

Program Segment Testing for Software Fault Prevention

Lei Rao1, a) Shaoying Liu1, a)

Ai Liu1

Abstract: Fault prevention is a process of quality improvement which aims to identify common causes of faults and take

relevant measures to prevent the type of fault recurrence. However, not only is there little related research at present, but almost

no work to automatically and effectively improve the code to prevent potential faults from being introduced during the

programming process for the root cause of the fault. In this paper, we propose an automatic fault prevention technology called

Program Segment Testing (PST), which can automatically prompt whether a certain piece of code will trigger an exception

during the programming process. First, we introduce some preliminary definitions and notation that are used in our technology.

Then, we explain PST in detail, and point out the problems that need to be solved to complete this technology and the

corresponding solutions. Finally, we give a summary to our work and point out that our method provides a way to prevent the

trigger from the root cause of the exception.

Keywords: Fault prevention, Exception, Segmenting criterion, Program segment Testing

1. Introduction

Software fault prevention is an important activity in the

development cycle of any software project. Starting from the

early stage of the project, this measure is appropriate in order to

prevent faults from being introduced into the product. Therefore,

it improves the quality of a software products and reduces the

cost of subsequent maintenance.

However, according to the literature，most software project

teams focus on fault removal [1, 2]which through testing or

debugging to detect and remove the faults in the program after

the program is completed; or focus on fault tolerance[3, 4]which

using redundancy to ensure that the program keep work normally

when a fault occurs. Their attention is paid to how to solve the

faults after the program is completed. Few people think about

taking some measures directly in the process of programming to

prevent faults from being introduced into the final project.

Moreover, in the few related works, techniques such as mining

frequent itemsets [5, 6]and detecting risky commits[7]are mainly

used to use the correlation between faults for rough prevention.

There is a high probability that misjudgments or omissions will

occur, because the introduction of faults is not prevented from the

root cause.

In order to solve the above-mentioned problems, based on the

idea of Human-Machine Pair Programming proposed by Prof.Liu

recently[8], we propose an automatic fault prevention technology

called Program Segment Testing (PST), which can automatically

prompt whether a certain piece of code will trigger an exception

during the programming process. Specially, our method includes

following functions: (1) Automatically intercept a segment that

may trigger an exception from the program being programmed

according to the segmenting criterion, and wait for subsequent

testing; (2) Automatically identify all variables in this segment,

and initialize the variables except Key Variables(KV), which will

be explained in the second section, and combine with the segment

to create a new executable test program; (3) Automatically

 1 Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0036, Japan

generate test values for KV, and executes the test program to get a

result; (4) If the result does not match the expectation, it will

automatically feed back to the programmer, prompting that there

is a problem in this code.

The reminder of the paper is outlined as follows. Section 2

introduces some preliminary definition and notion that are used in

our method. Section 3 presents the method we propose in detail.

Section4 compares our method with related work. Section5

concludes the paper and points out future research direction.

2. Preliminary and Notation

This section introduces some preliminary definitions and

notation that are used along the paper.

Program segmenting is based on a segmenting criterion over

which the segment is obtained. In traditional program slicing，the

criterion usually corresponds to a statement in the code and a

variable within that statement[9]. However, if we use statements

in our method, it will not be as precise as we want to be.

Therefore, we base our segmenting criterion on expressions,

which do not impose that precision barrier.

Definition1(Segmenting Criterion). Let P be a program. A

segmenting criterion CE of P is a key expression that determines

whether the exception E is triggered or not.

i := 0

arr := {1,2,3,4,5}

sum := 0

product := 1

while i < arr.length

 write(arr[i])

i := 0

while i <= arr.length

 sum := sum + arr[i]

 product := product * arr[i]

 i := i + 1

write(sum)

write(product)

Segmenting on

 criterion < i >

while i <= arr.length

 sum := sum + arr[i]

 product := product * arr[i]

 i := i + 1

(a) Program (b) Segment

while i < arr.length

 write(arr[i])

(,)AOOBseg P i

1

AOOBS

2

AOOBS

Fig.1 Segmenting Criterion

Therefore, in order to be able to intercept the segment we want

more accurately, we define the segmenting criterion as an

expression that can determine whether an exception is triggered.

Moreover, a variable can be considered as a segmenting criterion

in our definition because variables are expressions.

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 191

For example, an array index overflow error often occurs in the

program, and the reason for the error is an attempt to call an

element outside the array index range, so we use the array index i

as a segmenting criterion to intercept the program as shown in

Fig.1(a).

Definition2(Segment). Let P be a program, E be an exception

and 𝐶𝐸 be a segmenting criterion for E. segE(P, CE) is the

finite set containing all segments obtained by intercepting

program P using the segmenting criterion 𝐶𝐸 for the exception E,

where each segment is denoted as 𝑆𝐸
𝑖 , i is from 1 to n, n is the

number of all segments for exception E and E is the type of

exception.

After intercepting the program with the index variable i, we get

the segments shown in Fig.1(b), namely

𝑠𝑒𝑔𝐴𝑂𝑂𝐵(𝑃, 𝐶𝐴𝑂𝑂𝐵) = 𝑠𝑒𝑔𝐴𝑂𝑂𝐵(𝑃, 𝑖) = {𝑆𝐴𝑂𝑂𝐵
1 , 𝑆𝐴𝑂𝑂𝐵

2 }

where AOOB stands for the common exception

ArrayOutOfBounds. As for why the intercepted segment is like

this, we will give an explanation in the follow-up content of the

paper. In addition, it can be seen from the definition that segment

SE
i contains the following attributes:

(1) 𝑆𝐸
𝑖 can be obtained by intercepting code from P, denoted as

𝑆𝐸
𝑖 ⊆ P.

(2) The sum of all 𝑆𝐸
𝑖 is equal to 𝑠𝑒𝑔𝐸(𝑃, 𝐶𝐸) , that is,

∑ 𝑆𝐸
𝑖 = 𝑠𝑒𝑔𝐸(𝑃, 𝐶𝐸)𝑛

𝑖=0

We use V to represent all variables in a segment. Those variables

whose wrong value will trigger an exception, we call Key

Variable (KV), and the key variable is included in the segmenting

criterion. The remaining variables are called Related Variable

(RV).

In order to determine whether an exception will be triggered in

the intercepted segment, it is necessary to take measures such as

testing to confirm. The prerequisite for testing a segment is to

build the segment into an executable test program. Since for

testing, of course, it is necessary to input some test values to

these programs. Each type of exception corresponds to a set of

test values, which is denoted as 𝐼𝐸. Note that the input IE is

actually the assignment of KV. As we mentioned above, whether

a segment will trigger an exception depends on the value of its

corresponding KV, so we need to give KV some suitable test

values to observe its results. In addition, an executable program

also includes the initialization of the RV in the segment, which

we denote as 𝑅𝐸
𝑖 . Therefore, an executable test program should

include a segment 𝑆𝐸
𝑖 , input 𝐼𝐸 and RV initialization 𝑅𝐸

𝑖 .

sum := 0

product := 1

arr.length := 5

read(i)
AOOBI

2

AOOBR

2

AOOBS

1 : 0 .AOOB hI i arr lengt

2 : .AOOB i arr lengthI =

3 : .AOOB i arr lengthI
while i <= arr.length

 sum := sum + arr[i]

 product := product * arr[i]

 i := i + 1

Fig.2 Test Program

Definition3(Test Program). An executable Test Program (𝑇𝑃𝐸
𝑖)

includes segment 𝑆𝐸
𝑖 , the input 𝐼𝐸, and the assignment of RV, 𝑅𝐸

𝑖 ,

that is

𝑇𝑃𝐸
𝑖 = 𝑆𝐸

𝑖 + 𝐼𝐸 +𝑅𝐸
𝑖

where i is between 1 and n, n is the number of all segments for

exception E and E is the type of exception.

We continue the example in Fig.1 to expand 𝑆𝐴𝑂𝑂𝐵
2 into an

executable test program. For the array index overflow problem,

the key variable is naturally the index variable i, so we set three

test values for it as shown in Fig.2 and the reason will be

explained in Chapter 3. In addition to the key variable i, 𝑆𝐴𝑂𝑂𝐵
2

also contains related variables sum, product and the length of the

array arr.length. And the value of these variables, we can use the

dependence of the variable to obtain[10, 11]. Thus, we get a test

program in Fig.2.

Since judging whether a segment will trigger an exception, it is

not only limited to the way of constructing an executable test

program, but also includes some other means. Therefore, we can

know that the number of all test programs for an exception is less

than or equal to the number of segments that it intercepts. The

example in Fig.1 happens to be the case where the two are equal.

For each given input, the test program will produce a result.

This result is a Boolean variable used to indicate whether the test

program will trigger the corresponding exception for the test

value. Formally, the definition of execution result is given as

follows.

Defination4(Result of Testing): Let P be a program, 𝐶𝐸 be a

segmenting criterion for the exception E and TP be an executable

test program. The execution result of 𝑇𝑃𝐸
𝑖 on a segmenting

criterion 𝐶𝐸 is a Boolean value, including Correct and Incorrect,

which is represented by res (𝑇𝑃𝐸
𝑖 , 𝐶𝐸).

For the example in Fig.2, since the array index i starts from 0,

the upper limit of i should be “arr.length-1”, and we mistakenly

wrote “i < arr.length” as “i<=arr.length”, so the test result

obtained is Incorrect, which means that this segment will trigger

an array index overflow exception.

3. Methodology

In order to ensure that a program is robust, that is, it will not

trigger exceptions when the program is running, the most

common method is to generate test data to test the completed

program under the premise that all possible exceptions listed in

the java.lang package are taken into account as much as possible.

However, this approach has the following problems: First, a test

value usually cannot meet the test requirements of all exceptions

at the same time, so we consider generating specific test values

for each exception to test the program separately. However,

usually there is only a small part of the content related to an

exception in a large code, and testing the entire code has

problems such as time-consuming and low efficiency. In addition,

can we realize that in the process of programming, we can get

prompts that a certain piece of code will trigger a certain

exception and need to be modified, so as to achieve a

"Correct-By-Construction" effect.

In order to solve the above problems, as shown in Fig.3, we

propose a Program Segment Testing (PST) technology that can

automatically prompt when a certain piece of code has a problem

that will trigger an exception during the programming process.

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 192

First, we set a segmenting criterion for each exception

respectively. When the programmer writes a piece of code that

may trigger an exception, the system will automatically intercept

it and wait for subsequent testing. Note that the intercepting we

are talking about here is not to directly deduct this code from the

program, but to take out this code in a form of copying or

mapping with the help of software, and perform subsequent

operations on it.

Tested Program

Program

Segment

Segment

Related Variables Initialization

Key Variables Input

+

+
Segmenting on

Criterion CE

RV

KV

i

ER

EI

i

ES

+

+

Fig.3 Program Segment Testing

Secondly, for a segment, we use the dependency of variables to

obtain the value of the RVs closest to the segment, and then add it

to the test program in the form of initialization. For KV, in order

to obtain effective test results, different exceptions correspond to

specific test values, that is, the assignment of KVs. Therefore, we

provide an interface to wait for the input of test data.

Then, we initialize the RV arbitrarily but reasonably, because

their values will not affect the test. It is not our focus, but just to

form a complete test program. For KV, in order to obtain

effective test results, we need to set up specific test values

according to different exceptions.

Finally, with the help of the data generation technology[12,

13]to automatically generate the test data we need, and input it

into the test program for testing, and the test results will be

automatically fed back to the programmer as a basis for judging

whether the exception will be triggered.

In summary, in order to complete the entire PST process as

shown in Fig.3, the following issues need to be resolved:

(1) What is the interception criterion for each exception? And,

how to intercept the appropriate segment from the program?

(2) How to assign values to related variables in the segment?

(3) How to assign values to key variables to achieve effective

and efficient test results?

(4) In what form should the test result be fed back to the

programmer?

Next, we take a common array index overflow problem as an

example to introduce in detail how to solve these problems.

3.1 Segmenting Criterion

Since we are to solve the problem of array index overflow, our

focus should be the index of the array, so we choose the

commonly used array index i, j and other variables as the

segmenting criterion to intercept the program.

The use of array index in the program can be roughly divided

into two types [14]. The first is inside the loop structure. This is

the most common and the most prone to array index overflow

errors. Therefore, when encountering a loop structure with

segmenting criterion as an index variable, we directly intercept

the entire loop structure, as shown in Fig.4, and wait for

subsequent tests. It should be noted that there are some

differences between the for loop and the while loop or the

do/while loop. The latter does not include the operation of

assigning an initial value to the index variable, so the entire loop

structure can be intercepted directly. But in the for loop, the index

variable is usually initialized, so when intercepting the for loop, it

must be deleted, as shown in Fig.4. Because if we do not do this,

even if we give some test value to the index variable, it will be

re-assigned every time the loop is executed.

int i = 0;

while(i < arr.length) {

……
i++;

}

for(int i = 0;i < arr.length;i++){

……
}

while(i < arr.length) {

……
i++;

}

for(;i < arr.length;i++) {

……
}

Segmenting on

 criterion < i >

Fig.4 Segmenting on Criterion i

public class Test {

public static void main(String[] args) {

int[] arr = new int[] {1,2,3,4,5,6,7,8,9,10};

int sum = 0;

int product = 1;

int i = 0;

System.out.println("arr[" + i + "] = " + arr[i]);

while(i < arr.length) {

sum += arr[i];

product *= arr[i];

i += 1;

}

System.out.println("sum = " + sum);

System.out.println("product = " + product);

}

}

while(i < arr.length) {

sum += arr[i];

product *= arr[i];

i += 1;

}

System.out.println("arr[" + i + "] = " + arr[i]);

a

b

Fig.5 Interception method for array index overflow

The other is outside the loop. When the i-th element in the array

is called in a line of code in the program, at this time, this line of

code will be intercepted, as shown in Fig.5. This situation is

simpler than the previous one. We only need to use the

dependency of the variable to retrieve the latest value of the index

variable i before this line of code, such as the green "i = 0" in

Fig.5, and then detect the relationship between it and the array

length arr.length. If i is less than arr.length, the code is correct,

otherwise it means that an index overflow exception will be

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 193

triggered. Therefore, in the discussion that follows, we mainly

focus on the situation where the array index is inside the loop.

3.2 Key Variables

In the case of array index overflow, the key variable is the index

variable. Whether a loop structure will trigger the exception of

array index overflow depends on whether the loop body

statement will be executed when the index is greater than or equal

to the length of the array. As shown in Fig.5, under normal

circumstances, when the value of i grows to the length of the

array arr.length, the loop body statement cannot continue to

execute. But if we mistakenly set the range of i to be less than or

equal to arr.length in Fig.6, when i is equal to arr.length, the loop

body statement will continue to execute, and an exception will be

triggered at this time.

while(i <= arr.length){

 sum += arr[i];

 product *= arr[i];

 i += 1;

}

Fig.6 Wrong value range limit

Therefore, we set three test values for i, which are between 0

and arr.length, equal to arr.length and greater than arr.length, as

shown in Table 1. We will explain the reason for setting the test

values in this way later.

Table 1 Test value for array index overflow

0<= i < arr.lenth

i = arr.length

i > arr.length

3.3 Related Variables

In a segment, in addition to the key variables, the other variables

are related variables, such as sum and product in Fig.5. In fact, on

the issue of array index overflow, their values are almost

meaningless for testing, because we only care about whether the

loop body will execute when the value of the index variable is out

of range. But in order to build an executable test program, we

need to initialize them. We still use the dependency of variables

to get the latest value of sum and product before this segment, as

shown in red and green fonts in Fig.7, respectively.

3.4 Testing Result

From Section 3.2, we know that in the array index overflow

problem, we can set three test values for the key variable i, and

judge whether the segment has an array index overflow

vulnerability by detecting whether the loop body statement is

executed. The first one is between 0 and arr.length. In this case,

the loop body can be executed normally, but if it does not, it

means that there are other problems in the program, which are not

caused by the index value. The second value is that i is equal to

arr.length. Due to the differences between programming

languages, there are two different situations. In a programming

language where the array index starts from 0 by default, the loop

body cannot be executed if the program is correct. In

programming languages where the array index starts from 1 by

default, the loop body can still be executed. Since our cases are

all written in java language, in this paper we set the index of the

array to start from 0. The third value is that i is greater than

arr.length. In this case, the loop body statement should not be

executed.

public class Test {

public static void main(String[] args) {

int[] arr = new int[] {1,2,3,4,5,6,7,8,9,10};

int sum = 0;

int product = 1;

int i = 0;

System.out.println("arr[" + i + "] = " + arr[i]);

while(i < arr.length) {

sum += arr[i];

product *= arr[i];

i += 1;

}

System.out.println("sum = " + sum);

System.out.println("product = " + product);

}

}

Fig.7 Assignment of related variables

Table 2 Test results for array index overflow

 HasExecute? IsArrayOutOfBounds?

0 <= i < arr.length

Yes No

No
Exist other Faults in

Program

i = arr.length
Yes Yes

No No

i > arr.length
Yes Yes

No No

The results obtained by three different test values can reflect

different problems, and the basis that can prove that this program

will not trigger the exception is that the results obtained by the

three test values are Yes, No, No, namely

(𝑅𝑒𝑠1, 𝑅𝑒𝑠2, 𝑅𝑒𝑠3) = (𝑌𝑒𝑠, 𝑁𝑜 , 𝑁𝑜) ⟹ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

Also, the order of the three results cannot be changed. That is to

say, as long as the results of the three test values are not Yes, No,

No in sequence, the system will automatically feed back to the

programmer, prompting that the program has a loophole.

4. Related Work

Association analysis: In programs, there are often some implicit

programming rules, that is, two functions are often used together,

such as spin lock and spin unlock. Therefore, Zhenmin Li et al.

[15] proposed a method to automatically extract implicit

programming rules from large software codes, and proposed an

effective algorithm to detect violations to the extracted

programming rules in the program, that is, find the number of

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 194

case that contains the itemset on the left but not those on the right.

Yigu Liu et al. mentioned fault association analysis based on

numerous historical fault data in [5]. Fault association analysis

returns the results in form of {A1, A2}, where A1 and A2 are two

different fault types, and {A1, A2} means that fault A1 and A2

frequently occurred in the same period. By discovering

knowledge like that, they can implement preventive maintenance

for A2 once A1 occurs, and vice versa. However, these fault

preventions using the correlation between the elements or faults

in the program can only be regarded as a highly reliable method,

and cannot accurately diagnose the faults in the program.

Moreover, you can only check for possible faults after the

program is completed, and cannot prevent errors from being

introduced during the programming process.

Fixes form repository: Some program repair tools learn useful

fixing strategies by mining bug fixing sets [16], user-debugger

interaction [17], human-written patches [18, 19], etc., and then

add them to the code analyzer to fix defects in the program. But

they cannot determine whether what they are mining is useful and

often appears in actual code. In other words, they cannot confirm

which errors can be fixed, and cannot guarantee whether the

errors that can be fixed are meaningful enough.

5. Conclusion

Based on the idea of Human-Machine Pair Programming, this

paper proposes an automatic fault prevention technology

Program Segment Testing (PST), which can automatically test the

code during the programming process and prompt that a certain

piece of code has a vulnerability that can trigger a certain

exception. First, automatically intercept a continuous piece of

code that may trigger the exception from the partially completed

program according to the segmenting criterion corresponding to

an exception, and wait for subsequent testing. Second,

automatically identify all variables in this code, initialize RV and

combine the intercepted segment to create a new executable test

program. Finally, automatically generate some test values for the

KV, and execute the test program to get a result. If the result does

not match the expectation, it is automatically fed back to the

programmer, prompting that this code will trigger the exception.

PST provides a way to prevent faults from the root causes of

exception triggers, and can accurately identify which exceptions

will be triggered in the code. In addition, it also provides a way to

automatically give prompts during the programming process to

prevent faults from being introduced into the product. Of course,

this technology is still relatively crude, and we will optimize it in

more detail in the future.

Reference
[1] X. Zhang, X. Teng, and H. Pham, "Considering fault removal

efficiency in software reliability assessment," IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans, vol.

33, pp. 114-120, 2003.

[2] B. Littlewood, "Stochastic reliability-growth: A model for

fault-removal in computer-programs and hardware-designs," IEEE

Transactions on Reliability, vol. 30, pp. 313-320, 1981.

[3] J.-C. Laprie, "Dependable computing and fault-tolerance," Digest of

Papers FTCS-15, vol. 10, p. 124, 1985.

[4] B. Randell, "System structure for software fault tolerance," Ieee

transactions on software engineering, pp. 220-232, 1975.

[5] Y. Liu, S. Gao, and L. Yu, "A novel fault prevention model for metro

overhead contact system," IEEE Access, vol. 7, pp. 91850-91859,

2019.

[6] K. Gouda and M. J. Zaki, "Efficiently mining maximal frequent

itemsets," in Proceedings 2001 IEEE International Conference on

Data Mining, 2001, pp. 163-170.

[7] M. Nayrolles and A. Hamou-Lhadj, "CLEVER: combining code

metrics with clone detection for just-in-time fault prevention and

resolution in large industrial projects," in Proceedings of the 15th

International Conference on Mining Software Repositories, 2018, pp.

153-164.

[8] S. Liu, "Software Construction Monitoring and Predicting for

Human-Machine Pair Programming," in International Workshop on

Structured Object-Oriented Formal Language and Method, 2018, pp.

3-20.

[9] M. Weiser, "Program slicing," IEEE Transactions on software

engineering, pp. 352-357, 1984.

[10] M. Burke and R. Cytron, "Interprocedural dependence analysis and

parallelization," ACM Sigplan Notices, vol. 21, pp. 162-175, 1986.

[11] K. Muthukumar and M. V. Hermenegildo, "Determination of

Variable Dependence Information through Abstract Interpretation,"

in NACLP, 1989, pp. 166-185.

[12] J. Edvardsson, "A survey on automatic test data generation," in

Proceedings of the 2nd Conference on Computer Science and

Engineering, 1999, pp. 21-28.

[13] B. Korel, "Automated software test data generation," IEEE

Transactions on software engineering, vol. 16, pp. 870-879, 1990.

[14] B. Chimdyalwar, "Survey of array out of bound access checkers for

c code," in Proceedings of the 5th India Software Engineering

Conference, 2012, pp. 45-48.

[15] Z. Li and Y. Zhou, "PR-Miner: automatically extracting implicit

programming rules and detecting violations in large software code,"

ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 306-315,

2005.

[16] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.

Nguyen, "Recurring bug fixes in object-oriented programs," in

Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1, 2010, pp. 315-324.

[17] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, "BugFix: A

learning-based tool to assist developers in fixing bugs," in 2009

IEEE 17th International Conference on Program Comprehension,

2009, pp. 70-79.

[18] D. Kim, J. Nam, J. Song, and S. Kim, "Automatic patch generation

learned from human-written patches," in 2013 35th International

Conference on Software Engineering (ICSE), 2013, pp. 802-811.

[19] F. Long and M. Rinard, "Automatic patch generation by learning

correct code," in Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, 2016, pp. 298-312.

 Acknowledgments The research was supported by ROIS NII

Open Collaborative Research 2021-(21FS02).

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 195

