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Abstract: Secure multiparty computation (MPC) enables parties to compute an arbitrary function without revealing
each party’s inputs. A typical MPC is secret-sharing based MPC (SS-MPC). In the SS-MPC, each party distributes
its inputs, and the computation proceeds with secret shares that look exactly like random numbers distributed among
the parties. In the SS-MPC protocol, the parties can compute any function represented as a circuit by using shares
locally and communicating among the parties. In particular, when the parties compute a complex function composed
of binary and arithmetic circuits, an efficient share conversion protocol facilitates the computation of it. An important
conversion protocol is a bit-composition protocol that converts a k-dimensional vector with shares on Z2 (i.e., shares
of binary sequence) to shares on Z2k (i.e., shares of decimal value). Previous studies proposed a maliciously secure
bit-composition protocol with robustness, which is a security notion that all parties learn the correct output regardless
of the attacker’s behaviour. However, its security is dependent on a statistical parameter or proved in the random
oracle model. In this paper, we propose a novel bit-composition protocol with robustness independent of a statistical
parameter by introducing additional clients generating the pair of shares of random values only in the offline phase
(which can be performed without the parties’ inputs). Our protocol is based on a maliciously secure four-party proto-
col with one corruption using replicated secret sharing. The security of our protocol is proved in the standard model
(which is a weaker assumption than the random oracle model). Our protocol achieves efficiency and the strongest
security simultaneously. We also propose a protocol for the Hamming distance with robustness by modifying our
bit-composition protocol. It can achieve a secure iris recognition service via MPC with robustness. Furthermore, we
extend our protocol with a constant number of parties and clients to one with an arbitrary number of parties and clients.
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1. Introduction

1.1 Background
Secure multiparty computation (MPC) [4], [14], [23] enables

parties to compute an arbitrary joint function represented as a cir-
cuit without revealing the inputs of the other parties. MPC can
compute it securely even if some of the parties are adversaries at a
certain rate. MPC protocols guarantee privacy (which means that
no party knows more than the output of the protocol) and correct-

ness (which means that the protocol computes the correct output).
These security guarantees provided by the protocols vary depend-
ing on the behaviour of the adversaries in the protocols. The typi-
cal adversary can be roughly divided into two types: semi-honest

and malicious adversary. The former is a corrupted party that
follows the specifications of the protocol and tries to get as much
information as possible. The latter is a corrupted party that can
deviate arbitrarily from the protocol. For example, it can cheat by
sending incorrect values. It can also try to get as much informa-
tion as possible. Therefore, the malicious adversary is stronger
than the semi-honest one.

Even among the MPC schemes that are secure against a ma-
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licious adversary, the security notions regarding the correctness
achieved by each scheme are different. For example, there are
three typical notions: security with abort (the protocol is aborted
if it detects a malicious adversary’s cheating), fairness (all parties
including a malicious adversary get the correct outputs or noth-
ing) and guaranteed output delivery (GOD). GOD is also known
as robustness. The strongest security notion is GOD, which en-
sures that all parties including a malicious adversary learn the
correct outputs regardless of the attacker’s behaviour. There are
two main types of GOD: traditional robustness [16] and private

robustness [5], [12]. The former ensures that all parties learn the
correct outputs, but there is a possibility that the parties’ inputs
may be known to a honest party. The latter ensures that all par-
ties learn the correct outputs while keeping information on par-
ties’ inputs secret from all parties. Hence, the latter is a stronger
security notion than the former. In particular, the existing pro-
tocols with private robustness achieve the cheating detection and
cheater identification implicitly because the private robustness in

This manuscript is an extended version of Ref. [22] with additional
information and changes. Specifically, we add new related works,
SWIFT [16] and Fantastic Four [12], to Table 1 and the body for com-
parison. We describe the four-party and one-client construction (Proto-
col 5) explicitly and add its communication costs to Table 1. We propose
a new generalized protocol (Protocol 7) and add its communication costs
to Table 1. We also propose a new Hamming distance calculation proto-
col based on the four-party and one-client construction (Protocol 9) and
a new generalized protocol (Protocol 10).
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these protocols is achieved by detecting the cheating and remov-
ing the values sent from the identified cheater without revealing
the parties’ inputs. For example, Fantastic Four [12] is capable
of detecting cheating deterministically, but the identification of
the cheater is achieved probabilistically depending on a statisti-
cal parameter. FLASH [5] is capable of both detecting cheating
and identifying the cheater, deterministically. The performance
of the protocols that realize probabilistic cheating detection or
probabilistic cheater identification degrades as the statistical pa-
rameter is increased. Hence, if strong security is to be achieved,
the protocols that realize deterministic cheating detection and de-
terministic cheater identification are preferable.

The practical advantage of MPC with GOD is that it is se-
cure against a malicious adversary who performs denial of ser-
vice (DoS) attacks. Real applications or services using MPC
schemes that achieve security with abort or fairness are not se-
cure against DoS attacks because it is easy for the adversary to
shut them down by sending incorrect values in MPC. In compar-
ison, real applications or services using MPC schemes with GOD
are robust against such DoS attacks.

A typical MPC is a secret sharing based MPC (SS-MPC) [4],
[14]. In the SS-MPC, each party distributes its inputs, and the
computation proceeds with secret shares that look exactly like
random numbers distributed among the parties. In the SS-MPC
protocol, each party computes any function represented as a bi-
nary, arithmetic or mixed circuit (which is composed of binary
and arithmetic circuits) by using shares locally and communicat-
ing among the parties. In particular, the secure three-party or
four-party protocol [5], [11], [12], [16], [17], [21] has gained at-
tention in recent years because it can achieve a high throughput
even when it computes a complex function represented as mixed
circuits.

An efficient share conversion protocol is required when the SS-
MPC protocol computes a complex function represented as mixed
circuits. Let Z2 and Z2k be residue ring modulo 2 and 2k, respec-
tively. For example, the addition of the shares on the arithmetic
ring Z2k is for free. However, the exclusive OR (XOR) operation
of the shares of bit on Z2k requires communication. In compari-
son, the XOR operation for the shares on the binary ring Z2 is for
free. However, the addition of shares on Z2 requires communi-
cation. Therefore, converting shares with changing the modulus
according to the type of circuits can reduce the communication
cost of the entire computation.

The bit-composition protocol is a protocol that converts a k-
dimensional vector with shares of x j ∈ {0, 1} ( j = 0, . . . , k − 1)
on Z2 (or a binary field F2) to shares of x(=

∑k−1
j=0 2 j · x j) on Z2k

(or a finite field Fq s.t. q is a prime number). In particular, the bit
conversion protocol is a protocol that converts shares of x ∈ {0, 1}
on Z2 (or F2) to shares of x on Z2k (or Fq). Note that these con-
version protocols that do not require changing the modulus are
easily achievable. However, it is hard to construct these proto-
cols by changing the modulus. An existing maliciously secure
bit-composition protocol achieves security with abort [1], [17],
fairness [11], [21], or GOD [5], [12], [16]. Byali et al. proposed
a bit conversion protocol with private robustness independent of
a statistical parameter in Ref. [5]. The bit-composition protocol

with private robustness independent of a statistical parameter can
be achieved by running the bit conversion protocol with private
robustness independent of statistical parameter [5] in parallel k

times and using shares locally. However, the bit conversion pro-
tocol in Ref. [5] uses a commitment scheme that uses a collision-
resistant hash function. Therefore, its security is proved only in
the random oracle model (ROM). In the ROM, the collision-
resistant hash function is replaced by an ideal random function.
In comparison, there are no such replacements in the standard
model. Therefore, the ROM is a stronger assumption than the
standard model.

From a practical viewpoint, an MPC scheme that computes
complex functions represented as mixed circuits and achieves pri-
vate robustness independent of a statistical parameter is preferred.
Hence, a bit-composition protocol with private robustness inde-
pendent of a statistical parameter is required. However, there are
no such protocols for the standard model.

1.2 Our Results
In this paper, we propose a client-aided bit-composition pro-

tocol with private robustness independent of a statistical param-
eter that is provably secure in the standard model. The proposed
scheme is based on a maliciously secure four-party computation
with one corruption [5] with three additional clients who assist
the parties in the calculation. Note that these clients provide an
auxiliary input only in the preprocessing phase. They do not in-
put any secret values, do not compute any values, and do not learn
the output during the actual computation. That is, we propose a
maliciously secure seven-party bit-composition protocol with one
corruption that achieves private robustness independent of a sta-
tistical parameter and is provably secure in the standard model for
the first time. Our scheme can improve the efficiency and secu-
rity of computation for complex functions represented as mixed
circuits.

We also propose a secure computation protocol for the
Hamming distance by modifying the proposed bit-composition
protocol. Our protocol for the Hamming distance can be useful
for secure iris recognition applications.

Furthermore, we extend our protocol with a constant number
of parties and clients to one with an arbitrary number of parties
and clients. In our extended protocol, the parameters (i.e., the
number of parties and clients) are flexible so that it fits in many
situations.

Table 1 shows a comparison of the communication cost be-
tween the proposed scheme and the existing maliciously secure
bit-composition protocols. This table shows that only our scheme
achieves private robustness composed of deterministic cheating
detection and cheater identification in the standard model. Fur-
thermore, it shows that the number of communication rounds of
our scheme is the lowest compared with other previous schemes.

1.3 Related Work
1.3.1 Typical Method for Reducing Communication Cost

In MPC protocols, it is important to reduce the communi-
cation cost. For example, introducing entities that help with
part of the computation [3] is known as a typical methodol-
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Table 1 Comparison between existing maliciously secure bit-composition protocols with one corruption
and proposed protocol (Rounds: number of communication rounds, Comm.: (amortized) com-
munication bits per all parties, k: bit length of modulus, N: number of parties, H: number of
clients, t: number of malicious corruptions in protocol, tp: number of malicious corruptions in
parties, tc: number of malicious corruptions in clients, Std.: standard model, ROM: random
oracle model).

Scheme Threshold Property
Deterministic

cheating detection
Deterministic

cheater identification
Model

Offline phase Online phase
Rounds Comm. Rounds Comm.

ABY3 [17] + [2] (t,N) = (1, 3) abort (probabilistic) (not achievable) Std. 3 12k log2 k + 12k 1 + log2 k 9k log2 k + 9k
BLAZE [21] (t,N) = (1, 3) fairness (probabilistic) (not achievable) Std. 5 9k2 1 4k2

Trident [11] (t,N) = (1, 4) fairness � (not achievable) Std. 2 3k2 + k 1 3k

FLASH [5] (t,N) = (1, 4)
private

robustness
� � ROM 2 4k2 3 10k2

SWIFT [16] (t,N) = (1, 4)
traditional
robustness

� (not achievable) Std. 2 3k2 + 4k 1 3k2

Fantastic Four [12] (t,N) = (1, 4)
private

robustness
� (probabilistic) Std. 2 18k2 1 8k

This Work
(Protocol 4)

(t,N,H) = (1, 4, 3)
private

robustness
� � Std. 1 24k2 + 24k 1 8k

This Work
(Protocol 5)

(tp,N,H) = (1, 4, 1)
private

robustness
� � Std. 1 12k2 + 12k 1 8k

This Work
(Protocol 7)

tp(2tp + 1) < N,
2tc + 1 < H

private
robustness

� � Std. 1 (tc + 1)(2tp + 1)k2

+(tc + 1)(2tp + 1)k
1 N(N − (2tp + 1))(tp + 1)k

ogy for reducing the communication cost. The offline-online
paradigm [5], [10], [11], [21] is another method. The offline-
online paradigm divides the MPC protocol into an offline phase
and online phase. In the offline phase, the protocol processes part
of the computation that can be done independently of the par-
ties’ inputs. In the online phase, the protocol processes the rest
of the computation with the parties’ inputs. The offline-online
paradigm can reduce the communication cost of the online phase
even if it increases the communication cost of the offline phase
and the whole computation. The offline-online paradigm is suited
to MPC applications that focus on the response time of queries.
However, to the best of our knowledge, simultaneously realiz-
ing private robustness and the communication cost reduction of
the bit-composition protocol by these methodologies has not been
proposed.
1.3.2 Bit-composition Protocol

There are two main ways to realize the existing bit-composition
protocol: using an adder circuit and executing a bit conversion
protocol in parallel. The former approach is used in Ref. [17]. It
can change the communication complexity according to the adder
circuit used in the protocol. It can reduce the total communica-
tion volume, but it is not a constant-round protocol. Therefore, it
is not suited to a network with low latency.

The latter one is used in Refs. [1], [5], [11], [12], [21]. It is
a constant-round protocol. Hence, it is suited to a network with
low latency. In particular, this approach is compatible with the
offline-online paradigm. In Refs. [1], [11], [12], [16], the shares
of the random bit r j ∈ {0, 1} ( j = 0, . . . , k − 1) on Z2 and Z2k

(or Fq) are prepared in the offline phase. Then, in the online
phase, the communication complexity can be reduced to O(k) by
using the shares of the random bit generated in the offline phase,
even if the bit conversion protocol is executed in parallel. Among
the existing works, only the bit conversion protocol in Ref. [5]
achieves private robustness independent of a statistical parame-
ter (in ROM). Therefore, to the best of our knowledge, there is
no bit-composition protocol that simultaneously achieves private
robustness independent of a statistical parameter in the standard
model and O(k) communication complexity in the online phase.
1.3.3 MPC with GOD

Most of the existing protocols have used a broadcast channel
or an expensive asymmetric-key primitive [6], [7], [15]. In re-

cent years, secure four-party protocols achieving GOD without
the broadcast channel or the expensive asymmetric-key primitive
are proposed [5], [12], [16]. Byali et al. proposed a secure four-
party protocol with GOD (private robustness independent of a sta-
tistical parameter) that does not use the broadcast channel or an
expensive asymmetric-key primitive in Ref. [5]. However, it uses
a commitment scheme of which the security is proved in ROM.
Therefore, the security of the whole protocol is also proved in
ROM. To the best of our knowledge, there has been no proposed
general MPC protocol that achieves private robustness indepen-
dent of a statistical parameter in the standard model without a
broadcast channel or an expensive asymmetric-key primitive nor
even a specific protocol that achieves it.

2. Preliminaries

2.1 Notations
Let Z2 and Z2k be residue rings modulo 2 and 2k, respec-

tively. We set the notation of share vectors and inner-products
such that �x = (x0, . . . , xk−1), �y = (y0, . . . , yk−1), and �x · �y =
∑k−1

j=0 x j · y j mod 2k, where x j, y j ∈ Z2k ( j = 0, . . . , k − 1). We
denote the XOR operator and AND operator as ⊕ and ·, respec-
tively. Note that we also use · as the multiplication operator on
Z2k . Let Pi be the i-th party (i = 0, 1, 2, 3). Pi has a collision-
resistant hash function. We let Hi′ (i′ = 0, 1, 2) be the clients
who are the helper entities. The security parameter is denoted as
κ. The κ-bit string is {0, 1}κ. We use the (cryptographically se-
cure) pseudo-random functions F : {0, 1}κ × {0, 1}κ → Z2, F′ :
{0, 1}κ × {0, 1}κ → Z2k . Hi′ has seed ∈ {0, 1}κ. We use the unique
identifier, vid j, vid(σ)

j , vid(σ1)
j , vid(μ1)

j , vid(1)
j , . . . , vid(N−1)

j ∈ {0, 1}κ.
These are unique identifiers and function as nonces. They are
public identifiers (e.g., counter values). That is, any clients (and
parties) can know these values.

We also use collision-resistant hash function H in the same
way as Byali et al. [5] for checking the message consistency (not
the commitment scheme). Note that the cryptographic hash func-
tion is required to have the following three properties:
( 1 ) Preimage resistance: It is (computationally) hard to com-

pute the value x fromH(x).
( 2 ) Collision resistance: It is (computationally) hard to find the

pair (x, y) such thatH(x) = H(y) and x � y.
( 3 ) Second preimage resistance: Given the value y, it is (com-
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putationally) hard to compute the value x such that H(x) =
H(y) and x � y. Note thatH has the second preimage resis-
tance ifH has the collision resistance.

We use the collision-resistant hash function H . (Actually, to
prove that our protocols achieve private robustness, it is sufficient
forH to have the second preimage resistance.)

2.2 2-out-of-4 Replicated Secret Sharing Scheme ((2,4)-
RSS)

We use the (2,4)-RSS (also known as mirrored sharing) in
Ref. [5]. We denote the (2,4)-RSS’s shares of x on Z2k as [x].
Each Pi has share [x]i as follows, where σx, σ

1
x, σ

2
x ∈ Z2k , and

μx, μ
1
x, μ

2
x ∈ Z2k such that μx = x + σx mod 2k, σx = σ

1
x +

σ2
x mod 2k, and μx = μ

1
x + μ

2
x mod 2k:

• P0’s share: [x]0 = (σ1
x, μ

1
x, μ

2
x)

• P1’s share: [x]1 = (σ1
x, σ

2
x, μ

1
x)

• P2’s share: [x]2 = (σ2
x, μ

1
x, μ

2
x)

• P3’s share: [x]3 = (σ1
x, σ

2
x, μ

2
x)

We denote the (2,4)-RSS’s shares of x on Z2 as [x]B. We note that
P0, P1, P2 and P3 correspond to E1, V1, E2 and V2 in Ref. [5],
respectively.

2.3 (N − 2tp)-out-of-N Replicated Secret Sharing Scheme
((N − 2tp, N)-RSS)

Protocol 1 x← πmboOneParty([[x]]B, �)

Input: [[x]]B (where x, x j ∈ Z2 and x = x0 ⊕ · · · ⊕ xN−1 mod 2)
Output: P� obtains x.

1: for j = 0, . . . , � − 1, � + 2tp + 1, . . . ,N − 1 do in parallel
2: Each Pi sends x j as mj,i to P� for i = j−(2tp+1), . . . , j− tp.
// 1 round and tp + 1 bits

3: Each Pi sends the hashed value of x j, h j,i = H(x j) =
H(mj,i) for i = j − tp, . . . , j. // 1 round & tp|hi, j| bits

4: P� computes the hashed value of mj,i, h j,i for i = j− (2tp +

1), . . . , j − tp. Then, P� chooses mj ∈ {mj,i} j−tp
i= j−(2tp+1) as the

correct value x j if tp + 1 or more of the hashed values in
{h j,i}N−1

i=0 match the hashed value of mj,H(mj).
5: end for
6: P� computes x = x0 ⊕ · · · ⊕ xN−1 mod 2 by using [[x]]B

� and
the chosen values as correct values in the previous steps.

Protocol 2 x← πmbo([[x]]B)

Input: [[x]]B (where x, xi ∈ Z2 and x = x0 ⊕ · · · ⊕ xN−1 mod 2)
Output: All parties obtain x.

1: for i = 0, . . . ,N − 1 do in parallel
2: All parties run πmboOneParty([[x]]B, i) and Pi gets x. // 1
round & N(N − (2tp + 1))(tp + 1) bits

3: end for

Let N and tp be the number of parties and the corruptions in the
parties. We use the (N − 2tp,N)-RSS where tp(2tp + 1) < N

(i.e., at most O(
√

N) corruptions similar to the secure N-party
computation protocol proposed by Byali et al. [6] or Chandran
et al. [9]). We denote the (N − 2tp,N)-RSS’s shares of x on
Z2k as [[x]]. Each Pi has share [[x]]i = (xi, . . . , xi+2tp ) where
x = x0+ · · ·+ xN−1 mod 2k. That is, each Pi has (2tp+1) of these

x j ( j = 0, . . . ,N − 1), ranging from xi to xi+2tp as shares. In other
words, each x j ( j = 0, . . . ,N−1) is possessed by (2tp+1) parties.
Therefore, if tp(2tp + 1) < N holds, then the secret value cannot
be reconstructed from shares of (N − 2tp,N)-RSS even if tp cor-
ruptions occur. We also denote the (N − 2tp,N)-RSS’s shares of
x on Z2 as [[x]]B as in Protocols 1 (multiparty binary shares open-
ing (mbo) protocol for one party, πmboOneParty) and 2 (multiparty
binary shares opening protocol, πmbo).

Each party Pi (for i = 0, . . . ,N − 1) performs the share addi-
tion, [[x + y]] = [[x]] + [[y]] by setting [[x + y]]i = (xi + yi mod
2k, . . . , xi+2tp + yi+2tp mod 2k). If parties perform the scalar addi-
tion, [[c + x]] = c + [[x]], where x, xi ∈ Z2k , x =

∑N−1
i=0 xi mod 2k,

and c ∈ Z2k is public, the parties who obtain x0 replace x0 (in
their shares) with x′0 = x0 + c mod 2k. Each party performs
the scalar multiplication, [[c · x]] = c · [[x]], where c ∈ Z2k , by
setting [[c · x]]i = (c · xi mod 2k, . . . , c · xi+2tp mod 2k). There-
fore, the linearity of shares of (N − 2tp,N)-RSS on Z2k holds, i.e.,
[[c0 · x + c1 · y]] = c0 · [[x]] + c1 · [[y]], where c0, c1 ∈ Z2k . The
linearity of shares of (N − 2tp,N)-RSS on Z2 holds in the same
way as (N − 2tp,N)-RSS on Z2k .

We explain how to reconstruct the secret value from shares
of (N − 2tp,N)-RSS. We describe the opening protocol of
(N − 2tp,N)-RSS on Z2, Protocol 2, because we use it only on
Z2 (not Z2k ) in our protocol. Protocol 2 is the opening protocol
on Z2 for all parties. It is realized by running the opening proto-
col on Z2 for one party (Protocol 1) in parallel. Protocols 1 and 2
achieve private robustness independent of a statistical parameter
because of the majority voting in Line 4 of Protocol 1 *1.

Protocol 1 requires 1 round and (N−(2tp+1))(tp+1+tp|hi, j|) bits
as communication bits. Note that we can ignore the communica-
tion cost of Step 3 of Protocol 1 when running multiple instances.
Hence, Protocol 1 requires 1 round and (N − (2tp + 1))(tp + 1) bits
as amortized communication bits. Therefore, Protocol 2 requires
1 round and N(N − (2tp + 1))(tp + 1) bits as amortized communi-
cation bits.

Note that we do not use the sharing protocol of (N − 2tp,N)-
RSS in our protocol. Hence, we describe it in Appendix A.1 for
completeness.

2.4 Secure Four-party Computation with One Corruption
We use the same addition of shares as Ref. [5]. We denote the

addition of shares as [x] + [y]. We also use the same scalar addi-
tion and scalar multiplication of shares as Ref. [5]. We denote the
scalar addition and scalar multiplication of shares as c + [x] and
c · [x], where c ∈ Z2k . We denote the operations on Z2 in the same
way as on Z2k . Note that we use the same notation for operations
of scalars and those of the shares to keep the description simple.

We also use the same four-party binary shares opening (bo)
protocol (i.e., output computation protocol) as Ref. [5]. The bo

protocol of Ref. [5] (not the bit conversion protocol of Ref. [5])
achieves private robustness independent of a statistical parameter
in the standard model because it uses the collision-resistant hash

*1 At Line 4 in Protocol 1, the security is not compromised even if Pi

(i = j − tp, . . . , j) sends the raw value, i.e., mj,i. The reason why Pi

(i = j − tp, . . . , j) sends the hashed value, H(mj,i), is just to reduce the
cost of communication volume.
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function only for reducing the communication cost but does not
use the commitment scheme based on the collision-resistant hash
function. We denote the bo protocol on Z2 as πbo. πbo takes a
share [x]B as input and outputs x ∈ Z2. We denote x ← πbo([x]B)
when it is called. Protocol πbo needs one round and 8 bits as the
(amortized) communication cost, respectively.

2.5 Definition of Security
Let viewπi (�x) be the view of Pi while running protocol π on in-

puts �x. It consists of its inputs �x, all the messages received by Pi,
and an internal random coin. Let outputπ(�x) be the outputs of all
parties while running protocol π on inputs �x.
Definition 1 (Perfect Security in the Presence of One Mali-
cious Corrupted Party). Let f : ({0, 1}∗)7 → ({0, 1}∗)7 be

a deterministic 7-ary functionality and let π be a protocol. We

say that π computes f with perfect security in the presence of

one malicious corrupted party for f if there exists probabilistic

polynomial-time algorithm S such that for every corrupted party

i ∈ {0, 1, 2, 3, 4, 5, 6}, and every �x ∈ ({0, 1}∗)7 where |x0| = |x1| =
|x2| = |x3| = |x4| = |x5| = |x6|:
{(S(xi, fi(�x)), f (�x))} ≡ {(viewπi (�x), outputπ(�x))} (1)

We note that Definition 1 is modified from the security defini-
tion of Ref. [13] to adapt the proposed seven-party (i.e., four par-
ties P0, P1, P2 and P3 and three helper H0(= P4), H1(= P5) and
H2(= P6)) bit-composition protocol with private robustness inde-
pendent of a statistical parameter. If the above Eq. (1) holds with
computational indistinguishability, then we say that π computes
f with computational security in the presence of one malicious
corrupted party.

We use the hybrid model [8] to prove the security of the pro-
posed scheme. Let g be the subfunctionality. We say that protocol
π is secure in the g-hybrid model. We denote protocol π secure in
the g-hybrid model as πg.

3. Proposal

We propose the new client-aided bit composition protocol with
private robustness independent of statistical parameter in Sec-
tion 3.1. The bit-composition protocol is useful as a subproto-
col, but not a useful application. Hence, by modifying our bit-
composition protocol, we also propose a new client-aided secure
Hamming distance calculation protocol with private robustness
independent of statistical parameter as a useful application in Sec-
tion 3.2. It is useful for the secure iris recognition as a biometric
authentication service.

For more details, in Section 3.1, we propose a three bit-
composition protocols. In Section 3.1.1, we propose a four-party
and three-clients construction with one malicious corruption. We
prove that it is secure in Section 3.1.2. We also propose a four-
party and one-client construction with one malicious corruption
by modifying the four-party and three-clients construction to re-
duce the number of clients (in Section 3.1.3). In order to al-
low flexibility in the number of parties and clients, we propose
a multi-party and multi-client construction with malicious cor-
rupted parties and clients (in Section 3.1.4).

In Section 3.2, we propose the secure Hamming distance cal-

culation protocol (in Section 3.2.1). We explain how to use our
protocol in the secure iris recognition in Section 3.2.2. Then, we
modify and extend our secure Hamming distance calculation pro-
tocol to reduce the number of clients and allow flexibility in the
number of parties and clients in Section 3.2.3.

3.1 Client-aided Bit-composition Protocol with Private Ro-
bustness Independent of Statistical Parameter

Protocol 3 {[r j]B, [r j]}n−1
j=0 ← πrRndGen(F, F′,H , seed, {vid j,

vid(σ)
j , vid(σ1)

j , vid(μ1)
j }n−1

j=0 )

Input: pseudo-random function F : {0, 1}κ × {0, 1}κ → Z2

and F′ : {0, 1}κ × {0, 1}κ → Z2k , collision-resistant hash
function H , shared seed by clients seed, unique identi-
fiers {vid j, vid(σ)

j , vid(σ1)
j , vid(μ1)

j }n−1
j=0 where seed, vid j, vid(σ)

j ,

vid(σ1)
j , vid(μ1)

j ∈ {0, 1}κ (n is a positive integer)
Output: {[r j]B, [r j]}n−1

j=0 s.t. r j ∈ Z2

1: for j = 0, . . . , n − 1 do
2: Each Hi′ (i

′
= 0, 1, 2) computes r j = F(seed, vid j).

3: Each Hi′ computes σr j = F(seed, vid(σ)
j ), σ1

r j
= F(seed,

vid(σ1)
j ), σ2

r j
= σr j ⊕ σ1

r j
mod 2.

4: Each Hi′ computes μr j = r j ⊕ σr j mod 2, μ1
r j
= F(seed,

vid(μ1)
j ), μ2

r j
= μr j ⊕ μ1

r j
mod 2.

5: Each Hi′ computes σ′r j = F′(seed, vid(σ)
j ), σ′1r j

=

F′(seed, vid(σ1)
j ), σ′2r j

= σ′r j − σ′1r j
mod 2k.

6: Each Hi′ computes μ′r j
= r j + σ

′
r j mod 2k, μ′1r j

=

F′(seed, vid(μ1)
j ), μ′2r j

= μ′r j
− μ′1r j

mod 2k.
7: Each Hi′ sets [r j]B

0 = (σ1
r j
, μ1

r j
, μ2

r j
), [r j]B

1 = (σ1
r j
, σ2

r j
,

μ1
r j

), [r j]B
2 = (σ2

r j
, μ1

r j
, μ1

r j
), [r j]B

3 = (σ1
r j
, σ2

r j
, μ2

r j
).

8: Each Hi′ sets [r j]0 = (σ′1r j
, μ′1r j

, μ′2r j
), [r j]1 = (σ′1r j

, σ′2r j
,

μ′1r j
), [r j]2 = (σ′2r j

, μ′1r j
, μ′1r j

), [r j]3 = (σ′1r j
, σ′2r j

, μ′2r j
).

9: end for
10: H0 and H1 send the set of shares {[r j]B

i , [r j]i}n−1
j=0 to each

Pi (i = 0, 1, 2, 3). H2 computes the hashed value of
{[r j]B

i , [r j]i}n−1
j=0 ,H(R2,i), and send it to each Pi. // 1 round

& 24nk + 24n bits

11: Let each R0,i and R1,i be the set of shares {[r j]B
i , [r j]i}n−1

j=0 that
is sent to Pi from H0 and H1, respectively. Each Pi com-
putes the hashed value of R0,i and R1,i, H(R0,i) and H(R1,i).
If H(R0,i) = H(R1,i) or H(R0,i) = H(R2,i), each Pi outputs
R0,i. IfH(R1,i) = H(R2,i), each Pi outputs R1,i.

Protocol 4 [x]← πFrRndGen

rBitComp({[x j]B}k−1
j=0)

Input: {[x j]B}k−1
j=0 (where x j ∈ Z2)

Output: [x] s.t. x =
∑k−1

j=0 2 j · x j mod 2k

1: (Offline phase)
2: P0, P1, P2, P3, H0, H1 and H2 invokeFrRndGen where n = k,

then get {[r j]B, [r j]}k−1
j=0. // πrRndGen requires 1 round

& 24k2 + 24k bits

3: (Online phase)
4: Each Pi (i = 0, 1, 2, 3) computes [c j]B

i = [x j ⊕ r j]B
i =

[x j]B
i ⊕ [r j]B

i for j = 0, . . . , k − 1.
5: Each Pi gets the value c j ← πbo([c j]B) for j = 0, . . . , k − 1 in

parallel. // 1 round & 8k bits
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FUNCTIONALITY 1 (FrRndGen - generating two types of random
shares).
( 1 ) FrRndGen receives message (gen, n) from clients H0, H1 and H2.
( 2 ) FrRndGen generates {[r j]B, [r j]}n−1

j=0 randomly where r j ∈ {0, 1}.
( 3 ) FrRndGen sends {[r j]B, [r j]}n−1

j=0 to parties P0, P1, P2, and P3.

FUNCTIONALITY 2 (FrBitComp - converting binary share vector on
Z2 to a share on Z2k ).
( 1 ) FrBitComp receives shares {[x j]B}k−1

j=0 from parties P0, P1, P2 and
P3.

( 2 ) FrBitComp reconstructs x j and computes x =
∑k−1

j=0 2 j · x j mod 2k .
Then, FrBitComp computes [x] and sends it to parties P0, P1, P2,
and P3.

6: [x] =
∑k−1

j=0 2 j · (c j + [r j] − 2 · c j · [r j]) mod 2k.

3.1.1 Four-party and Three-clients Construction with One
Malicious Corruption

Our scheme is divided into three steps. In the first step (at Lines
1 and 2 in Protocol 4), three clients generate the shares of random
bits r j ∈ Z2 ( j = 0, . . . , k−1) on Z2 and Z2k , i.e., {[r j]B, [r j]}k−1

j=0 by
running ideal functionality FrRndGen (where n = k). In the actual
protocol, ideal functionality FrRndGen is replaced with protocol
πrRndGen in Protocol 3. In πrRndGen, three clients generate random
values by using the same seed, the unique identifiers {vid j, vid(σ)

j ,

vid(σ1)
j , vid(μ1)

j }n−1
j=0 , and pseudo-random functions F and F′ (from

Line 1 to 6 in Protocol 3). Then, they set the random values as
shares {[r j]B, [r j]}k−1

j=0 (from Line 7 to 8 in Protocol 3) and send
{[r j]B

i , [r j]i}k−1
j=0 or the hashed value of them to Pi (i = 0, 1, 2, 3)

(at Line 10 in Protocol 3) *2. Each Pi selects the set of shares that
matches two or more matching sets of shares sent from H0, H1,
and H2 as correct outputs (at Line 11 in Protocol 3). Each Pi can
always get correct random shares {[r j]B

i , [r j]i}k−1
j=0 because there

can be at most one corrupted client.
In the second step (at Lines 4 and 5 in Protocol 4), each

Pi (i = 0, 1, 2, 3) computes [c j]B
i = [x j ⊕ r j]B

i = [x j]B
i ⊕ [r j]B

i

for j = 0, . . . , k − 1 and gets the masked values c j by running the
four-party binary shares opening protocol πbo, which is proposed
in Ref. [5].

In the third step (at Line 6 in Protocol 4), the parties remove
mask r j from c j by computing [x j] = [c j ⊕ r j] = (c j − [r j])2 =

c j + [r j] − 2 · c j · [r j] mod 2k. We note that (c j)2 = c j and
(r j)2 = r j where c j, r j ∈ {0, 1}. Then, the parties output
[x] =

∑k−1
j=0 2 j · (c j + [r j] − 2 · c j · [r j]).

3.1.2 Security Proof Sketch of Protocol 4
The bit-composition protocol πFrRndGen

rBitComp in Protocol 4 computes
FrBitComp with computational security in the presence of one ma-
licious corrupted party because πFrRndGen

rBitComp consists of FrRndGen, πbo

and local computations. The security of πbo with private robust-
ness independent of a statistical parameter in the standard model
is proved in Ref. [5] because it uses majority voting and does not
use a commitment protocol. Therefore, if we prove that πrRndGen

computes FrRndGen with computational security in the presence of
one malicious corrupted party, we can also prove the security of
πFrRndGen

rBitComp with private robustness independent of a statistical pa-

*2 At Line 10 in Protocol 3, the security is not compromised even if H2

sends the raw value, i.e., R2. The reason why H2 sends the hashed value,
H(R2), is just to reduce the cost of communication volume.

rameter in the standard model.
We prove that protocol πrRndGen in Protocol 3 computes

FrRndGen with computational security in the presence of one ma-
licious corrupted party. We assume that at most one of Hi′ (i

′
=

0, 1, 2) is corrupted by a malicious adversary. In this case, Hi′

does not learn any information about secret inputs. Therefore,
privacy is achieved. The correctness is also achieved with private
robustness independent of a statistical parameter by majority vot-
ing (i.e., a selection of two or more matching the set of shares
which is received) because there is at most one corrupted party.
More specifically, either R0,i (that is sent to Pi from H0) or R1,i

(that is sent to Pi from H1) is always the correct value because
there is at most one corrupted client of Hi′ (i

′
= 0, 1, 2). Then, at

Line 11 in Protocol 3, each Pi can choose either R0,i or R1,i as the
correct value by knowingH(R2,i) (that is sent to Pi from H2) and
comparing H(R0,i), H(R1,i) and H(R2,i). Hence, the simulator
S (i.e., the polynomial-time algorithm S in Definition 1) can be
composed.

In another case, we assume that at most one of Pi (i = 0, 1, 2, 3)
is corrupted by a malicious adversary. S can generate random
bits r′ j ∈ Z2 ( j = 0, . . . , k − 1). If the outputs of F and F′

are indistinguishable from the random values with computational
security, S can also generate random values σr′ j , σ

1
r′ j
, μ1

r′ j
∈ Z2

and σ′r′ j , σ
′1
r′ j
, μ′1r′ j

∈ Z2k , then set σ2
r′ j
= σr′ j ⊕ σ1

r′ j
mod 2,

μr′ j = r′ j ⊕ σ′r′ j mod 2, μ2
r′ j
= μr′ j ⊕ μ2

r′ j
mod 2, σ′2r′ j

=

σ′r′ j − σ′1r′ j
mod 2k, μ′r′ j

= r′ j + σ
′
r′ j mod 2k, and μ2

r′ j
=

μr′ j −μ2
r′ j

mod 2k. Then, S can set {[r′ j]B, [r′ j]}k−1
j=0 by using these

random values in the same way as at Lines 7 and 8 in Protocol 3.
Therefore, privacy is achieved. Correctness with private robust-
ness independent of a statistical parameter in the standard model
is also achieved because each Pi (i = 0, 1, 2, 3) sends no messages
and cannot cheat. Hence, S can be composed.

To prove that πrRndGen is secure with private robustness inde-
pendent of a statistical parameter in the standard model, we prove
that the corrupted party or client cannot break private robust-
ness independent of a statistical parameter if H has the second
preimage resistance. In πrRndGen, only the corrupted client can
break private robustness because the parties send no messages in
πrRndGen. Let the corrupted client be Hc (c = 0, 1, 2). If Hc would
like to cheat and break private robustness, he/she needs to find
R′c,i such that Rc−1,i � R′c,i, Rc+1,i � R′c,i, H(Rc−1,i) = H(R′c,i),
andH(Rc+1,i) = H(R′c,i) because breaking private robustness re-
quires that the majority voting does not work. However, if Hc

(knowing Rc−1,i and Rc+1,i) finds such R′c,i, Hc breaks the sec-
ond preimage resistance of H . Hence, πrRndGen is secure with
private robustness independent of a statistical parameter in the
standard model if H has the second preimage resistance. We
note that we can prove that πbo is secure with the private robust-
ness independent of a statistical parameter in the standard model
if H has the second preimage resistance similarly. On the other
hand, we emphasize that FLASH [5] needs the collision-resistant
hash function that has not only the second preimage resistance
but also the preimage resistance and collision resistance because
the collision-resistant hash function in FLASH [5] is used as the
commitment scheme that achieves the hiding and binding proper-
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ties. To use a hash function as a commitment scheme, the security
of FLASH needs to be proven in the ROM.

Therefore, πrRndGen satisfies Definition 1 and computes
FrRndGen with computational security in the presence of one ma-
licious corrupted party. We can prove the whole security of
πFrRndGen

rBitComp with private robustness independent of a statistical pa-
rameter in the standard model.
3.1.3 Four-party and One-client Construction with One

Malicious Corrupted Party

Protocol 5 [x]← πrBitComp5({[x j]B}k−1
j=0)

Input: {[x j]B}k−1
j=0 (where x j ∈ Z2)

Output: [x] s.t. x =
∑k−1

j=0 2 j · x j mod 2k

1: (Offline phase)
2: H0 generates {[r j]B, [r j]}k−1

j=0 randomly and distributes it to the
parties. // 1 round & 12k2 + 12k bits

3: (Online phase)
4: Each Pi (i = 0, 1, 2, 3) computes [c j]B

i = [x j ⊕ r j]B
i =

[x j]B
i ⊕ [r j]B

i for j = 0, . . . , k − 1.
5: Each Pi gets the value c j ← πbo([c j]B) for j = 0, . . . , k − 1 in

parallel. // 1 round & 8k bits

6: [x] =
∑k−1

j=0 2 j · (c j + [r j] − 2 · c j · [r j]) mod 2k.

As a natural modification of Protocol 4, we note that H1 and H2

are not required if it is certain that H0 is a semi-honest client. One
client is more natural in the setting than three clients. However,
we stress that this modified protocol places a stronger assumption
on the clients than Protocol 4 does.

The modified protocol is Protocol 5. It requires 1 round and
12k2 + 12k bits in the offline phase and 1 round and 8k bits in the
online phase as the (amortized) communication cost. Hence, the
(amortized) communication cost of Protocol 5 is lower than that
of Protocol 4.
3.1.4 N-party and H-client Construction with Malicious

Corrupted Parties and Clients

Protocol 6 {[[r j]]B, [[r j]]}n−1
j=0 ← πrMultiRndGen(F, F′,H , seed,

{vid j, vid(1)
j , . . . , vid(N−1)

j }n−1
j=0 )

Input: pseudo-random function F : {0, 1}κ × {0, 1}κ → Z2 and
F′ : {0, 1}κ × {0, 1}κ → Z2k , collision-resistant hash func-
tionH , shared seed by clients seed, unique identifiers {vid j,

vid(1)
j , . . . , vid(N−1)

j }n−1
j=0 s.t. seed, vid j, vid(1)

j , . . . , vid(N−1)
j ∈

{0, 1}κ (n is a positive integer)
Output: {[[r j]]B, [[r j]]}n−1

j=0 s.t. r j ∈ Z2

1: for j = 0, . . . , n − 1 do
2: Each Hi′ (i

′
= 0, . . . ,H − 1) computes r j = F(seed, vid j).

3: Each Hi′ computes r j,1 = F(seed, vid(1)
j ), . . . r j,N−1 =

F(seed, vid(N−1)
j ).

4: Each Hi′ sets r j,0 = r j ⊕ r j,1 ⊕ · · · ⊕ r j,N−1 mod 2.
5: Each Hi′ computes r′ j,1 = F′(seed, vid(1)

j ), . . . r′ j,N−1 =

F′(seed, vid(N−1)
j ).

6: Each Hi′ sets r′ j,0 = r j −∑N−1
�=1 r′ j,� mod 2k.

7: Each Hi′ sets [[r j]]B
i = (r j,i, . . . , r j,i+2tp ) for i = 0, . . . ,N − 1.

8: Each Hi′ sets [[r j]]i = (r′ j,i, . . . , r′ j,i+2tp ) for i = 0, . . . ,N−1.
9: end for

FUNCTIONALITY 3 (FrMultiRndGen - generating two types of random
shares of (tp + 1,N)-RSS).
( 1 ) FrMultiRndGen receives message (gen, n) from clients Hi′ for

i
′
= 0, . . . ,H − 1.

( 2 ) FrMultiRndGen generates {[[r j]]B, [[r j]]}n−1
j=0 randomly, where r j ∈

{0, 1}.
( 3 ) FrMultiRndGen sends {[[r j]]B, [[r j]]}n−1

j=0 to parties Pi for i =
0, . . . ,N − 1.

FUNCTIONALITY 4 (FrMultiBitComp - converting the binary share vec-
tor of (tp + 1,N)-RSS on Z2 to the share of (tp + 1,N)-RSS on Z2k ).
( 1 ) FrMultiBitComp receives shares {[[x j]]B}k−1

j=0 from parties Pi for i =
0, . . . ,N − 1.

( 2 ) FrMultiBitComp reconstructs x j and computes x =
∑k−1

j=0 2 j · x j mod
2k . Then, FrMultiBitComp computes [[x]] and sends it to parties Pi

for i = 0, . . . ,N − 1.

10: H0 . . . ,Htc send the set of shares {[[r j]]B
i , [[r j]]i}n−1

j=0 to each
Pi (i = 0, . . . ,N − 1). Hi′′′ (i

′′′
= tc + 1, . . . , 2tc) computes the

hashed values of {[[r j]]B
i , [[r j]]i}n−1

j=0 , hi′′′ ,i (i
′′′
= tc+1, . . . , 2tc),

and send it to each Pi. // 1 round & (tc + 1)(2tp + 1)nk +

(tc + 1)(2tp + 1)n bits
11: Let each Ri′′ ,i (i

′′
= 0, . . . , tc) be the set of shares

{[[r j]]B
i , [[r j]]i}n−1

j=0 that is sent to Pi from Hi′′ . Each Pi com-
putes the hashed value of Ri′′ ,i, hi′′ ,i.

12: Each Pi outputs Ri ∈ {Ri′′ ,i}tci′′=0
as the correct shares

{[[r j]]B
i , [[r j]]i}n−1

j=0 if tc + 1 or more of the hashed values in
{hi′ ,i}H−1

i′=0
match the hashed value of Ri′ ,i (i

′
= 0, . . . ,H − 1).

Protocol 7 [[x]]← πFrMultiRndGen

rMultiBitComp({[[x j]]B}k−1
j=0)

Input: {[[x j]]B}k−1
j=0 (where x j ∈ Z2)

Output: [[x]] s.t. x =
∑k−1

j=0 2 j · x j mod 2k

1: (Offline phase)
2: All the parties and clients invoke FrMultiRndGen where n =

k, then get {[[r j]]B, [[r j]]}k−1
j=0. // πrMultiRndGen requires 1

round & (tc + 1)(2tp + 1)k2 + (tc + 1)(2tp + 1)k bits
3: (Online phase)
4: Each Pi (i = 0, . . . ,N − 1) computes [[c j]]B

i = [[x j ⊕ r j]]B
i =

[[x j]]B
i ⊕ [[r j]]B

i for j = 0, . . . , k − 1.
5: Each Pi (i = 0, . . . ,N − 1) gets the value c j ← πmbo([[c j]]B)

for j = 0, . . . , k− 1 in parallel. // 1 round & N(N − (2tp +

1))(tp + 1)k bits
6: [[x]] =

∑k−1
j=0 2 j · (c j + [[r j]] − 2 · c j · [[r j]]) mod 2k.

Let H and tc be the number of clients and the corruption in
the clients. As a modification of Protocol 4, we propose a modi-
fied construction with an arbitrary number of parties and clients,
Protocol 7, where tp(2tp + 1) < N and 2tc + 1 < H. We as-
sume that all clients have seed. We also assume that all clients
do not collude with a party as well as the existing client-aided
protocols [18], [19], [20].

Since there are no restrictions on the number of parties and
clients, Protocol 7 is available for a wider range of situations than
Protocol 4.

The computation strategy of Protocol 7 is almost the same as
Protocol 4 except that it relies on (N − 2tp,N)-RSS, not (2, 4)-
RSS. The proof strategy is also the same as Section 4. Therefore,
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Protocol 7 computes FrMultiBitComp with computational security if
no client colludes with parties and it holds that tp(2tp + 1) < N

and 2tc + 1 < H.

3.2 Client-aided Secure Hamming Distance Calculation
Protocol with Private Robustness Independent of Statis-
tical Parameter

3.2.1 Protocol

Protocol 8 [
∑m−1

j=0 (x j ⊕ y j)]← πFrRndGen

rHD ({[x j]B, [y j]B}m−1
j=0 )

Input: {[x j]B, [y j]B}m−1
j=0 (where x j, y j ∈ Z2 and m < 2k)

Output: [dist] s.t. dist =
∑m−1

j=0 (x j ⊕ y j) mod 2k

1: (Offline phase)
2: P0, P1, P2, P3, H0, H1 and H2 invoke FrRndGen where

n = m, then get {[r j]B, [r j]}m−1
j=0 . // πrRndGen requires 1

round & 24mk + 24m bits

3: (Online phase)
4: Each Pi computes [z j]B

i = [x j ⊕ y j]B
i = [x j]B

i ⊕ [y j]B
i for

j = 0, . . . ,m − 1.
5: Each Pi computes [c j]B

i = [z j ⊕ r j]B
i = [z j]B

i ⊕ [r j]B
i for

j = 0, . . . ,m − 1.
6: Each Pi gets value c j ← πbo([c j]B) for j = 0, . . . ,m − 1 in

parallel. // 1 round & 8m bits

7: [dist] =
∑m−1

j=0 (c j + [r j] − 2 · c j · [r j]) mod 2k.

FUNCTIONALITY 5 (FrHD - computing the share of the
Hamming distance between (x0, . . . , xm−1) and (y0, . . . , ym−1) from
{[x j]B, [y j]B}m−1

j=0 , where x j, y j ∈ {0, 1} and m < 2k).

( 1 ) FrHD receives shares {[x j]B, [y j]B}m−1
j=0 from parties P0, P1, P2,

and P3.
( 2 ) FrHD reconstructs x j, y j( j = 0, . . . ,m) and computes dist =

∑m−1
j=0 (x j ⊕ y j) mod 2k . Then, FrHD computes [dist] and sends

it to parties P0, P1, P2 and P3.

Our secure Hamming distance calculation protocol πFrRndGen

rHD in
Protocol 8 is based on πFrRndGen

rBitComp. In the offline phase, FrRndGen

(where n = m) is invoked in the same way as πFrRndGen

rBitComp (at
Line 2 in Protocol 8). In the online phase, each Pi computes
[z j]B

i = [x j ⊕ y j]B
i (at Line 4). Then, each Pi gets masked

value c j(∈ {0, 1}) = z j ⊕ r j ( j = 0, . . . ,m − 1) by using shares
{[r j]B}m−1

j=0 and πbo (at Lines 5 and 6 in Protocol 8). Finally, the
parties remove mask r j from c j by computing [x j] = [c j ⊕ r j] =
(c j − [r j])2 = c j + [r j] − 2 · c j · [r j] mod 2k. Then, the parties
output [dist] = [

∑m−1
j=0 z j] =

∑m−1
j=0 (c j + [r j]− 2 · c j · [r j]) (at Line 7

in Protocol 8). The security of our protocol is proved in the same
way as for πFrRndGen

rBitComp.
3.2.2 Application Setting

In biometric authentication services that use iris recognition, a
user has the biometric template, the binary vector {x j}m−1

j=0 . The
servicer has the registered template, the binary vector {y j}m−1

j=0 .
We assume that the authentication of the user is successful if
the Hamming distance

∑m−1
j=0 x j ⊕ y j is smaller than the decision

threshold value d, which the servicer has. Note that the user and
servicer do not want to reveal the vector to each other to ensure
privacy and prevent information leakage.

We assume that the (honest) user and the (honest) servicer
compute {[x j]B}m−1

j=0 and {[y j]B}m−1
j=0 and send them to the MPC

servers (P0, P1, P2 and P3) running Protocol 8, respectively.
Then, all the MPC servers send their share of the Hamming dis-
tance [dist] to the servicer. Then, the servicer reconstructs dist

and selects two or more matching values as the correct output.
Finally, the servicer checks whether dist is smaller than d and
sends the result of the authentication to the user. In this way, our
scheme can provide a secure authentication service that is robust
against DoS attacks in the standard model.
3.2.3 Modification and Extension of Protocol

Protocol 9 [
∑m−1

j=0 (x j ⊕ y j)]← πrHD5({[x j]B, [y j]B}m−1
j=0 )

Input: {[x j]B, [y j]B}m−1
j=0 (where x j, y j ∈ Z2 and m < 2k)

Output: [dist] s.t. dist =
∑m−1

j=0 (x j ⊕ y j) mod 2k

1: (Offline phase)
2: H0 generates {[r j]B, [r j]}m−1

j=0 randomly and distributes it to
the parties. // 1 round & 12mk + 12m bits

3: (Online phase)
4: Each Pi (i = 0, . . . , 3) computes [z j]B

i = [x j ⊕ y j]B
i =

[x j]B
i ⊕ [y j]B

i for j = 0, . . . ,m − 1.
5: Each Pi computes [c j]B

i = [z j ⊕ r j]B
i = [z j]B

i ⊕ [r j]B
i for

j = 0, . . . ,m − 1.
6: Each Pi gets value c j ← πbo([c j]B) for j = 0, . . . ,m − 1 in

parallel. // 1 round & 8m bits

7: [dist] =
∑m−1

j=0 (c j + [r j] − 2 · c j · [r j]) mod 2k.

Protocol 10 [[
∑m−1

j=0 (x j ⊕ y j)]]← πFrMultiRndGen

rMultiHD ({[[x j]]B, [[y j]]B}m−1
j=0 )

Input: {[[x j]]B, [[y j]]B}m−1
j=0 (where x j, y j ∈ Z2 and m < 2k)

Output: [[dist]] s.t. dist =
∑m−1

j=0 (x j ⊕ y j) mod 2k

1: (Offline phase)
2: All the parties and clients invoke FrMultiRndGen where n =

m, then get {[[r j]]B, [[r j]]}m−1
j=0 . // πrMultiRndGen requires 1

round & (tc + 1)(2tp + 1)mk + (tc + 1)(2tp + 1)m bits
3: (Online phase)
4: Parties compute [[z j]]B = [[x j ⊕ y j]]B = [[x j]]B ⊕ [[y j]]B for

j = 0, . . . ,m − 1.
5: Parties compute [[c j]]B = [[z j ⊕ r j]]B = [[z j]]B ⊕ [[r j]]B for

j = 0, . . . ,m − 1.
6: Each party gets value c j ← πmbo([[c j]]B) for j = 0, . . . ,m − 1

in parallel. // 1 round & N(N − (2tp + 1))(tp + 1)m bits
7: [[dist]] =

∑m−1
j=0 (c j + [r j] − 2 · c j · [[r j]]) mod 2k.

We can modify and extend Protocol 8 by using Protocols 5 and
7. Protocol 9 (i.e., the modified Hamming distance calculation
protocol based on Protocol 5) requires only one client. Hence,
the financial cost of the service with Protocol 9 is lower than
with Protocol 8. In Protocol 10 (i.e., the extended protocol based
on Protocol 7), there can be an arbitrary number of parties and
clients. Therefore, Protocol 10 is useful for improving the system
redundancy and high availability of services.

4. Conclusion

In this paper, we proposed the client-aided maliciously secure
bit-composition protocol with GOD (private robustness indepen-
dent of a statistical parameter) in the standard model. Our scheme
simultaneously improves the efficiency of computing complex
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functions and the security. We also proposed the secure Hamming
distance protocol with GOD (private robustness independent of a
statistical parameter) in the standard model by modifying our bit-
composition protocol. Our Hamming distance protocol can help
provide a secure iris recognition service that is robust against DoS
attacks.
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Appendix

A.1 Sharing Protocol of (N − 2tp, N)-RSS

Protocol 11 [[x]]← πshare(x, P�, vid, F)

Input: Input value x ∈ Z2, input dealer P�, unique identifier vid,
pseudo-random function F : {0, 1}κ × {0, 1}κ → Z2

Output: [[x]]
1: for i = 0, . . . ,N − 1 do in parallel
2: Each party Pi computes r j = F(seed j, vid) where r j ∈ Z2

for j = i, . . . , i + 2tp.
3: Each party Pi sets [[r]]B

i = (r j, . . . , r j+2tp ) where r = r0 ⊕
· · · ⊕ rN−1 mod 2 and j = i, . . . , i + 2tp.

4: end for
5: An input dealer P� generates random values x j ∈ Z2 for

j = 1, . . . ,N − 1.
6: P� sets x0 = x ⊕ x1 ⊕ · · · ⊕ xN−1 mod 2.
7: for i = 0, . . . ,N − 1 do in parallel
8: P� sends [[x]]B

i = (xi, . . . , xi+2tp ) to Pi // 1 round &
(N − 1)(2tp + 1) bits

9: end for
10: [[x ⊕ r]]B = [[x]]B ⊕ [[r]]B

11: All parties run πmbo([[x⊕ r]]B) and gets x⊕ r. // 1 round &
N(N − (2tp + 1))(tp + 1) bits

12: All parties exchange their (x⊕r) and choose the correct (x⊕r)
by the majority voting. If it is not possible to determine the
correct value by majority voting, then P� and its initial input
values are removed.

13: [[x]]B = (x ⊕ r) ⊕ [[r]]B

We assume that each Pi (i = 0, . . . ,N − 1) obtains
(seedi, . . . , seedi+2tp ) where seedi ∈ {0, 1}κ. We also as-
sume that (seedi, . . . , seedi+2tp ) are given to each Pi only once
by a trusted third party or MPC-based random value generation
during the initialization process.

We describe the sharing protocol of (N − 2tp,N)-RSS on Z2 in
Protocol 11. From Lines 1 to 4 in Protocol 11, each party com-
putes the shares of random bit r, [[r]]B to mask the input value.
Then, the input dealer P� computes the shares of input value [[x]]B

and sends [[x]]B
i to Pi from Lines 5 to 9. After that, all parties

compute [[x ⊕ r]]B at Line 10 and get (x ⊕ r) by πmbo at Line 11.
At Line 12, all parties exchange (x ⊕ r) and choose the correct
(x ⊕ r) by majority voting. However, if P� is the corrupted party,
P� can cause so much corruptions that tp(2tp + 1) < N does not
hold, indirectly, by sending the incorrect different values to each
party in the previous Lines. Hence, if the majority voting does
not work well, the parties except P� identify P� as the corrupted
party and remove it and its initial inputs. Finally, all parties com-
pute [[x]]B = (x ⊕ r) ⊕ [[r]]B at Line 13 and get the shares of the
input value [[x]]B.
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