit as its operating system. We also used a TCP Host
in our real subnet that connects to our host PC. This TCP host is
actually utilized for office work and research activity.

© 2021 Information Processing Society of Japan

Hypervisor

Virtual Switch l

LAN port |—

TCP Host

Testing VM
SVTester

Linux Ubuntu 15.10
Host PC
Windows 8.1

‘VMWare Workstation Pro 15.5.6

Fig.5 Experimental model.

5.2 Implementation

For each hypervisor, we created a virtual machine running
Linux Ubuntu 15.10 OS. We implemented our initial version of
SVTester on this VM and use it to find the possible vulnerabil-
ities of the operating hypervisor. This VM contained some spe-
cific Python 3 library such as Scapy[36] to support SVTester’s
working process.

Initially, we provided SVTester with the source and destination
IP addresses and port numbers. SVTester then automatically ex-
ecuted the testing process (as mentioned in Section 4). After the
testing process finished, SVTester displayed the results, which
are the number of retransmitted packets, the timestamp of the last
TCP transmission, and the suggestion of possible vulnerabilities
that the testing hypervisor might have.

5.3 Testing Results
Table 1 shows the testing results of various hypervisors us-
ing SVTester. The testing on VMware Workstation Pro 12.0.0
shows that SVTester was able to find the possible vulnerabilities
first discovered in our previous research [22]. However, the re-
sults also indicate that only VMware Workstation Pro 12.0.0 has
a very high TCP retransmission frequency, which is 300 packets
in 30 seconds, while all of the other hypervisors have a low TCP
retransmission frequency, which only range from 4 to 7 retrans-
mitted packets in 30 seconds.
On the other hand, the last timestamp output varies between
hypervisors. Most of the hypervisors have a TCP session timeout
output under 300 seconds, which is the acceptable value (men-
tioned in Section 4.2). As expected from VMware Workstation
Pro 12.0.0, SVTester shows that the last timestamp was over 300
seconds and therefore violated the TCP protocol. This is related
to the possible vulnerability found in our previous research [22].
However, we also discovered that besides VMware 12.0.0, Ora-
cle VirtualBox 6.1.12 also has a long TCP session timeout, which
was above 300 seconds. Therefore, we could determine that Or-
acle VirtualBox 6.1.12 hypervisor might have a novel possible
vulnerability that could be exploited for DoS attacks.
From the testing result, we summarize 2 possible vulnerabili-
ties of a virtual switch that could be exploitable by DoS attackers.
(1) V1 - High TCP retransmission frequency. The virtual
switch retransmits a large number of SYN/ACK packets,
which makes it become a potential amplifier for a reflective
amplification DoS attack.

(2) V2 - Abnormal retransmission timeout. The virtual switch

Electronic Preprint for Journal of Information Processing Vol.29

Table 1 Fuzzing results on various hypervisors.

Tested Hypervisor RP | Timestamp | Possible Vulnerability
VMware Workstation Pro 12.0.0 | 300 3,600s V1,Vv2
VMware Workstation Pro 15.5.6 7 15.3s
Oracle VirtualBox 6.1.12 5 633s V2
Pararells Desktop 15 6 59.8s
Hyper-V (Windows 8.1) 4 94.1s
KVM QEMU 4 4655
Virtual Virtual Local Subnet
Machine Switch TCP Host
osyw 1 i e Virtual Network «—m=m==m . J_ (hsvNs
(1) SYN (DSYNS (2)SYN/ACKs
> Virtual Switch l (2)SYN/ACKs ; GHACKs TCP Hosts
(2) SYN/ACK " (4)FIN/ACKs
(2) SYN/ACK (3) ACK i é *
= B 4
! e
........... > (3)No reply i Atacker VM || Checking Vi -
! Linix U 1510 || Windows 1008 tacker
i ‘VMware Workstation Pro 12.0.0 Host Machine
.. ‘Windows 8.1
(P1)retransmitting E Timeout?
SYN/ACK i
(82) FIN/ACK i
Fig.7 S1 attack model.
(B3°) ACK
(B3)retransmitting i Connection Closed
FIN/ SYN/ ACK TasmsmssssssssssssmsmsmEmsmant . .
* In summary, the attack consists of three main steps.

Fig. 6 Abnormal retransmission timeout case.

violates the standard timeout of retransmitting TCP packets.
Figure 6 illustrates this particular case. It happened when
the TCP host sends a FIN/ACK packet ((52) in Fig. 6) before
the virtual switch terminates the half-open TCP connection.
The virtual switch subsequently inserts the FIN flag to the re-
transmitting packet, thus makes a SYN/ACK packet become a
FIN/SYN/ACK packet ((83) in Fig.6). This retransmission
keeps on resending the packets until receiving a response
from the VM and thus violates the standard timeout inter-
val. This behavior could benefit attackers when they want to
force the virtual switch to retransmit meaningless TCP pack-
ets and occupy the hypervisor’s memory for a long time.

6. DoS Attack Schemes

From the possible vulnerabilities found above, we proposed 2
DoS attack schemes S'1, S$2, in which the attacker has a com-
promised virtual machine inside the targeted network and has the
ability to send low-rate attack traffic. These attack schemes might
be able to sabotage the entire virtual network or overload the vir-
tual system from inside.

6.1 S1 - Internal TCP Retransmission Attack
6.1.1 Attack Description

With the V1 possible vulnerability, the attacker can perform an
internal TCP retransmission attack. In this attack scheme, we as-
sume the attacker possessed one VM in the virtual network and
his purpose is to sabotage other legitimate VMs’ activities. The
main goal of the attacker is to make the virtual switch busy by
continuously generating a lot of retransmitting TCP packets and
sending those packets to the attacker’s VM. As a result, this at-
tack slows down the targeted virtual switch’s performance. This
attack is harder to detect than a direct flooding attack because the
incoming packets come from its own virtual switch.

© 2021 Information Processing Society of Japan

e Step-1: The attacker sends SYN packets from his VM to
many TCP hosts in the local subnet.

e Step-2: TCP hosts reply by sending SYN/ACK packets. The
virtual switch will transmit the SYN/ACK packet to the VM
and spontaneously sends back its ACK packets to complete
the three-way-handshake between the host machine and ex-
ternal TCP hosts.

e Step-3: In order to trigger TCP retransmission in the three-
way-handshake, the attacker makes his VM not reply ACK
or RST packets to TCP hosts. As a result, the virtual switch
will retransmit a large number of SYN/ACK packets to the
attacker’s VM.

6.1.2 Experimental Attack

In order to evaluate the effect of S1 attack on the other virtual
machine operating on the same vulnerable hypervisor, we per-
formed experimental attacks on our virtual network. Figure 7
illustrates our experimental attack model. In this experiment, the
attacker is a machine in our local subnet. This machine could gain
access and control a virtual machine in the hypervisor through
VMware’s Shared VM feature. We also used TCP Hosts in our
local subnet that connect to our host PC. These TCP hosts are
actually utilized for office work and research activity and those
administrations are entrusted to each section.

To monitor the change in the performance of the Checking VM
under normal and attacked conditions, we chose the PassMark
PerformanceTest 10.1 [34] to measure the CPU, memory, and I/O
performance. To observe the network performance, we used iPerf
3.1.3[30] to find the maximum bandwidth between the Checking
VM and a TCP Host in our subnet.

In this experiment, the Attacker VM sent 100 SYN packet
to 30 TCP Hosts, which resulted in 3000 SYN/ACK retransmis-
sions. According to our testing results in Section 5.3, for each re-
transmission VMware Workstation 12.0 generated 10 SYN/ACK
packets per second. Since one SYN/ACK packet is 60 bytes,
our experimental attack created 14.4 Mbps of attack traffic from
180 KB of the initial SYN packets.

Electronic Preprint for Journal of Information Processing Vol.29

Table 2 The Checking VM’s performance while Idle - Under S 1 Attack.

Benchmark Idle | Under Attack | Degradation
CPU Single Threaded | 2,033 MOps 1,824 MOps 10.28%
Memory Read 9,033 MBps 8,576 MBps 5.06%
/0 9 MBps 9 MBps 0%
Network Bandwidth 95.4 Mbps 92.4 Mbps 3.14%

Table 2 shows our experimental attack results. Overall, our S 1
experimental attack slightly impacts the performance of the other
VM on the same hypervisor. Under a bandwidth of 14.4 Mbps
of retransmitted SYN/ACK, the CPU Single Threaded benchmark
is decreased by 10.28% while the Memory Read benchmark also
slightly reduces by 5.06%. The maximum network bandwidth is
also degraded by 3.14%. However, the I/O performance was not
influenced under our experimental attack.

6.2 S2 - Long timeout TCP Session Attack
6.2.1 Attack Description

With the V2 possible vulnerability, the attacker can create a
large number of half-open TCP sessions with a long timeout. In
this attack scheme, we assume the adversary is controlling one
VM inside the targeted network. The attacker also needs to en-
sure that the external TCP Hosts perform an active close and send
a FIN/ACK packet before the virtual switch ends the half-open
TCP connections.

In summary, the attack consists of four main steps.

e Step-1: From insider’s VM, the attacker sends SYN packets
to a large number of TCP Hosts having network connection
with the hypervisor.

e Step-2: The TCP Hosts subsequently reply by sending their
SYN/ACK packets.

e Step-3: In order to create half-open TCP sessions, the at-
tacker sets that the VM does not reply ACK or RST packets to
any TCP Hosts. On the other hand, the virtual switch spon-
taneously completes the handshakes with all external TCP
Hosts by sending its own ACK packets.

e Step-4: The TCP Hosts send FIN/ACK packets to the hyper-
visor and thus create long timeout TCP sessions.

6.2.2 Experimental Attack

We also performed S2 experimental attacks on both VMware
Workstation 12.0.0 and Oracle VirtualBox 6.1.12 to evaluate the
impact of the attack. The experimental model is the same as the
S 1 experimental attack in Section 6.1.2. In this experiment, the
Attacker VM attempts to create 10,000 long timeout TCP ses-
sions. We also used PassMark PerformanceTest 10.1 to measure
the CPU, memory, and I/O performance of the Checking VM and
used iPerf 3.1.3 to measure the maximum network bandwidth. To
further observe the TCP session state, we used TCPView [37] to
check the status of TCP ports used by the hypervisor.

In the S2 attack experiment on VMware Workstation 12.0.0,
we observed only 3,400 TCP CLOSE_WAIT sessions despite the
Attacker VM tried to create 10,000 sessions. We also ob-
served 3400 FIN/SYN/ACK retransmissions with a bandwidth of
16.32 Mbps. As a result, the degradation of CPU and memory
performance benchmark showed no major change compared to
the result of the S'1 attack in Table 2. The 1/O performance un-
der attack also had no change compared to the normal condition.

© 2021 Information Processing Society of Japan

However, the iPerf3 on the Checking VM failed to connect to the
outside server. The reason is that all of the available dynamic
ports used for VM connections on VMware 12.0.0 NAT were oc-
cupied. As a consequence, the Checking VM could not connect to
the outside physical network for a long time. After 24 hours, the
Checking VM was still disconnected to the outside host. We con-
clude that the attack successfully sabotaged the VMware 12.0.0
virtual network with 3400 long timeout TCP sessions.

On the other hand, the S2 attack experiment on Oracle Virtu-
alBox 6.1.12 shows different results from the attack on VMware
12.0.0. We observed that 10,000 TCP CLOSE_WAIT sessions were
created and maintained in 10 minutes. After the timeout, Oracle
VirtualBox 6.1.12 cleared the CLOSE_WAIT sessions. However,
the CPU, memory, I/O, and network benchmarks under attack
show no difference with the performance in the normal condition.
We conclude that a §2 attack with a scale of 10,000 long time-
out TCP sessions could not affect the performance of the Oracle
VirtualBox 6.1.12 virtual network.

6.3 Countermeasures

To counter these attacks, we suggest some changes in the fun-
damental settings of the virtual switch TCP retransmission to
eliminate the possible vulnerabilities. First, the SYN/ACK retrans-
mission frequency should be limited to under 10 packets in 30
seconds. We also performed a S1 attack experiment on Oracle
VirtualBox 6.1.12 and the results showed no significant drop in
the performance compared with the normal condition. In other
words, virtual systems with strict rules for TCP retransmissions
are safe against the S'1 attack. To mitigate the S2 attack, the hy-
pervisor should include a NAT timeout parameter to terminate the
half-open TCP session with long timeout. In particular, we sug-
gest that the virtual switch should send a RST packet to the virtual
machine after a certain number of SYN/ACK retransmissions.

7. Discussion

7.1 Evaluating Hypervisors

From the testing results above, we could conclude that
VMware Workstation Pro 15.5.6, Parallels Desktop 15, Hyper-V,
and KVM QEMU hypervisors are unexploitable as amplifiers for
TCP amplification attack. These findings also prove that proper
implementation of the virtual switch can help hypervisors prevent
future attacks. In other words, to mitigate these attacks, the vir-
tual switch should lower the retransmitting frequency and limit
the abnormal infinite retransmissions.

SVTester was able to rediscover the possible vulnerabilities
found in VMware Workstation Pro 12.0.0[22]. Since this is an
old version of VMware Workstation Pro, only companies that
have not updated the hypervisor will be affected by the possi-
ble vulnerabilities found. However, the famous 2017 WannaCry
ransomware attack that targeted Microsoft Windows XP and Win-
dows Server 2003 proved that out-of-date software is still a con-
tinuing threat [14].

Furthermore, SVTester was able to identify a new possible vul-
nerability on a recent version of Oracle VirtualBox. This proves
that recent versions of a hypervisor can have the same possi-
ble vulnerabilities as an older version of a different hypervisor.

Electronic Preprint for Journal of Information Processing Vol.29

Table 3 Testing tools comparison results.

Possible Vulnerabilities

Name VMware NAT | Host PC | External TCP Host
OpenVAS 0 1 15
boofuzz 0 0 8
SVTester 2 0 0

Therefore, it is important to always properly implement the vir-
tual switch and perform testings to prevent future attacks.

7.2 Comparison with Related Tools

In this section, we perform other tests on VMware Workstation
12.0.0 virtual network to verify whether existing testing tools can
discover the possible vulnerabilities found by SVTester. First,
we used OpenVAS version 21.04, a state-of-the-art vulnerability
scanner [40]. OpenVAS has an easy-to-use interface and can per-
form in-depth network vulnerability scans by using daily updated
feeds of network vulnerability tests with more than 80,000 plug-
ins. We also performed other tests with a network protocol fuzzer
called boofuzz (version 0.3), a fork of the famous Sulley fuzzing
framework [41]. boofuzz also adopts the generation strategy but
provides a much easier installation and better recording of test
data than Sulley.

We implemented these tools on a virtual machine running
Kali Linux 2021. In these testing experiments, we targeted the
VMware NAT server, the Host PC running the hypervisor, and the
external TCP Host we used to perform tests with SVTester (men-
tioned in Section 5.1). Table 3 shows our comparison results.
From our testing experiments, we can observe that OpenVAS and
boofuzz are effective in finding vulnerabilities on a TCP Host.
However, these tools could not explore the possible vulnerabili-
ties that SVTester found in the VMware NAT because our tool is
originally designed to exploit TCP retransmission. As a result,
we can verify that SVTester can solve the problem that could not
be discovered by existing methods.

7.3 Ethical Consideration

We have been careful to design experiments within legal and
ethical boundaries. In particular, we only performed the attack
experiments on our virtual network, which only had connections
with our local subnet. Furthermore, we only sent a little amount
of legal traffic to the entrusted TCP hosts used for research ac-
tivities in our local subnet. Therefore, our experimental attack is
harmless to the Internet.

We notified the abnormal behavior of VMware Workstation
Pro 12.0.0’s virtual switch to the vendor via email on 18 October
2018, However, we did not receive any response. Nonetheless,
as mentioned in Chapter 7.1, the abnormal behavior of the vir-
tual switch has been fixed in the latest version of VMware Work-
station Pro. We also reported the abnormal behavior of Oracle
VirtualBox 6.1.2°s virtual switch and suggested some changes in
the virtual switch configuration via their bug reporting site on 28
November 2020. However, as of 9 June 2021 which is over 5
months after our notice, we have not received any response. As
mentioned in Chapter 6.2, the proposed attack based on the pos-
sible vulnerability showed only a slight effect on the targeted Or-
acle VirtualBox’s system. Therefore, we believe that the impact

© 2021 Information Processing Society of Japan

of disclosing this possible vulnerability is minor.

7.4 Limitation

Since this is our first attempt to create a tool for evaluating the
security of hypervisors against DoS attacks, SVTester still has
some limitations. First, our tool has to send TCP packets from
a VM, in other words, testers have to build a Linux OS VM in-
side the targeted system in order to execute SVTester. Second,
SVTester requires installing a specific library (i.e., Scapy) for
capturing TCP packets. Finally, only a few unusual thresholds
are determined in SVTester, which results in a limitation in the
number of possible vulnerabilities found from a virtual switch.
We will revise this to further improve the capability of SVTester
so that we can release a more complete version of it in the near
future.

Our proposed attack schemes also have some limitations. The
S1 attack scheme might be a minor threat to the hypervisor with
the V1 possible vulnerability. Our experiment results show a
small degradation in the performance of the other VM under the
same targeted hypervisor. The S 2 attack scheme might be a prob-
lem with hypervisors having the V2 possible vulnerability and
a small cap of available ports in its PAT (for example VMware
Workstation Pro 12.0.0). However, the V2 possible vulnerabil-
ity does not affect the CPU, memory, and I/O performance of the
other VM on the same hypervisor. Furthermore, the S2 schemes
will find it difficult to occupy all of the available ports of the hy-
pervisor with a large PAT capacity. However, we think it is diffi-
cult to fully judge the impact of the attack schemes with just one
example and some performance benchmarks. Therefore, to fur-
ther understand the impact of the proposed attack schemes, in the
future we will improve the scale of the attacks and examine some
different benchmarks such as web application requests serviced
per second.

8. Conclusion and Future Work

In this paper, we described a new testing tool that can identify
possible vulnerabilities exploited for certain types of DoS attack
targeting virtual networks. We also perform testings on various
hypervisors that implement NAT mode virtual switch for network
connection. Testing results show that most of the recent hyper-
visors are unexploitable for amplification DoS attacks. We also
found one novel possible vulnerability of Oracle VirtualBox latest
version that can benefit DoS attackers. Comparison testing results
show that SVTester is able to identify possible vulnerabilities that
could not be found by existing testing tools. Our approach allows
testers to build better testing tools to evaluate more possible vul-
nerabilities of virtual switches and hypervisors.

In the future, we plan to extend SVTester in a number of direc-
tion. First, we plan to implement more unusual thresholds so that
SVTester could find more unexpected faults. For example, we
expect that SVTester can determine whether the tested hypervisor
can easily allow scanning for other VMs and spoofing IP address
inside the virtual network. Second, we plan to use SVTester to
test the security of more virtual infrastructures such as Docker
or VPN. Finally, we plan to use SVTester to test the security of
proxy servers since the implementation of a NAT mode virtual

Electronic Preprint for Journal of Information Processing Vol.29

switch is similar to a physical proxy server.

Acknowledgments

This work was supported by the NEC

C&C Foundation Grants for Non-Japanese Researchers.

References

(1]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Henderson, A., Yin, H., Jin, G., Han, H. and Deng, H.: VDF: Tar-
geted Evolutionary Fuzz Testing of Virtual Devices, The 20th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2017), Lecture Notes in Computer Science, Vol.10453, pp.3—
25, Springer (2017).

Oludele, A., Ogu, E.C., Shade, K. and Chinecherem, U.: On the Evo-
lution of Virtualization and Cloud Computing: A Review, Journal of
Computer Sciences and Applications, Vol.2, No.3, pp.40-43 (2015).
Crane, C. and Nohe, P.: Re-Hash: The Largest DDoS Attacks in His-
tory (2020) (online), available from (https://www.thesslstore.com/
blog/largest-ddos-attack-in-history)

Graziano, C.D.: A performance analysis of Xen and KVM hy-
pervisors for hosting the Xen Worlds Project, Master of Sci-
ence thesis, lowa State University (2011) (online), available from
(http:/lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3243&context=
etd.)

Rossow, C.: Amplification Hell: Revisiting Network Protocols for
DDoS Abuse, Symposium on Network and Distributed System Secu-
rity (NDSS) (2014) (online), available from ¢https://christian-rossow.
de/publications/amplification-ndss2014.pdf)

Corero: Impact of DDoS on Enterprise Organizations (2018) (online),
available from (https://www.corero.com/blog/infographic-impact-of-
ddos-on-enterprise-organizations/)

Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R. and Holz,
T.: REDQUEEN: Fuzzing with Input-to-State Correspondence, 26th
Annual Network and Distributed System Security Symposium (NDSS
2019) (2019) (online), available from ¢https://www.ei.ruhr-uni-
bochum.de/media/emma/veroeffentlichungen/2018/12/17/NDSS19-
Redqueen.pdf)

Commvault: CommVault Releases Results of Annual End-User Virtu-
alization Survey Emphasizing the Need for Modern Approach to Pro-
tecting and Managing Virtual Server Environments (2011) (online),
available from (http://ir.commvault.com/news-releases/news-
release-details/commvault-releases-results-annual-end-user-
virtualization-survey ?field_nir_news_date_value[min]=2018)
Cambiaso, E., Papaleo, G. and Aiello, M.: Slowcomm: Design, devel-
opment and performance evaluation of a new slow DoS attack, Jour-
nal of Information Security and Applications, Vol.35, pp.23-31 (2017)
(online), available from ¢https://www.sciencedirect.com/science/
article/pii/S2214212616300680)

Somani, G., Gaur, M.S., Sanghi, D. and Conti, M.: DDoS attacks in
cloud computing: Collateral damage to non-targets, Computer Net-
works, Vol.109, pp.157-171 (2016).

Popek, G.J. and Goldberg, R.P.: Formal requirements for virtualizable
third generation architectures, Magazine Comm. ACM, Vol.17, No.7,
pp.412-421 (1974).

Banks, G., Cova, M., Felmetsger, V., Almeroth, K., Kemmerer, R. and
Vigna, G.: SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr,
9th International Conference on Information Security (ISC 2006),
Lecture Notes in Computer Science, Vol.4176, pp.343-358, Springer
(2006).

Yun, I, Lee, S.,, Xu, M., Jang, Y. and Kim, T.. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing,
27th USENIX Security Symposium (2018) (online), available from
(https://www.usenix.org/system/files/conference/usenixsecurity 18/
sec18-yun.pdf)

Kumar, M.S., Ben-Othman, J. and Srinivasagan, K.G.: An Investiga-
tion on Wannacry Ransomware and its Detection, 2018 IEEE Sympo-
sium on Computers and Communications (ISCC), pp.1-6 (2018).
Kiihrer, M., Hupperich, T., Rossow, C. and Holz, T.: Hell of a Hand-
shake: Abusing TCP for Reflective Amplification DDoS Attacks, 8th
USENIX Workshop on Offensive Technologies (WOOT’14) (2014) (on-
line), available from ¢https://www.usenix.org/system/files/
conference/woot14/woot14-kuhrer.pdf)

Kiihrer, M., Hupperich, T., Rossow, C. and Holz, T.: Exit from Hell?
Reducing the Impact of Amplification DDoS Attacks, 23rd USENIX
Security Symposium (USENIX Security’14) (2014) (online), available
from (https://www.usenix.org/node/184412)

Abramov, R. and Herzberg, A.: TCP Ack Storm DoS Attack, 26th
IFIP TC 11 International Information Security Conference (SEC
2011) (2011) (online), available from ¢http://dl.ifip.org/db/conf/sec/
sec2011/AbramovH]11.pdf)

Shea, R. and Liu, J.: Understanding the Impact of Denial of Service
Attacks on Virtual Machines, 20th IEEE International Workshop on

© 2021 Information Processing Society of Japan

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]
[33]

[34]
[35]

[36]
[37]

[38]
[39]
[40]

[41]

Quality of Service (IWQoS 2012) (2012).

Schumilo, S., Aschermann, C., Abbasi, A., Worner, S. and Holz, T.:
HYPER-CUBE: High-Dimensional Hypervisor Fuzzing, The Network
and Distributed System Security Symposium (NDSS 2020) (2020).
Schumilo, S., Aschermann, C., Abbasi, A., Worner, S. and Holz, T.:
Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine
Types, The 30th USENIX Security Symposium (USENIX Security’21)
(2021) (online), available from (https://www.usenix.org/system/files/
sec2 lsummer_schumilo.pdf)

Lee, S., Kim, J., Woo, S., Yoon, C., Scott-Hayward, S., Yegneswaran,
V., Porras, P. and Shin, S.: A comprehensive security assessment
framework for software-defined networks, Computers & Security,
Vol.91 (2020).

Nguyen, S.D., Mimura, M. and Tanaka, H.: Abusing TCP retrans-
mission for DoS Attack inside virtual network, Kang, B. and Kim, T.
(Eds.), Information Security Applications, WISA 2017, Lecture Notes
in Computer Science, Vol.10763, pp.367-386, Springer (2017).
Nguyen, S.D., Mimura, M. and Tanaka, H.: Leverage Man-in-the-
middle DoS Attack with Internal TCP Retransmissions in Virtual Net-
work, Shyamasundar, R., Singh, V. and Vaidya, J. (Eds.), Information
Systems Security, ICISS 2017, Lecture Notes in Computer Science,
Vol.10717, pp.199-211, Springer (2017).

Nguyen, S.D., Mimura, M. and Tanaka, H.: Slow-port-exhaustion
DoS Attack on Virtual Network Using Port Address Translation, Proc.
6th International Symposium on Computing and Networking (CAN-
DARIS8), pp.126-132 (2018).

Ristenpart, T., Tromer, E., Shacham, H. and Savage, S.: Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-
Party Compute Clouds, ACM Conference on Computer and Commu-
nications Security 2009 (CCS 2009) (2009) (online), available from
(https://hovav.net/ucsd/dist/cloudsec.pdf)

Wang, Z., Zhang, Y. and Liu, Q.: RPFuzzer: A Framework for Discov-
ering Router Protocols Vulnerabilities Based on Fuzzing, KSII Trans.
Internet and Information Systems, Vol.7, No.8, pp.1989-2009 (2013).
The Linux man-pages project: Linux Programmer’s Manual - tcp(7):
TCP protocol (online), available from (https://linux.die.net/man/7/tcp)
IETF: Transmission Control Protocol, DARPA Internet Program Pro-
tocol Specification RFC793 (1981), available from ¢https://tools.ietf.
org/html/rfc793)

Amazon EC2, available from (https://aws.amazon.com/ec2/ncl=
h_lIs)

iPerf3, available from (https://iperf.fr/)

Hyper-V Architecture, available from ¢https://docs.microsoft.com/en-
us/virtualization/hyper-v-on-windows/reference/hyper-v-architecture)
Oracle VirtualBox, available from ¢https://www.virtualbox.org/)
Parallels Desktop for Mac, available from ¢https://www.parallels.com/
products/desktop/)

PassMark PerformanceTest 10.1, available from ¢https://www.
passmark.com/products/performancetest/)

QEMU 2.11.1, available from ¢https://www.qemu.org/2018/02/14/
gemu-2-11-1-and-spectre-update/)

Scapy Project, available from (https://scapy.net/)

TCPView v3.05, available from ¢https://docs.microsoft.com/en-us/
sysinternals/downloads/tcpview)

VMware: Workstation for Windows, available from (https://www.
vmware.com/products/workstation)

Wireshark: Network protocol analyzer, available from ¢https://www.
wireshark.org/)

OpenVAS - Open Vulnerability Assessment Scanner, available from
(https://www.openvas.org/)

boofuzz: Network Protocol Fuzzing for Humans, available from
(https://boofuzz.readthedocs.io/en/stable/)

Electronic Preprint for Journal of Information Processing Vol.29

Son Duc Nguyen received his B.E. and
M.E. degrees in Engineering from Na-
tional Defense Academy of Japan in 2017
and 2019. Currently, he is pursuing his
Ph.D. degree in Engineering at the Depart-
ment of Computer Science, National De-
fense Academy of Japan. He is a mem-

ber of the People’s Army of Vietnam since
2012. His research interests focus on low resources Denial of
Service attack on virtual network environment. Mr. Son awards
and honors include The NEC C&C Foundation’s Grants for Non-
Japanese Researchers and CANDAR2019’s Outstanding Paper
Award.

Mamoru Mimura received his B.E. and
M.E. in Engineering from National De-
fense Academy of Japan, in 2001 and
2008 respectively. He received his Ph.D.
in Informatics from the Institute of Infor-
mation Security in 2011 and M.B.A. from
Hosei University in 2014. During 2001—
2017, he was a member of the Japan Mar-
itime Self Defense Force. During 2011-2013, he was with the
National Information Security Center. Since 2014, he has been a

researcher at the Institute of Information Security. Since 2015, he
has been with the National Center of Incident readiness and Strat-
egy for Cybersecurity. Currently, he is an Associate Professor in
the Department of C.S., National Defense Academy of Japan.

Hidema Tanaka received his B.E., M.E.,
and Ph.D. all in Electrical Engineering
from Science University of Tokyo, in
1995, 1997, and 2000 respectively. He
was a director of Security Fundamentals
Laboratory at the National Institute of In-
formation and Communications Technol-

ogy until 2011. Currently, he is a Pro-
fessor in the Department of C.S., National Defense Academy of
Japan.

© 2021 Information Processing Society of Japan

