
IPSJ SIG Technical Report

ⓒ2021 Information Processing Society of Japan 1

A Proposal of Enhanced JYAGUCHI Architecture for Secured

Service Delivery in Cloud and Edge Computing Environment

GAUTAM Bishnu Prasad1,a) BATAJOO Amit2

SHIRATORI Norio3

Abstract: Cloud computing is a widely researched area; however it has some challenges such as lacking of dynamic service

delivery feature that can support both edge and cloud computing environment. To address such kind of challenges, we proposed an

enhanced JYAGUCHI architecture, a service delivery platform implemented in our previous work that guarantees the secured and

dynamic service delivery in both cloud and edge computing environment. In this research, we enhanced JYAGUCHI platform by

designing a new architectural component that augments the services as per the granularity of the applications and also ensure the

access control for secured service delivery. We evaluated our system by testing the performance of each component in terms of

resource consumption, latency and network bandwidth metrics within and outside the edge.

Keywords: JYAGUCHI, Cloud Computing, Edge Computing, Service Delivery, Access Control

1. Introduction

The development of cloud services and its utilization in ICT

industries is increasing day by day to address the needs and

varieties of challenges of the end users. For instance, micro

services built in cloud systems are replacing lots of legacy systems

which are difficult to update and maintain by end users. However,

cloud computing technologies based on service-client architecture

have security challenges during service delivery from the service

provider to the service consumer. Due to the growth of services

and its complex architecture of cloud, it is a challenging issue to

deliver service securely to the target end user. To address this

challenge, initially, the concept of JYAGUCHI[1]–[4] was brought

to demonstrate how this can be exported to the client as a software

service.

The software delivery concept introduced in JYAGUCHI platform

literally means a tap in Japanese language. As tap can regulate the

intensity or rate of flow of water, accordingly the philosophy of

JYAGUCHI assume that user should be able to consume the

service and can regulate the frequency of usage and duration of

service usage by the client.

JYAGUCHI architecture facilitates the user or service consumer to

consume the service as per use basis. Furthermore, JYAGUCHI

was developed on the concept of leasing an entire service item or

application from a service provider rather than owning that

software completely either by installing and licensing of software.

From the novice user point of view, software installation,

managing of its license, updating and upgrading of that software is

a critical issue. However, providing those features as implemented

in JYAGUCHI reduce these kinds of management cost of the users.

This sort of concept is also incorporated in SaaS based application.

JYAGUCHI is not only a SaaS based platform but also an

architectural model that can be enhanced to model, develop and

export next generation cloud based services. It utilizes the hybrid

architectural model consisting of SOA (Service Oriented

Architecture) and SPA (Space Based Architecture).

In JYAGUCHI platform, services are classified into Micro, Macro

 1 Kanazawa Gakuin University, Faculty of Economic Informatics, Department of

Economic Informatics

and Mega services according to the varieties of features

implemented in services. These features are size, prices, server

available distance, users’ interest on the services. The core feature

which is taken as a deciding factor is the size of the service. While

the size of the service exceeds the threshold, it is considered as

mega service in JYAGUCHI and recommended to keep it within

the edge.

The other trend of service computing which is similar to

JYAGUCHI is fog computing. It is a new paradigm that enhances

the Cloud computing paradigm from data center plane to the

clusters of end-user-devices plane which we termed fog in this

paper. Cloud computing has shifted computing resources more or

less from user plane to data center plane thereby centralizing the

computing infrastructure into huge data centers. In contrast, fog

computing decentralized the resources from cloud centers to the

end-users or to the edge of the network, thus enabling a new breed

of applications and services with newer potential. More

specifically, fog computing is a computing paradigm that brings

data processing, service utilization, networking, storage and

analytics closer to the devices and applications that are more closer

to the users. [6].

The main goal of Cloud computing is to leverage the Internet and

provide on demand access to fundamental computing resources.

For instance, cloud users can utilize and share processing power,

storage space, bandwidth, memory, applications, and software in

several ways. In response to their usage, cloud providers charges

the users as per their consumption. This sort of business concept

has been derived from the concept of utility business and thus

cloud computing sometimes refers to utility computing too. In this

way, users are not required to set up or to buy hardware by

themselves as it used to be traditionally. It has brought a huge

paradigm shift in the market [6]. However, it has not addressed all

issues raised in the user front. Regardless of its supremacy in terms

of providing resources to the end users, it has number of issues.

Cloud computing has arisen with new data security challenges [7],

[8]. Existing data protection mechanisms such as encryption have

failed in preventing data theft attacks, especially those perpetrated

 2 Member, IEEE

 3 Chuo University, Research and Development Initiative

Vol.2021-DPS-188 No.19
Vol.2021-EIP-93 No.19

2021/9/10

IPSJ SIG Technical Report

ⓒ2021 Information Processing Society of Japan 2

by an insider to the cloud provider.

2. Research Challenges

The distributed application architecture like JYAGUCHI must

consider lots of architectural elements, components, connectors

and other parameters of the system that directly or indirectly effect

in the realization of the system. These elements are required to be

analyzed and be designed to depict the solution before

implementation leading to the best design decision in order to

reduce the total cost of the system [3]. In this paper, we figured out

the following research challenges which are significant to address.

A. Issue of Service Delivery to The Client Securely

Security is always a challenging issue in the cloud while providing

different types of services to users. It also may reveal information

which adds further complexity to security issues and risks of cloud

computing systems. Most security issues in Internet are common

to existing computer security problems in communication and

during download and installation of software. As cloud provides a

Software as a Service (SaaS), a comprehensive solution offering

the entire package from infrastructure to application, service or

package delivery securely is still a challenging issue. Thus, a

robust access control mechanism is provided during service

delivery.

B. Limitation in Service Lookup in Legacy System

The lookup service in previous JYAGUCHI serves as a central

repository of services. Entries in the lookup service are Java

objects, which can be downloaded as local proxies to the service

that registered with the lookup service [21]. In order to utilize these

Java objects, most of Java services in distributed computing

provided by legacy systems needs Java supporting clients. This

was also the primary limitation of this system. This limitation is

overcome by enabling the services which are accessible through

internet. In the enhanced architecture, distributed Java objects are

accessible behind the firewalls also.

C. Dynamic Service Delivery

The network protocol that is used to communicate between a

discovering entity and an instance of the discovery request service

is assumed to be unreliable and connectionless, and to provide

unordered delivery of packets. In an environment that makes use

of IP multicast or a similar protocol, the joining entity should

restrict the scope of the multicasts it makes by setting the time-to-

live (TTL) field of outgoing packets appropriately [21].

This maps naturally onto both IP multicast and local-area IP

broadcast but should work equally well with connection-oriented

reliable multicast protocols. Dynamic service delivery is possible

by providing the dynamic proxies and avail the rest of functions

through single method invocation.

3. Proposed Solution

To address the above challenges, we proposed the enhanced

JYAGUCHI architecture which incorporates the essence of

architectural styles adopted in the distributed application and

understand its inherent problem. The architectural differences

between the previous JYAGUCHI and enhanced JYAGUCHI is

portrayed in Figure 1. The original architecture of JYAGUCHI was

started a decade ago to analyze the widely used architectural style

in the file of distributed application and further deepen our

understandings of internal architecture of those applications. On

the basis of this architecture, we have developed some services

which were developed emphasizing on the scalability of

component and the reduction of dependencies among them.

Furthermore, it maintains the principle of encapsulating legacy

system by providing the simple methodology of interfacing the

underlying software components and the way of enhancing them

Figure 1. Enhanced JYAGUCHI Architecture

Figure 1. JYAGUCHI Server and Client Service Model

Ope ra t i ng
Sy s te m

J AVA

Di s co v ery / Jo i n

Lo o k up

Appl i c a t i o ns

Operating System

Remote Method
Invocation

JAVA

Discovery/Join

Lookup

Applications

Web Service Delivery

Ha rdwa re Hardware

Enhanced
Module

R e m o t e M e t h o d
I n v o c a t i o n

Vol.2021-DPS-188 No.19
Vol.2021-EIP-93 No.19

2021/9/10

IPSJ SIG Technical Report

ⓒ2021 Information Processing Society of Japan 3

to be well defined services [3].

To address enhanced proposed solution, there is no longer any need

for distributed Java application to be installed directly on the user’s

computer anymore, as with proposed in the Section 4 i.e.,

Enhanced JYAGUCHI architecture it is now accessible via Internet

by entering the correct URL address.

4. Enhanced JYAGUCHI Architecture

Distributed application varies in granularity and infrastructure.

Traditionally, distributed applications were two-tiered, three-tiered

or multi-tiered in their architecture which collectively makes a

single system. This notion of single system has evolved to the

creation of from tire based system to a more huge virtualized

system such as grid system [13], [14]. We experienced that the

emergence of cloud computing as a new platform for enterprise.

From its very inception, JYAGUCHI service development model

utilizes the legacy computing infrastructure thereby creating a

cluster of possible hardware that can participate in the federations

of JYAGUCHI services. The hardware and services that participate

in JYAGUCHI services are capable of addressing the problem in a

co-operative manner. The notion of co-operation has been

executed by utilizing the concept of SOA in which the underlying

computing infrastructure or underlying middleware are

encapsulated and the detailed of which are not required while

providing the services to the end user. In fact JYAGUCHI services

can be built in a number of multiple technologies and protocols

[17], [18]. Though there are the different architectures underlying,

JYAGUCHI service models can produce similar characteristics of

web service and can be used together with other web service like

technologies too. This ability is referred to as co-operative

computing infrastructure. Figure 2 shows the relation between

each device and the underlying software components that co-

operate while developing, deploying and using of JYAGUCHI

service. In particular usage scenario, JYAGUCHI client send

request to the lookup server, this server provides the proxy required

to the client and with the help of this proxy, client will be able to

interact and can download the remaining codes from web server.

In this way, a solution is achieved. In order to scale out the co-

operative infrastructure, the underlying hardware federation can be

increased by virtualization. We are also exploring the ways to build

the services by using encapsulation service modularization

approach. We have developed complete package of middleware by

integrating different kinds of underlying technologies.

We agree that JYAGUCHI platform supports the development of

distributed object. The main requirement of distributed object is its

ability to create, invoke and deliver the objects in a remote host

while providing the environment as if they were invoked in local

infrastructure. These sorts of remote object invocation have been

implemented in COM, COBRA and RMI and many other

technologies until few years ago. JYAGUCHI employs a similar

kind of concept that invokes the total bundle of service executed

in remote server. We named this invocation model as RSI. The

underlying protocol to call the remote service is JERI and JRMP

[10], [11]. Recently, a different type of invocation model is often

utilized in web service technology such as WSIF [12]. Web service

technologies has passed different stages of evolution phases in

terms of utilizing underlying message passing protocols such as

SOAP and REST.

These technologies, must of the time, utilize XML data format to

:JYAGUCHI

Server
:Lookup Server

:JYAGUCHI

Client

:MySQL

Database

:lookup IP Address

random lookup

Join lookup

(serviceId,serviceEntry)

Service joinStatus

:lookup()

serviceList

getService(serviceId)

service

Login(username, password)

Login status

Figure 2. JYAGUCHI-sequence diagram enhanced

Vol.2021-DPS-188 No.19
Vol.2021-EIP-93 No.19

2021/9/10

IPSJ SIG Technical Report

ⓒ2021 Information Processing Society of Japan 4

send and receive the message. Messages can also be passed in

JSON format too. However service call in web service technology

and JYAGUCHI is different. Most of the web service related

technologies utilizes message passing technique whereas

JYAGUCHI utilizes RSI at which parameters are passed as the

reference of Java object. We did not utilize message passing rather

we utilized service calling approach to reduce the overhead occurs

in message passing. In message passing, it must copy the existing

arguments and append it to the new portion of the message

resulting to a large size of message.

JYAGUCHI emphasizes loose coupling of the components thereby

reducing the dependencies of the components participated in the

foundation for the architecture. The overall architectural style

presented by JYAGUCHI never tries to replace the prevalent

architecture but try to leverage and show the guideline for the next

generation applications by utilizing hybrid architecture style [2].

The post notification and dynamic deliver of the service omit the

requirement of complex procedure of software installation for the

client.

Particularly, these services are coded as java objects and are

wrapped with JYAGUCHI service and the whole service is

remarshaled in the user device. In the following sections, we

describe the total scenarios of JYAGUCHI infrastructure, service

wrapping scenarios and the concept of service granularity. In our

new approach in the Figure 1, we have implemented the new

platform for secure deliver web server which simply run

JYAGUCHI application and is able to be delivered and accessible

via Internet, by just entering the correct URL address. We also

ensure stable performance and regular delivery of JYAGUCHI

application via internet. As the web interface became the primary

platform for software distribution in cloud. The delivery of

JYAGUCHI services has become platform and device independent.

A. Service-client Federation

JYAGUCHI platform provides services in the manner of service

client federations [1]. In order to consume the service, service

provider must publish his service in a network. In order to

consume the service, user needs to pass the authentication process.

After successful authentication, he or she can utilize the service

by simply clicking the icons displayed in the browser. In order to

complete this process, service and client have an interaction for

number of times.

5. Implementation

The concept of modularization is to separate the concern and

context from once piece of program to other so as to minimize the

effect that changes in one module may have on other modules.

Separating the unrelated concerns from the modules has a great

advantage of reducing interdependencies of modules so as to

minimize the coupling between the server and client program.

While there is a maximum coupling between server and client

program, a small change in server program needs to be informed

to the user. While this sort of software cohesion and coupling

issues can be addressed in service modularization [14], [15].

5.1 Mini Service

Mini services in JYAGUCHI are the service which can be

downloaded over a network and these services can be exported as

a complete software package. To utilize this service, JYAGUCHI

client even does not require knowing about the interface. However

JYAGUCHI client must possess universal browser, where we have

implemented universal interface that can be used to call any

JYAGUCHI mini service. These services are implemented for the

users who have low internet bandwidth.

5.2 Macro Service

Macro services are the services which can either be downloaded or

Figure 3. Latency and Bandwidth Report of JYAGUCHI services at Cloud environment

Figure 4. Latency and Bandwidth Report of JYAGUCHI services in Edge environment

C

A
B

D

Vol.2021-DPS-188 No.19
Vol.2021-EIP-93 No.19

2021/9/10

IPSJ SIG Technical Report

ⓒ2021 Information Processing Society of Japan 5

can be accessed via web browser. As the size of service becomes

larger than micro service, we categorized these kinds of services to

macro service and put option to the client to choose whether he or

she wants to download entire service or can accessed by using web

browser as like other web services.

5.3 Mega Service

Mega services in JYAGUCHI are those services which granularity

is extremely larger than macro services and are not feasible to

serialize as a complete software that can be done for micro and

mega services. Option is also omitted and client can only use this

kind of service as like web services by using web browser. In order

to ensure the access of service at different network mode as in

Figure 1 we have proposed the solution as follow:

A. JYAGUCHI Service at public network (Within Cloud)

Using the web browser, users can access the JYAGUCHI client

system. The network area with the public or outside the company

will allow the users to access only Micro service. The Mega &

Macro services are disabled and users are not allow to access them.

B. JYAGUCHI Service at private network (Within Edge)

Using the web browser, users can access the JYAGUCHI client

system. In the following subsections, we describe our guideline

indicator about the notion of services and we categorized the

services into 3 different sub-groups. Post notification implies that

services deployed in the registry are notified to the end-user

without human interference. Thus, end-users do not need to worry

about new installation and update of the software. Service

providers can update the services in the server without interfering

the usage of the service by the client so that client can utilize the

updated services immediately [2].

6. Security in JYAGUCHI

The design of the security model for JYAGUCHI is built on the

twin notions of a principal and an access control list. JYAGUCHI

services are accessed which are generally traces back to a

particular user of the system. Services themselves may request

access to other services based on the identity of the object that

implements the service. Whether access to a service is allowed

depends on the contents of an access control list that is associated

with the object [13].

The solution provided in cloud infrastructures raise a security

concern that data stored in the cloud might have same privacy. And

the due to process as does data stored in your own infrastructure.

There is no guarantee of data and privacy protection in the third

party data center [2]. In JYAGUCHI, data does not retain in the

server side rather they retain in the client side so that end-user can

have control over their data. This solution in fact increase the trust

over the system as no data are transferred to the server side except

the data related to user authentication. In the client side,

JYAGUCHI once the user success to authenticate login, client will

be able to send a request to search the service registry in the

network. To fine the registry, we have tested both unicast and

multicast discovery [2].

Meanwhile, in the Enhanced JYAGUCHI Architecture the original

concept of user authentication for the Macro and Mega services are

same in Edge environment. In addition, to ensure the Micro

services are secure in Cloud environment there is a user

authentication before they access to services.

In order to maintain high security for the services when user access

from in Cloud environment, the information for the authentication

are privately provided by System Administrator after their request.

Moreover, even when user access from Cloud environment the

user’s data does not retain in the server side rather they retain in

the client side so that end-user can have control over their data.

This solution in fact increase the trust over the system as no data

are transferred to the server side except the data related to user

authentication both for Edge and Cloud environment.

7. Performance Evaluation

To perform performance evaluation, we began to implement

JYAGUCHI applications as services in two different environment

i.e. Edge & Cloud environment and tested whether we can utilize

the deployment environment without having difficulties. We did

not have much difficulty to implement JYAGUCHI services and

expose them via look up service and browser for end users.

A. Latency Evaluation

As the latency of a network is the time it takes for a data packet to

be transferred from its source to the destination. In the Figure 3 ‘A’,

we can observed that after server started, delays in transmission

are small, it’s referred to as a low-latency network. This is the

latency for download the Micro service.

On the other hand, in the Figure 4 ‘A’ we can observed larger delay

when application is started to run Mega JYAGUCHI service. This

high latency is due to Mega service download from JIN server to

user’s computer. But after download is completed to local PC of

user’s the latency gradually decrease.

B. Bandwidth Evaluation

The JYAGUCHI services access at the socket or stream level.

Below this level, the data is handled on the network, using the

appropriate protocol. Depending on the Internet speed of user the

bandwidth may be varies. The Internet download and upload speed

was 38.36 Mbps and 43.14 Mbps respectively during the

evaluation process in our working environment. We can observe

in the Figure 3 ‘B’ as bandwidth Report of JYAGUCHI services at

Cloud environment that with the minimum internet speed the

Micro service is accessible to the user’s computer via Internet.

In addition, in the Figure 4 ‘B’, to access the Mega service via

Internet there is a little higher peak of bandwidth. This is because

the application download in the user’s computer via Internet.

8. Conclusion and Future Works

In this work, we have successfully presented a service-oriented

development approach in JYAGUCHI platform which allows the

user to develop, publish and utilize the services as per the

requirement and security constraint. For example, if the

communication infrastructure of the client is not reliable, users are

Vol.2021-DPS-188 No.19
Vol.2021-EIP-93 No.19

2021/9/10

IPSJ SIG Technical Report

ⓒ2021 Information Processing Society of Japan 6

recommended to utilize the edge computing platform provided by

JYAGUCHI. In this case, mostly the mega and macro services are

developed and delivered to the end users within the edge

environment. In this research, we enhanced JYAGUCHI platform

by proposing a new architectural component that augments the

services as per the granularity of the applications and also ensure

the access control for secured service delivery. We evaluated our

system by testing the performance of each component in terms of

resource consumption, latency and network bandwidth metrics

within and outside the edge. In our previous architecture,

distributed services were not able to pass via internet due to the

restriction in NAT. However, this constrain is solved by designing

a NAT traversal module in the architecture. In the current

architecture, this module is integrated with WebSwing and the

services can be accessed by using web browser.

Reference

[1] G. Gautam B.P, Wasaki K, Batajoo A.:Encapsulation of Micro

Engineering Tools in a Co- Operative Jyaguchi Computing

Infrastructure DOI:10.15613/sijrs/2014/v1i1/53851 , Vol 1, No 1

(2014), Pagination: 34-41

[2] Gautam, B. P. (2009). An Architectural Model for Legacy Resource

Management in a Jini Based Service Cloud over Secured

Environment. SIG Technical Reports, 53(EIP-43), 55–62.

[3] Bishnu Prasad Gautam, Shree Krishna Shrestha and Dambar Raj

Paudel. Thesis Report (2009), "Utilization of Jyaguchi Architecture

for development of Jini Based Service Cloud.”

[4] Gautam B. P., “An architectural model for time based resource

utilization and optimized, [Master Thesis], Shinshu University, 2009

[5] Shrestha, S. K., Kudo, Y., Gautam, B. P., & Shrestha, D. (2013).

Multidimensional Service Weight Sequence Mining based on Cloud

Service Utilization in Jyaguchi, I.

[6] Gautam, B. P., & Shrestha, D. (2010). A Model for the Development

of Universal Browser for Proper Utilization of Computer Resources

Available in Service Cloud over Secured Environment. Lecture Notes

in Engineering and Computer Science, 2180, 638–643. Retrieved

from http://www.doaj.org/doaj?func=abstract&id=550261

[7] B. P. Gautam, H. Asami, A. Batajoo and T. Fujisaki, "Regional Revival

through IoT Enabled Smart Tourism Process Framework (STPF): A

Proposal," 2016 Joint 8th International Conference on Soft

Computing and Intelligent Systems (SCIS) and 17th International

Symposium on Advanced Intelligent Systems (ISIS), 2016, pp. 743-

748, doi: 10.1109/SCIS-ISIS.2016.0162.

[8] B. P. Gautam, K. Wasaki, A. Batajoo, S. Shrestha and S. Kazuhiko,

"Multi-master Replication of Enhanced Learning Assistant System in

IoT Cluster," 2016 IEEE 30th International Conference on Advanced

Information Networking and Applications (AINA), 2016, pp. 1006-

1012, doi: 10.1109/AINA.2016.110.

[9] Gautam Bishnu Prasad, Batajoo Amit, Wasaki Katsumi "Fogging

Jyaguchi Services in Tensai Gothalo". International Journal of

Computer Trends and Technology (IJCTT) V28(3):119-125, October

2015. ISSN:2231-2803. www.ijcttjournal.org. Published by Seventh

Sense Research Group.

[10] M. N. Manas, C. K. Nagalakshmi, and G. Shobha, ―Cloud

Computing Security Issues And Methods to Overcome,‖ Int. J. Adv.

[11] Res. Comput. Commun. Eng., vol. 3, no. 4, pp. 6306–6310, 2014.

[12] H. M. H. El-hoby, M. A. F. Salah, P. Mohd, and A. Suhaimi, Aligning

Cloud Computing Security with Business Strategy,‖ Int. J. Comput.

Technol., vol. 7, no. 1, pp. 52–60, 2014.

[13] Newmarch J., “Foundations of Jini 2 programming”.Available:

http://jan.newmarch.name/java/jini/tutorial/Jeri.html#Jeri

[14] Apache River Project. Available:

http://river.apache.org/doc/specs/html/lookup-spec.html

[15] Gautam B. P., Sharma N., and Wasaki K., “Using a solar powered

robotic vehicle to monitor and manage unstable networks”, ICFN

2014

[16] Terlouw L., “Modularization and specification of service oriented

systems”, Ph.D Thesis, 2011.

[17] Brax S. A., and Toivonen M., “Modularization in businessservice

innovations”, Available: www.imi.tkk.fi/publications/ download/207/

[18] Gautam B. P., Paudel D. R., and Shrestha K., “A study and site survey

in himalayan region for proper utilization of wireless community

networks: an assessment of community wireless implementation in

heterogeneous topography”, WAKHOK Journal, vol. 11 Japan

Disaster Statistics, Natural Disasters from 1980–2010, International

Disaster Database. Available:

http://www.preventionweb.net/english/countries/ statistics/?cid=87

[19] Chen M. X., Sung F., and Lin B. Y., “Service discover protocol for

network mobility environment”, ICIC International Journal 2012,

Available: http://www.ijicic.org/ijicic-11-05025.pdf

[20] Perianu R. M., Hartel P., and Scholten H., “A classification of service

discovery protocols”. Available:

http://doc.utwente.nl/54527/1/classification_of_service.pdf

[21] JiniTM Discovery & Join

pecification”https://river.apache.org/release-

doc/current/specs/html/discovery-spec.html

Acknowledgments: This work was supported in part by the

Japan Society for the Promotion of Science (JSPS) under

Grant 19H04101 and Grant 18K11273, the Cooperative

Research Project Program of the Research Institute of

Electrical Communication, Tohoku University, Japan

Vol.2021-DPS-188 No.19
Vol.2021-EIP-93 No.19

2021/9/10

