

Building SOFL-to-Java Traceability Links using Multi-dimensional
Similarity Measures

JIANDONG LI1 SHAOYING LIU1
RUNHE HUANG2

Abstract: To achieve an automatic formal specification-based program fault detection, the open problem of how to automatically
link the components in the formal specification to the corresponding ones in the implemented code must be addressed. To reduce
the manpower and time cost, some automated techniques have already been developed but their effectiveness is limited mainly due
to the over dependency of textual similarity. In this paper, we present an automatic method for constructing the traceability links
between SOFL formal specifications and Java program code. Unlike the existing work, our method not only considers the semantic
similarity, but also structural, functional, and relational similarities as the measurement dimensions. It also operates at multiple
levels of a specification, such as data flows, processes, and modules, to establish fine-grained link relationships between artifacts.
Further, we conduct a comprehensive empirical evaluation of the proposed method using selected two modules of a critical ATM
system’s SOFL formal specification and its Java implementation with the size of 951 code of lines and 36 traceability links. The
result shows that we can establish SOFL-to-Java links with the precision of 97.2% which is close to highest accuracy of existing
naming convention technique in the situation of consistent identifier and the precision of 88.8% illustrating high performance in
precision and generality in the situation of inconsistent identifier.

Keywords: Software Traceability Links, Formal Specification, SOFL, Program Verification

Introduction

Our research in this paper focuses on the establishment of fine-
grained traceability links that connect “high-level” SOFL formal
specification artifact [1] to “low-level” code artifact written in Java
programing language (SOFL-to-Java). This work stems from a
subproblem existing both in the specification-based program
inspection [2] and in software construction monitoring process in
Human-Machine Pair Programing (HMPP) [3]. When current
traceability links automatic techniques were adopted in the specific
SOFL-to-Java trace link recovery, two major shortcomings were
found:
1) Limited Measure Dimensions of Artifact Similarity. Existing

traceability link techniques tend to mainly use a single semantic
measurement dimension to model relationships between artefacts.
Here we refer semantic narrowly to name similarity or textual
similarity. The adoption of this relatively single measurement
dimension is mainly due to artifacts’ logical abstract gap and the
amount and types of information extracted from different artifacts.
The gaps are mainly caused by the fact that various artifacts are
represented or described in different languages, such as
requirements written in the SOFL formal language [1] and the code
written in Java programing language. This is problematic in
practical application and generality as developers usually use
inconsistent name or identifiers to implement the requirements.
When it comes to trace link recovery between a formal
specification and code, we propose some new similarity measure
dimensions that includes structural dimension, functional
dimension, relational dimension that distinguish our work from
previous work. The explanation of these new measure dimensions
is given detailly in the following approach section.

 1 Hiroshima University, Higashihiroshima, Hiroshima 739-8527, Japan
 2 Hosei University, Koganei, Tokyo 184-8584, Japan

2) Limited Link Granularity. Some previous work concentrates
on the establishment of coarse-grained artifact level traceability
link (e.g., user stories and class files) while some other existing
work focuses on the building of fine-grained connections between
components of artefacts (e.g., test-to-code traceability links on
class level and method level). However, the method level
granularity is not adequate and more granular traceability links are
needed to generate a checklist for our specification-based program
inspection or fault detection purpose. Our work on connecting
SOFL formal specifications to Java program code focuses on the
module and class level where the module or class component of
the SOFL specification is linked to a Java class, the process level
where the process component of the SOFL specification is linked
to a Java method or class method, the data flow level where the
data flow component of the SOFL specification is linked to a Java
class filed or variable or constant. The expression of “multi-level”
in the paper title means that we simultaneously address the module
and class level, the process level, and the data flow level, which
differs from existing work.
The limitation discussed above arises from the technical

limitation of existing traceability techniques and the difference
between artefacts involved in the problems to be solved. In this
paper, we present an automatic SOFL-to-Java traceability links
technique, aiming to overcome the weakness or limitations of
existing approaches when adopted to support automatic
specification-based program inspection. The proposed method
combines a wide range of similarity measurement dimensions and
extracts corresponding attribute set to produce a single score to
predict trace links. Our approach is comprehensively evaluated
using selected two modules of SOFL formal specification of a
critical ATM system case [14] with the size of 951 code of lines,

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 143

12 Java classes and 36 traceability links at multilevel. The result
of the experiment shows that the proposed method with a 97.2%
precision is close to the naming conventions method [4] with a
100% precision in the case of using same identifiers. Further, our
method could also solve traceability links problem with the 88.8%
accuracy in the situations of using inconsistent identifiers in whole
programs. The main contributions of this paper are:

• A more specific framework for specification-based
software construction monitoring realization in human-
machine pair programming.

• An approach to SOFL-to-Java traceability link for
completed program that combines multiple similarity
measurement dimensions and achieves multilevel trace
link.

• A comprehensive evaluation of proposed approach to
SOFL-to-Java traceability link for completed programs
at multilevel.

Specification-based Software Construction
Monitoring and Traceability Links Problem
We describe a more specific framework for software construction

monitoring (SCM) to be realized in human-machine pair
programming by properly adding the specification to original
framework and address the SOFL-to-Java traceability links
problem.

1.1 Specification-based SCM
Programming is the major activity to provide working software

advocated in the agile development paradigm but lacks effective
techniques to address the challenges in ensuring software quality,
productivity, and maintainability. Liu proposed a human-machine
pair programming (HMPP) methodology to support efficient and
reliable programming [3]. HMPP is an extension and refinement
of pair programming by replacing one of the programmers with an
intelligent machine which can either identify potential software
defects and violation of standards in the program or predict useful
program segments for enhancing the robustness and the
completeness of the program. It can overcome the disadvantages
of high cost and programmers’ cooperation issue in conventional
pair programming.
HMPP includes two key techniques: software construction

predicting (SCP) for program segments generation automatically
and software construction monitoring (SCM) for timely fault
detection and error-free completion which is related to our
traceability links concern. The technique SCM here refers to the
automatic and dynamic check of whether the current software
version satisfies the required properties (e.g., requirements in the
specification, termination of loop body). The original SCM
realization framework is shown in the internal rectangle part of Fig.
1. Specific property to be checked is determined or formed on the
basis of both the pre-prepared property knowledge stored in the
knowledge repository and the information of current software
version through syntactical analysis.
In order to detect requirements-related semantic faults which

refers to the ones that are inconsistent with the requirements or the
developers’ programming intention in software construction

Figure 1. Specification-based framework for software construction
monitoring.

Figure 2. Components’ corresponding relationships between SOFL and
Java program.

monitoring, we introduce specification data and the specification
analysis activity into original software construction monitoring
realization framework as shown in Fig. 1. We call it specification-
based software construction monitoring. By taking advantage of
specification, this realization framework can benefit specification-
based programing in terms of ensuring its quality by utilizing
specification-based inspection technique and specification-based
testing [5]. It should be pointed out that the specification-based
framework for specification-based programming is a more specific
one as original SCM realization framework is proposed for general
programming and they have an inclusive relationship.

1.2 Traceability Links for Completed Program Problem
There is a challenge involved in the realization of specification-

based SCM, which is to identify what subset of the specification
has been implemented, what properties in the specification are
implementing and what subset of specification is unimplemented.
Fault detection could be done once an appropriate subset of
specification has been chosen or determined.
Since the identification of the appropriate subset of the

specification that has been implemented by the program under
construction is a very difficult task, we actually first explore a
solution that maps the specification to the completed program in
this paper and then make a solution to the mapping from the
integral specification to the partial program as our future work. As
for the specification, we choose SOFL (Structured-Object-based-
formal Language) [1] which generates accurate and unambiguous
requirements description like other formal languages such as Z and
VDM [6]. The chosen of SOFL is mainly based on its successful
application to modeling software systems in the collaboration with
industry and on our familiarity with it as it was developed by the
second author [7]. Further, the Java programming language is

Program
Syntactical Analysis

Form Specific
Properties

Check Properties

Current version
of software

Information of the
current software Specific properties

Property-related
knowledge base

Fault report

Specification Specification
Analysis

Basic framework for SCM

Specification-based framework for SCM

<java_program> := <class> | <java_program> <class>
<class> := <class_modifiers> ‘class’ <identifier>

[super-declaration][interface-declaration]
‘{‘

[basic-type-field-declarations]
[enumeration-type-field-declarations]
[list-type-field-declarations]
[set-type-field-declarations]
[map-type-field-declarations]
[final-field-declarations]
[method-declarations]
[…]

‘}’

<specification> := <module> | <specification> <module>
<module> := ‘Module’ <module-name1> [module-name2, cp-name]

[‘Type’]
[composite-type-declarations’;’]
[product-type-declarations’;’]
[basic-type-declarations’;’]
[enumeration-type-declarations’;’]
[sequence-type-declarations’;’]
[set-type-declarations’;’]
[map-type-declarations’;’]

[‘Const’]
[const-declarations]

[‘Variable’]
[variable-declarations‘;’]

[‘Inv’]
[invariant-declarations’;’]

<process-definitions>
[function-definitions]

‘End Module’

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 144

selected to implement specifications for two reasons. One is that it
is still popular for decades since its birth and the other one is the
availability of the relatively rich functional and non-functional bug
dataset, such as NFBugs, MUBench, DEFECT4J, and iBUGS [8].
These bug datasets will be used as a basis to extract fault pattern
in our future work of common programming fault detection which
is not requirement specific.
Before defining the SOFL-to-Java traceability link for both

completed programs, a brief introduction to SOFL is given. SOFL
offers a formal and rigorous language to describe requirements in
an unambiguous manner. The SOFL language is mainly comprised
of the following components: class, module, data flow, data store,
process, and function. More information about the structure of
SOFL is detailed in [1]. Fig. 2 shows the usual components’
corresponding relationships in the transformation from SOFL
specification to Java program implementation. Data flows which
could be defined with a basic type (e.g., int type in SOFL) or
compound type (e.g., set type in SOFL) or user-defined type (e.g.,
composite type in SOFL) are understood as data item that need to
be taken in and out by the required functions. Data flows except
composite and product type usually are implemented as the fields
of Java class. Data stores corresponding to the variable part in Fig.
2 are variables that hold data in rest for use by processes
(equivalent to operations or functions in general term) and are
usually implemented as fields of a Java class. Processes express or
describe a specific function or operation via pre-condition and
post-condition based on predicate logic and are usually
transformed into the methods in Java class. The module containing
data flow and processes could be interpreted as the functional or
behavioral abstract of the object and usually implemented as a Java
class.
SOFL-to-Java Traceability Links for Completed Program

Definition. Our goal is to make a solution for capturing
meaningful information regarding the transformative relationships
between components of SOFL specifications and the ones of Java
program and for establishing their trace links. More specifically,
given a SOFL formal specification S such that S = {S_component1,
…, S_componentn} and a completed Java program P implementing
specification S such that P = {P_component1, …, P_componentm},
we aim to discover whether a trace link L exists between all
possible pairs of components in S and P such that L = {(s, p) | s ∈
S, p ∈ P, s ↔ p} where each pair of components s and p are said to
be the transformative links.

Approach

We present the proposed multilevel SOFL-to-Java trace links
establishment approach here from the main aspects of
measurement dimensions, its workflow, various components’
attributes design, used similarity measurement techniques,
respectively. To ensure the comprehensibility of our discussion, a
money-box example is given in Fig. 3. The money-box has three
required functions: save money, check money and purchase toy
with a fixed price of 1000 Japanese yen.

Figure 3. A money-box example of the transformation from SOFL
specification to Java implementation.

Figure 4. Attributes’ dimensions of SOFL components.

1.3 Measurement Dimensions
Formal specifications like SOFL are different from other artefacts

like the informal requirement documents written in natural
language. We observe that each component of a SOFL
specification has its own attributes including semantics, structure
and function, and correlation attributes during its interaction with
other components as shown in Fig. 4. Although there are some
variants, these four different kinds of attributes of the SOFL
specification will always be remained in their implementation in a
programming language. This is the principle that supports the
proposed traceability links method.
Semantic Dimension. By semantics we mean that the identifiers

assigned in components of SOFL may be semantically similar or
be kept in their corresponding Java implementation by developer.
For instance, the process name “Save_Money” in SOFL is still
used in the corresponding “save_money” method of Java class
“Money_Box” as shown in Fig. 3.
Structural Dimension. Here we refer structure mainly to type

and the type of component in different level of SOFL
specifications. The structure of data flow component is directly its
defined type. The structure of a process or function in SOFL is
represented by a list of its input data flows and output data flows.
The structure of a module or class in SOFL is the type list of the
data flows in its const part, types part and var part. For instance,
the structure of “money_box” data flow is “int” type, the input
parameter structure of process “Save_Money” is “int” type, the
field structure of “Money_Box” module is “const, int” as shown in
Fig. 3. The structural attributes are still kept in its Java
implementation.
Functional Dimension. Here we mean the function of different

which refers to the purpose of it could be revealed by the dynamic

Component I Component J

Relationship between SOFL components

semantics

structure

function

semantics

structure

function

module Money_Box
const
toy_price = 1500
var
money_box: int
process Save_Money(amount: int)

ext wr money_box
pre amount > 0.0
post money_box = ~money_box + amount

end_process;
process Check_Money() total: int

ext rd money_box
post total = money_box

end_process;
process Purchase_Toy() expense: int | warning: string

ext wr money_box
post ~money_box >= toy_price and expense =

toy_price and money_box = ~money_box – toy_price
or
~money_box < toy_price and warning = "the shortage

of the money in the money_box, failed transaction"
end_process;

end_module;

public class Money_Box {
public static final int toy_price = 1500;
private int money_box = 0;
void save_money(int amount) {

if (amount >0) {
money_box += amount;

} }
int check_money() {

return money_box; }
int purchase_toy() {

int expense;
if (money_box >= toy_price) {

money_box -= toy_price;
expense = toy_price;
return expense;

} else {
System.out.println("the shortage of the money in the

money_box, failed transaction");
expense = 0;
return expense;

} }
public static void main(String args[]) {

Money_Box ljd = new Money_Box();
System.out.println(ljd.check_money());
ljd.save_money(2000);
int cost = ljd.purchase_toy();
System.out.println("cost is " + cost);
System.out.println(ljd.money_box);

}
}

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 145

testing based on the test data generated by it and the function of
component in different level of SOFL specification are different.
For instance, the function of the “money_box” data flow is to store
data of int type, the function of “Save_Money” process is to
deposit money and “Money_Box” module has three functions:
“Save_Money”, “Check_Money” and “Purchase_Toy” as shown
in Fig. 3. These attributes of functional dimension are actually not
extracted and used in our following experiment as SOFL-to-Java
traceability linked could be effectively established without it and
the extraction procedure requires test data date generation and
dynamic testing that leads to low time efficiency.
Relational Dimension. Here we refer relation to the interactions

between different components in SOFL. Different data flows work
together to be the input data flows of a process. One data flow type
may be used as one input of a process or interact with the body of
a process or be used as the return type of a process. One data
flow or data store is constituted element of a process. A module
usually includes several processes. For instance, the constant
“toy_price” is used in the body of process “Purchase_Toy”, the
data store “money_box” is used as read mode in the body of
“Check_Money” process and as write mode in two other processes,
the “Money_Box” module has two data flows and three processes
as shown in Fig. 3.

1.4 Workflow
Our approach reckons which component of Java program

implements which component of SOFL specification. The
establishment process of these trace links is illustrated in Fig. 5.
The process consists of four major steps: attributes extraction for
specification and program components respectively, similarity
measurement and ranking. Each step that stands for an operation is
represented by a diamond and each data item is represented by a
box. An arrow from a box to an operation means that the data item
of the box is an input to the operation, and an arrow from an
operation to a box means that the data item of the box is an output
of the operation. An arrow from one operation to another shows a
control flow.
In general, our approach starts by extracting the attributes about

each component in SOFL specification and Java program. It then
creates candidate links between SOFL specification components
and Java program components. It then calculates the similarity
scores through some similarity measurement techniques based on
the extracted attributes and assigns similarity scores to the
candidate links. These similarity scores are the basis to rank the
candidates and identify which of them is the true traceability links.
The identified traceability links are used for program verification
and fault detection purpose.
It should be pointed that specification need to be preprocessed

like functional scenario derivation and specification purification.
Both of them are for the purpose of extracting more accurate
attributes for each component. Specification purification here
refers to separating the composite type and product type data flow
from the module in which they are declared. According to our
specification to program transformation experience, we find that
composite and product type data flow are usually implemented as
class in Java programming language and not implemented as field

of the class which implements the corresponding module.
Functional scenario is mainly used to solve one-to-many
traceability links situation introduced in the later 3.6 section.
Besides, we introduce component type grouping trace link trick for
reducing computation cost and improving trace link accuracy
which is shown in our experimental and evaluation section.
Component type grouping trace link means that we only calculate
the similarity score for SOFL specification components and Java
program components pairs which has consistent type. For example,
the component pair which has constant data flow of SOFL
specification and the method of Java class is invalid. Before
similarity score calculation, type substitution should be done in
advance based on some prior SOFL-to-Java data type
transformation knowledge and class dependence graph. The class
type data will be replaced by the type list of its constitutive fields.

1.5 Attributes Extraction of Multilevel Components
We design and extract different attributes for different

components of the SOFL specification from the perspectives of
semantics, structure, function and interactive relationships as
described in section 3.1. The reason is that one kind of component
has some unique attributes that can distinguish itself from other
kinds of components. The 33 designed and extracted attributes for
these components of SOFL specification is presented in Table 1.
We marked the name, explanation of each attribute and type of
corresponding attribute value. The attributes combination for
constant type data flow, basic type data flow, set type data flow,
map type data flow, sequence type data flow, enumeration type
data flow, composite type data flow, product type data flow,
process, function and module are shown in Table 2.
The unique attribute for data flow of constant type is its value

attribute. The unique and different attributes for data flow of map
type are its domain type and its range type. The attribute that
distinguishes the data flow of enumeration type from others is its
enumeration value. The distinguishable attribute that is extracted
for data flow of set and sequence type is the data type of its element.
If a data flow is also a data store, then the unique attributes for it
also include the information of processes that read or write the data
store. A process or function has unique attributes related to its own
input parameters (data flow) and return data flow type. Besides, its
interaction with the data flows that are declared in constant part,
type part and var part of the module in specification and the call
relations between itself and other functions or process could also
be extracted. The data flows of composite type and product type
have own attributes like associated fields’ type and amount while
the module has additional attributes about associated and
constitutive processes or functions.
The above description is about the attribute extraction for the

multilevel components of SOFL specification. The designed and
extracted attributes for different components of Java program is
actually the same as the ones extracted from the SOFL
specification as shown in Table 2.

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 146

Table 1. EXTRACTED ATTRIBUTES FOR SOFL COMPONENTS.

 Attribute ID Attribute Name and Explanation Attribute Value Type

1 “identifier”: what is its identifier? String

2 “type”: Will it be transformed into class or field or method in Java programs? String

3 “data_type”: what is its type? String

4 “constant_value”: what is its constant value? String, int or double

5
“interacted_method_body_identifier”: What are the identifiers of the methods

using this component in their method bodies?
String

6
“interacted_method_body_amount”: How many methods using this component in

their method bodies?
int

7
“interacted_method_amount_outside_class”: How many other classes’ methods

using this component?
int

8
“interacted_method_amount_in_class”: How many local class’s methods using

this component?
int

9 “interacted_class_type”: What are the types of interacted classes? String

10 “interacted_class_identifier”: What are the identifiers of interacted class? String

11 “fields_type”: What are the types of constitutive fields for a class? String

12 “fields_identifier”: What are the identifiers of constitutive fields for a class? String

13 “fields_amount”: What is the amount of constitutive fields for a class? int

14 “interacted_field_type”: What are the types of interacted other components? String

15
“interacted_field_amount”: How many other field-level components interacting

with it?
int

16
“ interacted_method_parameter_part_identifier”: What are the identifiers of the

methods using this component as the input parameter?
String

17
“ interacted_method_parameter_part_amount”: How many methods using this

component as the input parameter?
int

18
“ interacted_method_return_type_identifier”: What are the identifiers of the

methods using this component as the return type?
String

19
“interacted_method_return_type_part_amount”: How many methods using this

component as the return type?
int

20 “domain_type”: What is the type of the domain of a map type field? String

21 “range_type”: What is the type of the range of a map type field? String

22 “element_type”: What is the data type of its element in compound type field? String

23 “enumeration_value”: What is the enumeration value? String

24 “parameter_type”: what types are the input parameters of a method? String

25 “parameter_amount”: How many parameters does a method have? int

26 “return_type”: What is the return type of a method? String

27
“interacted_call_identifiers”: What are the identifiers of other methods calling the

method?
String

28 “interacted_call_amount”: How many methods calling the method? int

29 “method_amount”: How many methods does a class have? int

30 “method_identifier”: What are the identifiers of methods that a class have? String

31
“method_parameters_types”: What are the types of the parameters of methods that

a class have?
String

32 “method_return_type”: What are the return type of methods that a class have? int

33 “interacted_class_amount”: How many class does it interact? int

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 147

Figure 5. Workflow of establishing SOFL-to-Java trace links.

Table 2. ATTRIBUTES FOR VARIOUS COMPONENTS.

Component Attribute Combination
Attribute

Amount

constant type data flow /
final field in Java

1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 33

11

Basic type data flow /
basic type field in Java

1,2,3,5,6,7,8,9,10,14,1
5,33

12

Set type data flow / set
type field in Java

1,2,3,5,6,7,8,9,10,14,1
5,16,17,18,19,22,33

17

Sequence type data flow
/ list type field in Java

1,2,3,5,6,7,8,9,10,14,1
5,16,17,18,19,22,33

17

Map type data flow /
map type field in Java

1,2,3,5,6,7,8,9,10,14,1
5,16,17,18,19,20,21,33

18

Enumeration type data
flow / enumeartion type

field in Java

1,2,3,5,6,7,8,9,10,14,1
5,16,17,18,19,23,33

17

Composite type or
producte type data flow

1,2,3,7,8,9,10,11,12,13
,14,15,16,17,18,19,33

17

Process or function /
method in Java

1,2,3,9,10,14,15,24,25,
26,27,28,33

13

Module / class in Java
1,2,3,5,6,7,8,9,10,11,1
2,13,14,15,17,18,19,29

,30,31,32,33
23

1.6 Selected Similarity Measurement Techniques
The extracted attribute sets for multilevel components of both

SOFL specification and Java code are the basis to measure their
similarity. To calculate the similarity score or trace link score, we
select four existing similarity measurement techniques including
longest common subsequence-both (LCS-B), cosine similarity, the
similarity measurement between two numbers and Jaccard
coefficient. These four techniques produce a score between 0 and
1 for each extracted attribute.
Longest common subsequence-both (LCS-B) [13] is variant of

longest common subsequence and is used to measure the similarity
of the “identifier” attribute only. LCS-B calculates the textual
similarity between two strings 𝑣!"#$and 𝑣%&'& by dividing the
length of their longest common subsequence by the greater of the
length of them. It can be expressed as follows:

𝑠𝑐𝑜𝑟𝑒(𝑣!"#$, 𝑣%&'&* =
|)*+('!"#$,'%&'&)|
/01(2'!"#$2,|'%&'&|)

 (1)

We choose LCS-B as the name similarity technique other than
naming conventions or Levenshtein distance etc. This is because
LCS-B performs better than others in recall and it produces the
same score as naming convention technique even in the extreme
situation that the names of components in SOFL are the same as
the names of components in Java.
Cosine similarity is mainly used to measure the similarity of these

attributes whose value type is string type except “identifier”
attribute. Cosine similarity measures the similarity of two strings
𝑣!"#$ and 𝑣%&'& through calculating the cosine of the angle
between two non-zero vectors A and B which representing these
two strings 𝑣!"#$and 𝑣%&'&. It can be expressed as follows:

 𝑠𝑐𝑜𝑟𝑒(𝑣!"#$, 𝑣%&'&* =
3∙5

2|3|2||6||
 (2)

String vectorization which is actually counting the frequency of
each character in each string is an essential preliminary work
before calculating the similarity of two strings. Cosine similarity
is usually used in positive space in our application scenario, so the
value given is between 0 and 1.
The similarity between two numbers 𝑣!"#$ and 𝑣%&'& is

measured by dividing the minimum of two numbers by the
maximum of two numbers. It is mainly used to measure the
similarity of these attributes whose value type is int type. It can be
expresses as follows:

 𝑠𝑐𝑜𝑟𝑒(𝑣!"#$, 𝑣%&'&* =
789('!"#$,'%&'&)
/01('!"#$,'%&'&)

 (3)

We choose ratio of two number as similarity rather than Euclidean

distance and Mahalanobis distance as our intention in order to get
a similarity score between 0 to 1 for each extracted attribute.
Jaccard coefficient [19] is mainly used to measure the similarity

of those attributes who value type is set type. Given two sets
𝑣!"#$ and 𝑣%&'& , Jaccard coefficient calculates their similarity
score by dividing the number of elements in their intersection by
the number of elements in their union. It can be formulated as
follows:

𝑠𝑐𝑜𝑟𝑒(𝑣!"#$, 𝑣%&'&* =
|'!"#$	∩	'%&'&|
|'!"#$	∪	'%&'&|

 (4)

Jaccard coefficient is selected by considering the multiple value
and disorder characteristic of the input data flows of SOFL process
and parameters of Java method. It should be pointed out that most
set type attributes are transformed into string type and cosine
similarity is used to measure their similarity to simply calculation
and improve the accuracy of similarity calculation in our

Attributes of
specification’s
components

Attributes of
program’s components

Specification

Program

Extract
program
attribute
set

Measure
similarity score

Derive Functional Scenario

Specification Purification

Preprocess

Preprocessed Specification

Extract
specification
attribute
set

Component Type Grouping

Type Transformation

Preprocess

Preprocessed
Attributes of

specification’s
components

Similarity Score Trace Links

Rank

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 148

implementation. Besides, it could also satisfy our score range
requirement.

1.7 Trace Link Prediction
SOFL-to-Java Prediction. A matrix of similarity score is

generated or constructed after the similarity calculation by the
integrated application of above similarity measurement
techniques:
 𝑆𝑐𝑜𝑟𝑒_𝑀𝑎𝑡𝑟𝑖𝑥 ∈ ℝ|+=>)_*|×|ABCB_*| (5)
Where 𝑆𝑂𝐹𝐿_𝐶is the set of components extracted from SOFL

specification and 𝐽𝐴𝑉𝐴_𝐶 is the set of components extracted
from the Java implementation. Each element of the score matrix
𝑆𝑐𝑜𝑟𝑒_𝑀𝑎𝑡𝑟𝑖𝑥 is the traceability score for a given SOFL-to-Java
component pair(𝑠_𝑐, 𝑝_𝑐) ∈ (𝑆𝑂𝐹𝐿_𝐶 × 𝐽𝐴𝑉𝐴_𝐶).
Each row of the score matrix is a similarity score vector of a

SOFL component to each component of Java program code. This
similarity score vector is then ranked and compared with a
threshold. If the maximum of this similarity score vector is greater
than the threshold, the corresponding SOFL and Java component
pair will be linked.

1.8 One-to-Many SOFL-to-Java Trace Links
The above discussion may create an illusion that the components’

mapping or linking is a one-to-one corresponding relationship. The
realistic SOFL-to-Java traceability link is actually more
complicated. This is because that a process in SOFL specifications
may be implemented as multiple methods in Java programs. In
other words, there exists one-to-many mapping relationships
between SOFL process and Java method. There are two reasons
contributing to this phenomenon.
The first reason is that a process, especially with multiple ports,

allows exclusive input or output data flows and different output
data flows depend on different input data flows. Besides, both the
single port and multiple-port processes could derive multiple
functional scenarios and these functional scenarios cannot be
implemented fully in a single Java method sometimes. It should be
pointed that a functional scenario is corresponding to a program
path in a Java method and a Java method could implement multiple
functional scenarios. In this case, we propose to do process
decomposition and break process into multiple functional
scenarios [9], record the inclusive relationship between process
and functional scenarios and use above discussed method to
establish the trace links between the functional scenarios of SOFL
and the methods of Java program.
The second reason is the personal programming habits of

developers. This means that some developers tend to divide a
process implementation into several steps and each step is
implemented as a method for good logic, readability and
comprehensibility of code. For example, some developers may
implement the LCS-B algorithm used in this paper as one single
Java method while some other developers may first implement a
method to obtain the longest common string and then write another
method to implement LCS-B algorithm. In this case, a call graph
or a call chain will be formed. We propose to use the current static
analysis technique like pointer analysis [10] to construct the call
graph or call chains, extract attributes for the call chains and
establish the trace links between processes to the call chains.

Table 3. THE SUBJECT.

ATM Specification ATM Java Code

module, data flow, process class, field, method

Module(2), Composite type(8),
Product type(2), const(5), map

type(4), sequence type(2),
enumeration type(1), basic data
flow(2), data store(6) (overlap

here)，process(6), process
functional scenario(3),

function(1),

class(12), const(5), map(4),
seq(2), enumeration(2, 1

noise), basic(2), method(15,
5 noise)

 951 code of lines

36 multi-level traceability links

Table 4. EXPERIMENTAL RESULTS FOR RQ1 AND RQ2.

Situation
Attributes

Dimension

Grouping

Traceability

Link

Accuracy

consistent

identifiers

Semantical+
Structual+
Relational

Not adopted 94.4%(34/36)

adopted 97.2%(35/36)

inconsistent

identifiers
Structual+
Relational

Not adopted 80.5%(29/36)
adopted 88.8%(32/36)

Implementation and Evaluation
This section shows the implementation, the research questions,

the subject and the performance of our method compared with
existing approach, and a discussion of threats to its validity.
The proposed traceability link method and workflow are

implemented using Python programming language. To extract
attribute sets for components of Java program, we use the open
source javalang python library which provides a lexical analyzer
and parser for Java source code and make some modifications.
Besides, we rely on javalang to tokenize SOFL specification and
make some rules based on keywords or modifiers in SOFL
language to extract attribute set for components of SOFL
specification for a small money-box example which is not used as
experimental data here. Lastly, we implement the three used
similarity measurement algorithms including longest common
subsequence-both (LCS-B), our variant of Manhattan distance,
cosine similarity and Jaccard coefficient by ourselves. A tool
supporting our work will be released in the future.
For the subject as shown in Table 3, we use a critical ATM system

example [14] which was specified using SOFL and was
implemented using Java programming language. The SOFL
specification modeling ATM system contains totally 36
traceability links. Among them, there are 2 module-level trace
links, 8 composite type data flow level trace links, 2 product type
data flow level trace links, 5 constant data flow level trace links, 4
map type data flow level trace links, 2 sequence type data flow
level trace links, 1 enumeration type data flow level trace links, 2
basic type data flow level trace links, 6 process level trace links, 3
process functional scenario level trace links and 1 function level
trace links. The implemented Java program of ATM specification

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 149

has the size of 951 code of lines, 12 Java classes, 5 constant fields,
4 map type fields, 2 list type fields, 2 enumeration type fields, 2
basis type fields and 15 methods. It should be pointed that 1 of 2
enumeration type fields and 5 of 15 methods are noise data in the
Java implementation.
In order to achieve a comparative analysis, we choose the latent

semantic indexing (LSI) [11] from existing information retrieval-
based techniques and naming conventions technique [4] as the
baseline. They are chosen because they are two of the most
common techniques for establishing traceability links and naming
conventions is best for accuracy in [13].
To evaluate our work, we are concerned about the following

research questions: (1) how effective is our proposed method in
modeling SOFL-to-Java traceability links in the situation of
consistent identifiers during implementation? (RQ1) (2) How
effective is our proposed method in modeling SOFL-to-Java
traceability links in the situation of inconsistent identifiers during
implementation? (RQ2) We also make a hypothesis that the
implemented Java program implements all the specification and so
we do not need to consider the measurement like recall, F1 score.
Table 4 illustrates the results for RQ1 and RQ2. The result shows

that our method could achieve the precision of 94.4% and finally
attain the precision of 97.2% by using type grouping traceability
link optimization strategy in the situation of consistent identifiers.
The performance of our proposed method is approaching the
accuracy of naming conventions techniques which has the highest
accuracy. Besides, it is still effective with the final accuracy of 88.8%
in dealing with the situation of inconsistent identifiers. This is
because proposed method makes use of more dimensional
attributes’ information. The 88.8% accuracy is usually better than
the latent semantic indexing (LSI) [12] from existing information
retrieval-based techniques which is one of the most common
techniques for establishing traceability links.
The main threat comes from the following aspects. One is the

scale of the program used in our experiment. It is not big enough
to fully demonstrate the effectiveness of proposed method.
However, the experimental results support our proposed method
and proved that our method is more powerful than existing two
methods in such a small-scale program and makes us believe that
it will still perform better than them in a larger program. Besides,
the applicability of proposed method will be restricted as currently
we manually extract the attributes which may introduce some
faults in extracted attribute sets and have not implemented the
automatic various dimensional attributes extraction tool.

Conclusion
In this paper, we have presented an approach for establishing

multilevel SOFL-to-Java traceability links for both completed
programs. The proposed method for SOFL-to-Java traceability
link could be extended to model relationships between formal
specification artefacts and code artifacts. It enhances the existing
establishment techniques by combining an ensemble of new and
existing measurement dimensions including semantics, structure,
function and relationships. An evaluation of our approach shows
that it gives an accurate and fine-grained view of the relationships
between the SOFL specification and Java code artefacts. This work

mainly serves for automatic specification-based program
inspection and software construction monitoring realization in
human-machine pair programming to detect requirements-related
fault and ensure software quality.

Reference

[1] Liu, S.: Formal engineering for industrial software development:

Using the SOFL method. Springer Science & Business Media, 2013.
[2] Liu, S., Chen, Y., Nagoya, F. and McDermid, J.A.: Formal

specification-based inspection for verification of programs. IEEE
Transactions on software engineering, 38(5), pp.1100-1122 (2012).

[3] Liu, S.: Software Construction Monitoring and Predicting for Human-
Machine Pair Programming. In International Workshop on
Structured Object-Oriented Formal Language and Method, pp. 3-20,
Springer, Cham (2018).

[4] Van Rompaey, B. and Demeyer, S.: Establishing traceability links
between unit test cases and units under test. In 13th European
Conference on Software Maintenance and Reengineering, pp. 209-
218, IEEE (2009).

[5] Liu, S. and Nakajima, S.: Automatic test case and test oracle
generation based on functional scenarios in formal specifications for
conformance testing. IEEE Transactions on Software Engineering
(2020).

[6] Hayes, I.: VDM and Z: A comparative case study. Formal Aspects of
Computing, 4(1), pp.76-99 (1992).

[7] Liu, S.: A survey on the use of SOFL based on four projects.
Technical Report HCIS-2004–01, CIS (2004).

[8] Amann, S., Nadi, S., Nguyen, H.A., Nguyen, T.N. and Mezini, M.:
MUBench: A benchmark for API-misuse detectors. In Proceedings
of the 13th International Conference on Mining Software
Repositories, pp. 464-467 (2016).

[9] Amann, S., Nadi, S., Nguyen, H.A., Nguyen, T.N. and Mezini, M.:
MUBench: A benchmark for API-misuse detectors. In Proceedings
of the 13th International Conference on Mining Software
Repositories, pp. 464-467 (2016).

[10] Amann, S., Nadi, S., Nguyen, H.A., Nguyen, T.N. and Mezini, M.:
MUBench: A benchmark for API-misuse detectors. In Proceedings
of the 13th International Conference on Mining Software
Repositories, pp. 464-467 (2016).

[11] Li, Y., Tan, T., Møller, A. and Smaragdakis, Y.: A Principled
Approach to Selective Context Sensitivity for Pointer Analysis.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 42(2), pp.1-40 (2020).

[12] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K. and
Harshman, R.: Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6), pp.391-407 (1990).

[13] White, R., Krinke, J. and Tan, R.: Establishing multilevel test-to-
code traceability links. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pp. 861-872
(2020).

[14] Liu, S., “A Case Study of Modeling an ATM Using SOFL”,
technical report, 2013.

 Acknowledgments The research was funded by China
Scholarship Council (CSC No. 202108050145) and supported by
ROIS NII Open Collaborative Research 2021-(21FS02).

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 150

