

A Framework for Automatic Detection of Vulnerabilities in
Human-Machine Pair Programming

Pingyan Wang1 Shaoying Liu1 Ai Liu1

Abstract: In order to mitigate the severe consequences of security threats, many software-based systems are endeavoring to
detect security vulnerabilities as early as possible in the software life cycle. In this paper, we present a framework for
systematically detecting and mitigating potential security vulnerabilities during the construction of programs using a particular
programming paradigm known as Human-Machine Pair Programming. The framework allows developers to address the
vulnerability problem in the coding phase rather than fix it at a high price when the system is in operation. Our framework
advocates three critical steps: (1) generate an attack tree to model a specific security threat, (2) construct code-matching patterns
based on the result of the attack tree analysis, and (3) detect corresponding vulnerable code based on the patterns during the
program construction. We also present a case study to demonstrate how it works in practice.

Keywords: Security vulnerabilities; Human-machine pair programming; Attack trees

1. Introduction

Security vulnerabilities can be found in different phases of a
software life cycle. For most software-based systems, especially
security-critical systems, it is important to detect and tackle the
security problems at an early stage since adverse impact can
increase rapidly with time. Researchers have explored many
approaches for mitigating security problems during different
development phases, such as requirement phase [1], coding phase
[2] and testing phase [3]. Intuitively, identifying the
security-related problems in the coding phase is generally
efficient because it allows the programmer to examine and fix the
vulnerable code timely. Some solutions, such as static analysis
techniques [4] [5] and Defensive Programming techniques [6] [7],
are proposed to achieve this goal, but most of them only focus on
certain systems and vulnerabilities instead of addressing the full
scope of the problem. Furthermore, since most of the proposed
techniques require considerable manual work and humans’
collaboration, the efficiency of their application may not be
desirable. This paper tries to address these problems by proposing
a framework suitable for computer to adopt to automatically
uncover vulnerability problems during the construction of
programs. It can efficiently support the Human-Machine Pair
Programming paradigm (the details of the framework will be
discussed in Section 3).

Since code vulnerabilities can be exploited by attackers, it is
important to find out as many potential vulnerabilities as possible.
Attack trees [8] are considered as a popular method to describe
the sequence of events that can result in a specific attack. In this
paper, we make use of this technique to analyze and identify all
the possible code vulnerabilities of an arbitrary attack, so that we
are able to fix them one by one at code level if possible.

Human-Machine Pair Programming (HMPP) [9] is
characterized by the feature that humans (i.e., developers) create
algorithms, data structures, and the architecture of the program
whereas the machine (i.e., the computer) acts as an assistant: 1) to
monitor the program under construction to identify potential
software defects or violation of standards in the program, and 2)

 1 Hiroshima University, Higashi-Hiroshima City, Hiroshima 739-8511, Japan

to predict useful program segments for enhancing the robustness
and the completeness of the program. HMPP has various
advantages; for example, no communication between different
developers is required. Inspired by such a programming paradigm,
this paper intends to present an approach that the developer and
the computer can work collaboratively instead of finding code
vulnerabilities manually.
In this paper, we make three contributions. Firstly, we propose a
framework for building a computerized technology to
systematically and automatically detect vulnerabilities during the
construction of programs. This technology can effectively support
the new programming paradigm known as Human-Machine Pair
Programming. Secondly, we put forward a systematic approach to
constructing vulnerable code patterns in the framework that can
be used to detect specific vulnerable code. Thirdly, we describe a
way that the human programmer can effectively collaborate with
the computer in the framework.

The rest of this paper is organized as follows. Section 2
introduces the background knowledge necessary for our proposed
framework, including attack trees and Human-Machine Pair
Programming. Section 3 proposes a framework to systematically
deal with security vulnerabilities in the coding phase. Section 4
provides a case study on SQL injection attacks (SQLIAs). Section
5 reviews related work and section 6 presents the conclusion and
future work.

2. Background

In this section, we briefly introduce the Attack Trees and HMPP
both of which are related to our framework.

2.1 Attack Trees
Attack trees provide a way to describe attacks against a system

in a tree structure, with the goal as the root node and different
ways of achieving that goal as leaf nodes [8]. An attack tree is
comprised of AND- and OR-decompositions. An
AND-decomposition can be decomposed as a set of attack
sub-goals, all of which must be achieved for the attack to succeed
while an OR-decompositions can be decomposed as a set of
attack sub-goals, any one of which must be achieved for the
attack to succeed [10].

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 129

Note that although attack trees have been studied for decades,
there is no standard way to represent an attack tree [11]; for
example, either graphical representation or textual representation
can be used. In this paper, we use graphical representation and
borrow some useful symbols from fault trees [12]. Table 1 shows
several typical symbols and their meanings that will be used in
our framework. Note that the meaning of each symbol used in
this paper might be slightly changed. For example, while circles
represent basic events in a fault tree, they represent atomic
attacks in this paper.

Table 1 Symbols used in this paper.

Symbol Fault Trees [12] This paper

 Basic event Atomic attack

Intermediate

event
Attack

goal/sub-goal

 AND AND

 OR OR

In this paper, the root node, intermediate nodes, and leaf nodes

represent the attack goal, sub-goals, and atomic attacks,
respectively (see Fig. 1). Formally, an attack tree is defined as
follows.

Definition 1. An attack tree 𝐴𝐴𝐴𝐴 = (𝐺𝐺0, {𝐺𝐺𝑖𝑖}𝑖𝑖+1𝑛𝑛 ,𝐴𝐴, 𝜆𝜆) is a tree
structure for modeling an arbitrary attack, where 𝐺𝐺0 is the attack
goal (root node), {𝐺𝐺𝑖𝑖}𝑖𝑖+1𝑛𝑛 is a set of sub-goals (intermediate
nodes), 𝐴𝐴 is a set of atomic attacks (leaf nodes), and
𝜆𝜆: 𝐺𝐺0⋃ {𝐺𝐺𝑖𝑖}𝑖𝑖+1𝑛𝑛 ⋃ 𝐴𝐴 → 𝑆𝑆 is a function assigning properties to
each node where 𝑆𝑆 is a set of property values.

Fig. 1. Example of attack trees.

This paper uses the term attack scenario (also intrusion
scenario) to describe a smallest combination of atomic attacks
that can cause the attack goal to occur, which is similar to a
minimal cut set in fault trees [12]. Fig. 1 provides a simple
example to describe the decomposition of an attack goal. In this
tree, for instance, to achieve the attack goal 𝐺𝐺0, attackers must
achieve sub-goal 𝐺𝐺1 or 𝐺𝐺2; similarly, to achieve sub-goal 𝐺𝐺1,
attackers must successfully launch both atomic attack 𝐴𝐴1 and 𝐴𝐴2.

Therefore, there are three attack scenarios, i.e., three different
ways to achieve 𝐺𝐺0: 〈𝐴𝐴1,𝐴𝐴2〉, 〈𝐴𝐴3〉 and 〈𝐴𝐴4〉.

Once an attack tree has been generated, the designer can assign
values to the leaf nodes. These values enable people to better
evaluate the attack. We will elaborate on that in Section 3.

To generate a sound attack tree could take much effort and time
because the designer needs to consider all atomic attacks against
the attack goal. The designer should think from the perspective of
the attacker (instead of the defender) with infinite resources,
knowledge and skill [13]. Hence, it depends largely on the
experience and expertise of the designer. Fortunately, attack trees
are reusable. For example, once the PGP attack tree has been
completed, anyone can use it in any situation that uses PGP [8].

2.2 HMPP
HMPP [9], inspired by pair programming [14], is characterized

by the feature that the human programmer creates algorithms and
data structures for the program under construction while the
computer provides a constant checking for detecting bugs and
predicting future contents. The bugs can be classified into
different categories, such as requirements-related bugs,
implementation-related bugs, security-related bugs, and
efficiency-related bugs. In this paper, we focus exclusively on
security-related bugs.

HMPP can be supported by Software Construction Monitoring
(SCM) and Software Construction Predicting (SCP), which aim
to automatically and dynamically observe and verify the current
version of the software for fault detection and for future contents
prediction, respectively. For brevity, we only introduce the basic
idea of SCM as follows [9].

Fig. 2 shows the basic framework for SCM. The Syntactical
Analysis of the current version of software CV_S can help form
specific properties that need to be checked. The property-related
knowledge base, stored essential properties (e.g., the properties
based on software development conventions or standards,
common faults, etc.) of the software beforehand, can be updated
over time.

Fig. 2. Basic framework for SCM (taken from [9]).

3. Proposed Approach

In this section, we present the main idea of our approach.
Fig. 3 shows the general overview of the proposed framework,

which can be decomposed into two phases: pattern preparation
phase (shown as orange shaded boxes) and pattern application
phase (shown as blue shaded boxes). In Fig. 3, we use D, C and P

Attack goal G0

Atomic
attack A1

Atomic
attack A2

Sub-goal G1 Sub-goal G2

Atomic
attack A3

Atomic
attack A4

Property-related
knowledge base Fault report

Syntactical Analysis Form Specific
Properties Check Properties

Current version of
software

Information of the
current software Specific properties

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 130

to represent the designer, computer and programmer, respectively.
The designer (or the analyst) models targeted attacks by creating
attack trees and constructing code-matching patterns, all of which
will be stored in a vulnerability knowledge base. The computer,
armed with a tool and the vulnerability knowledge base, detects
vulnerable code during the program construction. The
programmer interacts with the computer by constructing the
program and fixing the vulnerable code. Moreover, the
programmer may check the attack trees and patterns according to
the warnings and give feedback (if any) on them. The
vulnerability knowledge base may thus be updated based on the
feedback.

Fig. 3. Overview of the proposed framework.

In our approach, there is no need for the programmer to possess
much security expertise or to manually perform security analysis
while coding because the manual work (creating attack trees,
constructing patterns, etc.) has been done by the designer in the
pattern preparation phase. Hence, our approach is
programmer-friendly and the programmer can focus on writing
the code. Although the manual work may take much time and
effort, it is fortunately a one-time event (to a large extent), which
means once the work has been done it can be reused by any other
designer such that different designers do not need to repeat
pattern preparation for the same vulnerability. For this reason, the
more designers from the security community adopt our approach,
the easier we can build a sound vulnerability database and a
powerful tool.

Section 3.1 and 3.2 discuss the pattern preparation and pattern
application, respectively.

3.1 Pattern Preparation
This stage includes three activities: identifying attack goals,

generating attack trees, and constructing code-matching patterns.
3.1.1 Identifying attack goals. In the activity of identifying an
attack goal, the attack goal 𝐺𝐺0 and the targeted system will be
defined. Very often the designer would select attack goals from
common attacks occurred in the past or based on specific security
requirements/specification. For example, the designer may refer
to the common attacks listed in security-related databases, such
as National Vulnerability Database (NVD) [15] and Common
Weakness Enumeration (CWE) [16]. Subsequently, we need to
assign a value of security level to 𝐺𝐺0. For example, we can use

qualitative severity rankings of a set of values {Low, Medium,
High} for assessing the security level, as described in Common
Vulnerability Scoring System (CVSS) [17]. The assessment
criterion is mainly based on the severity of the attack, which can
be measured by security metrics such as confidentiality impact,
integrity impact, and availability impact. A successful attack
against availability, for example, may allow an attacker to launch
denial-of-service (DoS) attacks while successful attacks against
confidentiality and integrity may allow an attacker to read and
modify some sensitive data of a system, respectively.
3.1.2 Generating attack trees. In the activity of generating an
attack tree, the attack goal will be decomposed as a set of
sub-goals and atomic attacks, as shown in Fig. 4. Meanwhile, risk
level should be assigned to each atomic attack and then to each
attack scenario. Like security level, risk level in this paper ranges
from Low to High (although any other ranking mechanism can be
used). The assessment criterion is based on the probability of
occurrence of each atomic attack. However, it is unlikely to
calculate the exact probability because the availability of
resources (e.g., money, time, etc.) of each attacker varies [18].
Nonetheless, it is possible to conduct a risk analysis to obtain
relatively accurate results. To conduct a thorough risk analysis,
experience and expertise are required. For the sake of simplicity,
the following provides a basic risk assessing method for roughly
calculating the risk level [18] [19].

Fig. 4. Generation of an attack tree.

a) Risk identification: An attack is normally launched by the
attacker who exploits certain vulnerability, but in some extreme
cases it may be caused by system failures, user’s unintentional
manipulation, etc. Therefore, there are two types of risk: hostile
risk and random risk. To identify the type of risk can help the
analyst choose an appropriate assessing method. When
considering a hostile risk, for example, we should think mainly
from the perspective of the attacker (instead of the defender).

b) Required resources calculation: Consider that we need to do
the analysis for a hostile risk. We will analyze what resources are
required for an attacker to exploit the vulnerability. The resources
may include money, time, raw materials, knowledge, skill, etc.

c) Expected benefits calculation: We will analyze what expected
benefits an attacker can gain from a successful attack. That will
help us understand attacker’s motivation and expected returns.

In order to calculate the risk level of the attack, we can do a

Vulnerability
Knowledge Base

[D]: Identify the attack
goal

[D]: Generate an attack
tree

[D]: Construct code-
matching patterns

[P/C]: Detect vulnerable
code while coding

[C]: Indicate warning
information[P]: Fix the code

Pattern Preparation

Pattern Application

Attack goal G0

Atomic
attack A1

H

Atomic
attack A2

M

Sub-goal G1 Sub-goal G2

Atomic
attack A3

L

H = High
M = Medium
L = Low

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 131

cost-benefit (risk-return) analysis using the resources and benefits
mentioned above. For example, if a successful attack is expected
to bring considerable benefits but only a few resources are
required to launch the attack, there would be high likelihood that
the attack will occur such that the risk level will be considered as
High.
3.1.3 Constructing code-matching patterns. In the activity of
constructing code-matching patterns, patterns will be built for
detecting vulnerable code during the process of code matching.
Formally, a code matching is defined as follows.

Definition 2. A code matching is a function 𝑐𝑐𝑐𝑐:𝑃𝑃 → 𝒫𝒫(𝐶𝐶) that
maps patterns to vulnerable code, where 𝑃𝑃 is a set of patterns,
𝒫𝒫 is the power set monad, and 𝐶𝐶 is the set of vulnerable code
fragments.

The construction of the patterns depends on the analysis of
atomic attacks, which can be launched based on the exploitation
of certain vulnerabilities. Let 𝑉𝑉 denote a set of vulnerabilities. In
this paper, we assume that one atomic attack 𝑎𝑎 ∈ 𝐴𝐴 is caused by
one vulnerability 𝑣𝑣 ∈ 𝑉𝑉. Let 𝐸𝐸 (𝐸𝐸 ⊂ 𝐶𝐶) be a set of equivalent
but differently formulated expressions or code fragments, each of
which contains the vulnerability 𝑣𝑣. 𝐸𝐸 may be an infinite set. Let
𝐾𝐾 be the subset of 𝐸𝐸 to denote the expressions or code
fragments that are known by the designer. A set of features 𝐹𝐹
can be extracted based on 𝐾𝐾 and be used to construct a pattern
𝑝𝑝 ∈ 𝑃𝑃. We call the pattern derived pattern, and the definition is
formally given as follows.

Definition 3. A derived pattern 𝑝𝑝 ∈ 𝑃𝑃 is a pattern that matches a
set of equivalent but differently formulated expressions or code
fragments 𝐸𝐸, each of which contains the vulnerability 𝑣𝑣 ∈ 𝑉𝑉.

The pattern 𝑝𝑝 can be derived from a set of features 𝐹𝐹, which
are extracted based on 𝐾𝐾 (𝐾𝐾 ⊆ 𝐸𝐸), where 𝐾𝐾 is the known
subset of 𝐸𝐸 . 𝐾𝐾 is achieved based on the analysis of the
vulnerability 𝑣𝑣 ∈ 𝑉𝑉 while 𝑣𝑣 is derived from the atomic attack
𝑎𝑎 ∈ 𝐴𝐴. Fig. 5 shows the process of pattern construction.

Fig.5. Process of pattern construction.

The features 𝐹𝐹 determine whether the pattern 𝑝𝑝 is powerful
enough to reduce false negatives (the pattern fails to match the
real vulnerable code). On the other hand, the pattern Pi should not
be too “powerful”; otherwise false positives (the pattern reports
false warnings) could occur. We formally define the false
negative and false positive as follows.

Definition 4. Let 𝑀𝑀 be the set of expressions or code fragments
that a pattern 𝑝𝑝 ∈ 𝑃𝑃 should match in theory, and let 𝑁𝑁 be the
set of expressions or code fragments that the pattern 𝑝𝑝 can
match in practice. If there exists an expression or code fragment
𝑐𝑐 ∈ 𝑀𝑀 – 𝑁𝑁 that the pattern 𝑝𝑝 fails to match, then a false
negative occurs. If there exists an expression or code fragment
𝑐𝑐 ∈ 𝑁𝑁 – 𝑀𝑀 that the pattern 𝑝𝑝 does match, then a false positive

occurs.

To the best of our knowledge, there is no standard way to
construct such derived patterns in practice, but some typical
techniques, such as Regular Expressions [20] and Context-Free
Grammar [21], are widely considered as at least a partial solution
to this problem. Regular expressions, for example, are efficient
for describing lexical structure of constructs such as identifiers,
constants, keywords, and white space [21]. These typical
techniques can be easily applied to our approach because the
targeted attack has been decomposed as fine-grained atomic
attacks using attack trees and the atomic attacks become smaller
and simpler to model. This paper will use regular expressions as
an example to illustrate some steps of the proposed framework.
(The detailed regular-expression syntax will not be covered in
this paper. Interested readers can see [20] for reference.)

Example 1 and 2 illustrate false negatives and false positives,
respectively.

Example 1. Consider a code snippet in Fig. 6. Let us use regular
expressions to match any method following myWriter.. If a
pattern “myWriter[\w.]+\(.+\)” is used, then a false negative
occurs due to the fact that it fails to match the method
myWriter.close() in this code, as shown in Fig. 7.

Fig.6. A code sample.

Fig.7. Example of false negatives.

Example 2. Consider a code snippet in Fig. 6. Let us use regular
expressions to match any method following myWriter.. If a
pattern “myWriter[\w.]+.+” is used, then a false positive occurs
due to the fact that it mismatches the string myWriter.txt in this
code, as shown in Fig. 8.

Atomic attack a Vulnerability v Epressions/Code
fragments K

Attack tree

Pattern p

Features F

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 132

Fig.8. Example of false positives.

After constructing the patterns for detecting certain vulnerable
code, the designer should also work out a solution (i.e.,
countermeasure) to each corresponding atomic attack at this stage,
so that the programmer can take it as a code fix suggestion.
Ideally, the solution is also expected to provide a secure code
example, thus allowing the programmer to adopt it directly.

3.2 Pattern Application
This stage includes three activities: detecting vulnerable code,
indicating warning information, and fixing the code.
3.2.1 Detecting vulnerable code. In the activity of detecting
vulnerable code, particular code that can lead to possible atomic
attacks will be automatically detected while the program is under
construction. The detection will be performed by the computer
based on the patterns constructed in the pattern preparation phase.
In practice, the patterns will be stored in a vulnerability database,
which can be read by a tool. Generally, one pattern can be used to
monitor and capture one kind of vulnerability. The vulnerable
code will be captured in real time once it triggers the
corresponding pattern, which is the same as searching specific
strings using Unix grep.

Warning(s): The code contains sensitive information
Location: Line 20-30
Possible attack(s): SQL injection
Security level: High
Risk level: High
Solution(s): Do not contain any sensitive information

Fig. 9. Example of warning information.

3.2.2 Indicating warning information. In the activity of
indicating warning information, the programmer will be informed
of what and where the vulnerability is, and how to fix the
vulnerability. The warning information should include the
location of the vulnerability, security and risk level information,
solutions, etc. The security and risk level have been discussed in
the pattern preparation phase. The solutions are the
countermeasures for corresponding atomic attacks, which should
also be prepared in the pattern preparation phase, and they will
serve as suggestions for the programmer. Fig. 9 shows an
example of warning information.
3.2.3 Fixing the code. In the activity of fixing the code, the

programmer can examine and fix the vulnerable code timely
according to the warning information provided by the computer.
The programmer can also decide to fix the code based on his/her
own experience and expertise or to completely dismiss the
warnings for some reason (e.g., false positives). Moreover, if the
programmer is interested in viewing the attack trees and patterns
of the warnings, he/she can check them in the vulnerability
knowledge base and give feedback (if any) so that the knowledge
base will thus be updated based on the those useful feedback
from different programmers.

4. Case Study
In this section, we will illustrate the proposed approach in a case

study. To demonstrate the main idea of the framework more
clearly, we use a simple web-based stock exchange trading
system and focus on some common issues that might be familiar
to most researchers and practitioners. The stock exchange trading
system allows customers and companies to register, buy or sell
stocks, etc. Fig. 10 depicts the architecture of the stock exchange
trading system.

DatabaseServerUser Stock Issued
Company

Fig. 10. The architecture of the stock exchange trading system.

We focus on a common vulnerability called SQL injection
attacks (SQLIAs), which is mainly caused by insecure code or
lack of input validation. As one of the Most Dangerous Software
Weaknesses listed in the 2020 Common Weakness Enumeration
(CWE) [16], SQL injection attacks can pose a serious threat to
many web applications.

4.1 Modeling SQLIAs with Proposed Framework
Based on the proposed framework, this subsection describes the

entire process for modeling SQLIAs from pattern preparation to
pattern application. Each of the 6 steps below corresponds to
Section 3.1.1 -3.1.3 and Section 3.2.1-3.2.3, respectively.

(1) Identifying attack goals. We select the SQLIAs as the
attack goal G0 and the web-based stock exchange trading system
as the targeted system. We then assign a value of security level to
this type of threat. Since SQLIAs can seriously affect a
web-based system [16] [22] (e.g., violating the confidentiality,
integrity, and availability of the system), we would assign the
value High to indicate the security level of this threat.

(2) Generating attack trees. We generate the attack tree against
SQLIAs, as shown in Fig. 11. Note that a complete attack tree of
SQLIAs could be much more complicated as it involves many
different types of the attack and countless variations [22] [23].
For the sake of simplicity, we omit some details and generate a
simplified, incomplete version based on the properties of the
stock exchange trading system.

Once the attack tree is generated, we calculate the risk level of
each atomic attack and attack scenario. For example, the
following uses the assessing method described in Section 3.1.2 to

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 133

illustrate how to calculate the risk level of the atomic attack
Construct Malicious Values (i.e., node 1.1.1 of Fig. 11), which is
also an attack scenario 〈1.1.1〉.

First, we identify that this type of risk is a hostile risk. Second,
we analyze what resources are required to perform this atomic
attack. Since this type of SQL injection is common and easy to
perform (see next step for details), it does not require much time,

money, etc. All resources the attacker needs are a computer and
some basic security knowledge. Finally, the expected benefits are
good enough for the attacker to risk because this type of attack
allows the attacker to gain much information from the database.
For example, some customers’ stock trading information stored in
the system will be revealed. Based on this cost-benefit analysis,
we would consider the risk level of this atomic attack as High.

Fig. 11. The attack tree against SQL injection.

(3) Constructing code-matching patterns. The construction of

a pattern using regular expressions is illustrated by the example
below.

Consider that we want to construct a pattern for capturing the
vulnerable code related to the attack scenario 〈1.1.1〉 (i.e., the
atomic attack Construct Malicious Values). To clarify, we take an
example of the following code fragment:

Fig. 12. A sample code fragment.

This code is vulnerable to SQLIAs because it creates SQL
statements by using string concatenation [24] and the attacker can
thus dynamically construct and execute a malicious SQL query.
For example, the attacker can enter the string “abc' OR 1 = 1 --”
for the name input field and the query becomes:

SELECT * FROM customer WHERE name = 'abc' OR 1 = 1 --'
AND pwd = ' ';

The comment operator “--” makes the pwd input field irrelevant.
Since 1 = 1 is always true, the WHERE clause will always
evaluate to true. In other words, the WHERE clause will be
transformed into a tautology and the attacker can finally bypass
the authentication even if he/she does not know what the name or
password is.

To match such type of SQL query in code, we first extract a set

of important features 𝐹𝐹 based on known queries set 𝐾𝐾 (see
Section 3.1.3): keywords (e.g., SELECT), concatenation (using
single quotes), and semicolon. In contrast, strings like “customer”
and “name” are irrelevant. Accordingly, we can create a pattern
shown as follows:

(\w+\s*=\s*)+"SELECT\s\S+\sFROM\s\S+\sWHERE\s\S+\s*=\s
'[^;]

Note that this pattern is just an illustrative example and it is not
necessarily accurate. Then we can verify the pattern by writing
some simple code in any programming development environment
(see next step). Finally, we should double check the pattern to
avoid false positives.

In addition, as a designer, we should work out a solution to the
atomic attack at this stage. For example, using parameterized
queries [24] instead of string concatenation to build queries is one
possible solution to avoid this type of SQL injection attack. The
programmer can take it as a code fix suggestion if necessary (see
step 6).

(4) Detecting vulnerable code. As shown in Fig. 13, line 5-6 is
the corresponding vulnerable code captured in real time by the
pattern indicated at the bottom of the figure. Here we use a text
editor to show the result although any programming development
environment can be used.

SQLIAs

1.1.1 Construct
Malicious Values

H

...

1. Tautology Query
Attack

2. Logically Incorrect
Query Attack

2.1.1 Exploit Error
Messages

M

H = High
M = Medium

3. Union Query Attack

...

4. Piggy-Backed Query
Attack

...

...

...2.1 Exploit Improper
SQL Exception

1.1 Exploit Vulnerable
SQL Commands

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 134

Fig. 13. Detect vulnerable code based on a pattern.

(5) Indicating warning information. The warnings indicate
information including the location of vulnerable code, the type of
possible attack, security and risk level information, etc., as shown
in Fig. 14. The location is revealed in step 4. The security and
risk level have been discussed in step 1 and step 2, respectively.
The solution, as mentioned in step 3, is also given.

Warning(s): The SQL query uses string concatenation
Location: Line 5-6
Possible attack(s): SQL injection
Security level: High
Risk level: High
Solution(s): Consider using parameterized queries

Fig. 14. The warning information for the illustrative code.

(6) Fixing the code. Finally, the programmer can examine and
fix the code according to the warning information. For example,
the programmer might accept the suggestion and use a
parameterized query as follows:

query = "SELECT * FROM customer WHERE name = ? AND
pwd = ?";

This query uses question marks as placeholders, which can help
avoid SQL injection. For example, if the attacker tries to enter
“abc' OR 1 = 1 --” for the name input field, the entire input will
be inserted into the name field as a name and no SQL injection
will occur. For more information on parameterized queries, see
[24].

5. Related Work

To develop secure code, defensive programming techniques are
proposed to check whether the code is executing correctly by
adding assertions [21] [25]. This is due to the fact that an
assertion must be evaluated true when the program is executing;
otherwise, the execution will be terminated [21]. Teto et al [6]
apply defensive programming to mitigate I/O cybersecurity
attacks by using input validation and escaping (i.e., encoding)
techniques. Though defensive programming is promising, there
remain critical issues. One of the major challenges of using
defensive programming is that programmers are required to
possess sufficient security knowledge such as adding appropriate
assertions.

Static analysis is a popular method for uncovering
security-related bugs during software development [26]. Static

analysis techniques can be used to statically examine the source
code of a program without executing it [2]. Basic lexical analysis
is adopted by practical tools such as ITS4 [4] for identifying
security vulnerabilities in C and C++ code. The tool ITS4 breaks
the source code into a set of lexical tokens and then matches
vulnerable functions from a database. Larochelle and Evans [27]
[5] use annotations to syntactically perform static analysis for
detecting buffer overflow vulnerabilities. The annotations can be
exploited to check whether the code is consistent with certain
properties. Livshits and Lam [28] present a static analysis
approach based on points-to analysis for finding security
vulnerabilities such as SQL injections and cross-site scripting in
Java applications. In [28], to find as many vulnerabilities as
possible, complete user-provided specifications of vulnerabilities
should be prepared and translated into static analyzers. Compared
with manual security analysis, most static analysis approaches
encapsulate security knowledge so that the programmer (i.e., the
tool operator) is not required to possess as much security
expertise as the designer (i.e., the tool developer). However, most
existing static analysis methods are not systematic and thorough
due to not decomposing targeted attacks into atomic attacks.

6. Conclusion and Future Work

Detecting security vulnerabilities during software development
can be challenging. This paper presents a framework for
systematically and automatically identifying and correcting the
vulnerability-related bugs during the construction of programs.
The framework is expected to serve as the foundation for
building an intelligent tool support for Human-Machine Pair
Programming. We discuss the whole process of the idea, such as
modeling an attack based on attack trees, conducting risk analysis
and constructing patterns. Finally, we conduct a case study on
SQL injection attacks to illustrate the proposed framework.
However, there are some issues that remain unsolved. For
example:
 Since some tasks are unlikely or even impossible to be done

with regular expressions due to their intrinsic restrictions,
more methods for constructing code-matching patterns
should be explored.

 What other factors should be taken into account when
conducting risk analysis in practice?

 Some security vulnerabilities are able to be addressed in
various phases of the software life cycle, but resources (e.g.,
money, time, etc.) required to detect and mitigate these
vulnerabilities must vary from phase to phase. Therefore, a
classification of security vulnerabilities in terms of the
software life cycle is critical.

In future work, we plan to conduct further research on these
topics. In addition, to develop a tool that can be used in practical
development is also part of our future work.

Acknowledgments The research was supported by ROIS NII
Open Collaborative Research 2021-(21FS02).

Reference
[1] Sindre, Guttorm, and Andreas L. Opdahl. "Eliciting security

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 135

requirements with misuse cases." Requirements engineering 10, no.
1 (2005): 34-44.

[2] Chess, Brian, and Gary McGraw. "Static analysis for security." IEEE
security & privacy 2, no. 6 (2004): 76-79.

[3] Potter, Bruce, and Gary McGraw. "Software security testing." IEEE
Security & Privacy 2, no. 5 (2004): 81-85.

[4] Viega, John, Jon-Thomas Bloch, Yoshi Kohno, and Gary McGraw.
"ITS4: A static vulnerability scanner for C and C++ code."
In Proceedings 16th Annual Computer Security Applications
Conference (ACSAC'00), pp. 257-267. IEEE, 2000.

[5] Evans, David, and David Larochelle. "Improving security using
extensible lightweight static analysis." IEEE software 19, no. 1
(2002): 42-51.

[6] Teto, Joel Kamdem, Ruth Bearden, and Dan Chia-Tien Lo. "The
impact of defensive programming on I/O Cybersecurity attacks."
In Proceedings of the SouthEast Conference, pp. 102-111. 2017.

[7] Rossi, Maria Teresa, Renan Greca, Ludovico Iovino, Giorgio
Giacinto, and Antonia Bertoli. "Defensive Programming for Smart
Home Cybersecurity." In 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pp. 600-605. IEEE,
2020.

[8] Schneier, Bruce. "Attack trees." Dr. Dobb’s journal 24, no. 12
(1999): 21-29.

[9] Liu, Shaoying. "Software Construction Monitoring and Predicting
for Human-Machine Pair Programming." In International Workshop
on Structured Object-Oriented Formal Language and Method, pp.
3-20. Springer, Cham, 2018.

[10] Moore, Andrew P., Robert J. Ellison, and Richard C. Linger. Attack
modeling for information security and survivability.
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst,
2001.

[11] Lallie, Harjinder Singh, Kurt Debattista, and Jay Bal. "A review of
attack graph and attack tree visual syntax in cyber
security." Computer Science Review 35 (2020): 100219.

[12] Vesely, William E., Francine F. Goldberg, Norman H. Roberts, and
David F. Haasl. Fault tree handbook. Nuclear Regulatory
Commission Washington DC, 1981.

[13] Khand, Parvaiz Ahmed. "System level security modeling using
attack trees." In 2009 2nd International Conference on Computer,
Control and Communication, pp. 1-6. IEEE, 2009.

[14] Beck, Kent. "Embracing change with extreme
programming." Computer 32, no. 10 (1999): 70-77.

[15] “National Vulnerability Database (NVD).” https://nvd.nist.gov/,
(accessed 2021-07-05)

[16] MITRE, Common Weakness Enumeration.
https://cwe.mitre.org/data/ index.html.

[17] “Common Vulnerability Scoring System (CVSS).”
https://www.first.org/cvss/, (accessed 2021-07-05)

[18] Ingoldsby, Terrance R. "Attack tree-based threat risk
analysis." Amenaza Technologies Limited (2010): 3-9.

[19] Vose, David. Risk analysis: a quantitative guide. John Wiley &
Sons, 2008.

[20] Friedl, Jeffrey EF. Mastering regular expressions. " O'Reilly Media,
Inc.", 2006.

[21] Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. "Compilers,
principles, techniques." Addison wesley 7, no. 8 (1986): 9.

[22] Halfond, William G., Jeremy Viegas, and Alessandro Orso. "A
classification of SQL-injection attacks and countermeasures."
In Proceedings of the IEEE international symposium on secure
software engineering, vol. 1, pp. 13-15. IEEE, 2006.

[23] Wang, Jie, Raphael C-W. Phan, John N. Whitley, and David J.
Parish. "Augmented attack tree modeling of SQL injection attacks."
In 2010 2nd IEEE International Conference on Information
Management and Engineering, pp. 182-186. IEEE, 2010.

[24] Howard, Michael, and David LeBlanc. Writing secure code.
Pearson Education, 2003.

[25] Schindler, Frank. "Coping with security in programming." Acta
Polytechnica Hungarica 3, no. 2 (2006): 65-72.

[26] Wilander, John, and Mariam Kamkar. "A comparison of publicly
available tools for static intrusion prevention." In 7th Nordic
Workshop on Secure IT Systems," Towards Secure and
Privacy-Enhanced Systems", 7-8 November 2002, Karlstad
University, Sweden, p. 68. Karlstad University Studies, 2002.

[27] Larochelle, David, and David Evans. "Statically detecting likely
buffer overflow vulnerabilities." In 10th USENIX Security
Symposium. 2001.

[28] Livshits, V. Benjamin, and Monica S. Lam. "Finding Security
Vulnerabilities in Java Applications with Static Analysis."
In USENIX security symposium, vol. 14, pp. 18-18. 2005.

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 136

	1. Introduction 0F
	2. Background
	2.1 Attack Trees
	2.2 HMPP

	3. Proposed Approach
	3.1 Pattern Preparation
	3.1.1 Identifying attack goals. In the activity of identifying an attack goal, the attack goal ,𝐺-0. and the targeted system will be defined. Very often the designer would select attack goals from common attacks occurred in the past or based on specific s�
	3.1.2 Generating attack trees. In the activity of generating an attack tree, the attack goal will be decomposed as a set of sub-goals and atomic attacks, as shown in Fig. 4. Meanwhile, risk level should be assigned to each atomic attack and then to each at�
	3.1.3 Constructing code-matching patterns. In the activity of constructing code-matching patterns, patterns will be built for detecting vulnerable code during the process of code matching. Formally, a code matching is defined as follows.

	3.2 Pattern Application
	3.2.1 Detecting vulnerable code. In the activity of detecting vulnerable code, particular code that can lead to possible atomic attacks will be automatically detected while the program is under construction. The detection will be performed by the computer �
	3.2.2 Indicating warning information. In the activity of indicating warning information, the programmer will be informed of what and where the vulnerability is, and how to fix the vulnerability. The warning information should include the location of the vu�
	3.2.3 Fixing the code. In the activity of fixing the code, the programmer can examine and fix the vulnerable code timely according to the warning information provided by the computer. The programmer can also decide to fix the code based on his/her own expe�

	4. Case Study
	4.1 Modeling SQLIAs with Proposed Framework

	5. Related Work
	6. Conclusion and Future Work

