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Abstract: In order to mitigate the severe consequences of security threats, many software-based systems are endeavoring to 
detect security vulnerabilities as early as possible in the software life cycle. In this paper, we present a framework for 
systematically detecting and mitigating potential security vulnerabilities during the construction of programs using a particular 
programming paradigm known as Human-Machine Pair Programming. The framework allows developers to address the 
vulnerability problem in the coding phase rather than fix it at a high price when the system is in operation. Our framework 
advocates three critical steps: (1) generate an attack tree to model a specific security threat, (2) construct code-matching patterns 
based on the result of the attack tree analysis, and (3) detect corresponding vulnerable code based on the patterns during the 
program construction. We also present a case study to demonstrate how it works in practice. 
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1. Introduction     

Security vulnerabilities can be found in different phases of a 
software life cycle. For most software-based systems, especially 
security-critical systems, it is important to detect and tackle the 
security problems at an early stage since adverse impact can 
increase rapidly with time. Researchers have explored many 
approaches for mitigating security problems during different 
development phases, such as requirement phase [1], coding phase 
[2] and testing phase [3]. Intuitively, identifying the 
security-related problems in the coding phase is generally 
efficient because it allows the programmer to examine and fix the 
vulnerable code timely. Some solutions, such as static analysis 
techniques [4] [5] and Defensive Programming techniques [6] [7], 
are proposed to achieve this goal, but most of them only focus on 
certain systems and vulnerabilities instead of addressing the full 
scope of the problem. Furthermore, since most of the proposed 
techniques require considerable manual work and humans’ 
collaboration, the efficiency of their application may not be 
desirable. This paper tries to address these problems by proposing 
a framework suitable for computer to adopt to automatically 
uncover vulnerability problems during the construction of 
programs. It can efficiently support the Human-Machine Pair 
Programming paradigm (the details of the framework will be 
discussed in Section 3). 

Since code vulnerabilities can be exploited by attackers, it is 
important to find out as many potential vulnerabilities as possible. 
Attack trees [8] are considered as a popular method to describe 
the sequence of events that can result in a specific attack. In this 
paper, we make use of this technique to analyze and identify all 
the possible code vulnerabilities of an arbitrary attack, so that we 
are able to fix them one by one at code level if possible. 

Human-Machine Pair Programming (HMPP) [9] is 
characterized by the feature that humans (i.e., developers) create 
algorithms, data structures, and the architecture of the program 
whereas the machine (i.e., the computer) acts as an assistant: 1) to 
monitor the program under construction to identify potential 
software defects or violation of standards in the program, and 2) 
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to predict useful program segments for enhancing the robustness 
and the completeness of the program. HMPP has various 
advantages; for example, no communication between different 
developers is required. Inspired by such a programming paradigm, 
this paper intends to present an approach that the developer and 
the computer can work collaboratively instead of finding code 
vulnerabilities manually. 
In this paper, we make three contributions. Firstly, we propose a 
framework for building a computerized technology to 
systematically and automatically detect vulnerabilities during the 
construction of programs. This technology can effectively support 
the new programming paradigm known as Human-Machine Pair 
Programming. Secondly, we put forward a systematic approach to 
constructing vulnerable code patterns in the framework that can 
be used to detect specific vulnerable code. Thirdly, we describe a 
way that the human programmer can effectively collaborate with 
the computer in the framework. 

The rest of this paper is organized as follows. Section 2 
introduces the background knowledge necessary for our proposed 
framework, including attack trees and Human-Machine Pair 
Programming. Section 3 proposes a framework to systematically 
deal with security vulnerabilities in the coding phase. Section 4 
provides a case study on SQL injection attacks (SQLIAs). Section 
5 reviews related work and section 6 presents the conclusion and 
future work. 

2. Background 

In this section, we briefly introduce the Attack Trees and HMPP 
both of which are related to our framework. 

2.1 Attack Trees 
Attack trees provide a way to describe attacks against a system 

in a tree structure, with the goal as the root node and different 
ways of achieving that goal as leaf nodes [8]. An attack tree is 
comprised of AND- and OR-decompositions. An 
AND-decomposition can be decomposed as a set of attack 
sub-goals, all of which must be achieved for the attack to succeed 
while an OR-decompositions can be decomposed as a set of 
attack sub-goals, any one of which must be achieved for the 
attack to succeed [10]. 
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Note that although attack trees have been studied for decades, 
there is no standard way to represent an attack tree [11]; for 
example, either graphical representation or textual representation 
can be used. In this paper, we use graphical representation and 
borrow some useful symbols from fault trees [12]. Table 1 shows 
several typical symbols and their meanings that will be used in 
our framework. Note that the meaning of each symbol used in 
this paper might be slightly changed. For example, while circles 
represent basic events in a fault tree, they represent atomic 
attacks in this paper. 

Table 1 Symbols used in this paper. 

Symbol Fault Trees [12] This paper 

 Basic event Atomic attack 

 
Intermediate 

event 
Attack 

goal/sub-goal  

 AND AND 

 OR OR 

 
In this paper, the root node, intermediate nodes, and leaf nodes 

represent the attack goal, sub-goals, and atomic attacks, 
respectively (see Fig. 1). Formally, an attack tree is defined as 
follows. 

Definition 1. An attack tree 𝐴𝐴𝐴𝐴 = (𝐺𝐺0, {𝐺𝐺𝑖𝑖}𝑖𝑖+1𝑛𝑛 ,𝐴𝐴, 𝜆𝜆) is a tree 
structure for modeling an arbitrary attack, where 𝐺𝐺0 is the attack 
goal (root node), {𝐺𝐺𝑖𝑖}𝑖𝑖+1𝑛𝑛  is a set of sub-goals (intermediate 
nodes), 𝐴𝐴  is a set of atomic attacks (leaf nodes), and 
𝜆𝜆: 𝐺𝐺0⋃ {𝐺𝐺𝑖𝑖}𝑖𝑖+1𝑛𝑛 ⋃ 𝐴𝐴 → 𝑆𝑆  is a function assigning properties to 
each node where 𝑆𝑆 is a set of property values. 

 
Fig. 1. Example of attack trees. 

This paper uses the term attack scenario (also intrusion 
scenario) to describe a smallest combination of atomic attacks 
that can cause the attack goal to occur, which is similar to a 
minimal cut set in fault trees [12]. Fig. 1 provides a simple 
example to describe the decomposition of an attack goal. In this 
tree, for instance, to achieve the attack goal 𝐺𝐺0, attackers must 
achieve sub-goal 𝐺𝐺1 or 𝐺𝐺2; similarly, to achieve sub-goal 𝐺𝐺1, 
attackers must successfully launch both atomic attack 𝐴𝐴1 and 𝐴𝐴2. 

Therefore, there are three attack scenarios, i.e., three different 
ways to achieve 𝐺𝐺0: 〈𝐴𝐴1,𝐴𝐴2〉, 〈𝐴𝐴3〉 and 〈𝐴𝐴4〉. 

Once an attack tree has been generated, the designer can assign 
values to the leaf nodes. These values enable people to better 
evaluate the attack. We will elaborate on that in Section 3. 

To generate a sound attack tree could take much effort and time 
because the designer needs to consider all atomic attacks against 
the attack goal. The designer should think from the perspective of 
the attacker (instead of the defender) with infinite resources, 
knowledge and skill [13]. Hence, it depends largely on the 
experience and expertise of the designer. Fortunately, attack trees 
are reusable. For example, once the PGP attack tree has been 
completed, anyone can use it in any situation that uses PGP [8]. 

2.2 HMPP 
HMPP [9], inspired by pair programming [14], is characterized 

by the feature that the human programmer creates algorithms and 
data structures for the program under construction while the 
computer provides a constant checking for detecting bugs and 
predicting future contents. The bugs can be classified into 
different categories, such as requirements-related bugs, 
implementation-related bugs, security-related bugs, and 
efficiency-related bugs. In this paper, we focus exclusively on 
security-related bugs. 

HMPP can be supported by Software Construction Monitoring 
(SCM) and Software Construction Predicting (SCP), which aim 
to automatically and dynamically observe and verify the current 
version of the software for fault detection and for future contents 
prediction, respectively. For brevity, we only introduce the basic 
idea of SCM as follows [9]. 

Fig. 2 shows the basic framework for SCM. The Syntactical 
Analysis of the current version of software CV_S can help form 
specific properties that need to be checked. The property-related 
knowledge base, stored essential properties (e.g., the properties 
based on software development conventions or standards, 
common faults, etc.) of the software beforehand, can be updated 
over time. 

 

Fig. 2. Basic framework for SCM (taken from [9]). 

3. Proposed Approach 

In this section, we present the main idea of our approach. 
Fig. 3 shows the general overview of the proposed framework, 

which can be decomposed into two phases: pattern preparation 
phase (shown as orange shaded boxes) and pattern application 
phase (shown as blue shaded boxes). In Fig. 3, we use D, C and P 
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to represent the designer, computer and programmer, respectively. 
The designer (or the analyst) models targeted attacks by creating 
attack trees and constructing code-matching patterns, all of which 
will be stored in a vulnerability knowledge base. The computer, 
armed with a tool and the vulnerability knowledge base, detects 
vulnerable code during the program construction. The 
programmer interacts with the computer by constructing the 
program and fixing the vulnerable code. Moreover, the 
programmer may check the attack trees and patterns according to 
the warnings and give feedback (if any) on them. The 
vulnerability knowledge base may thus be updated based on the 
feedback. 

 

Fig. 3. Overview of the proposed framework. 

In our approach, there is no need for the programmer to possess 
much security expertise or to manually perform security analysis 
while coding because the manual work (creating attack trees, 
constructing patterns, etc.) has been done by the designer in the 
pattern preparation phase. Hence, our approach is 
programmer-friendly and the programmer can focus on writing 
the code. Although the manual work may take much time and 
effort, it is fortunately a one-time event (to a large extent), which 
means once the work has been done it can be reused by any other 
designer such that different designers do not need to repeat 
pattern preparation for the same vulnerability. For this reason, the 
more designers from the security community adopt our approach, 
the easier we can build a sound vulnerability database and a 
powerful tool. 

Section 3.1 and 3.2 discuss the pattern preparation and pattern 
application, respectively. 

3.1 Pattern Preparation 
This stage includes three activities: identifying attack goals, 

generating attack trees, and constructing code-matching patterns. 
3.1.1 Identifying attack goals. In the activity of identifying an 
attack goal, the attack goal 𝐺𝐺0 and the targeted system will be 
defined. Very often the designer would select attack goals from 
common attacks occurred in the past or based on specific security 
requirements/specification. For example, the designer may refer 
to the common attacks listed in security-related databases, such 
as National Vulnerability Database (NVD) [15] and Common 
Weakness Enumeration (CWE) [16]. Subsequently, we need to 
assign a value of security level to 𝐺𝐺0. For example, we can use 

qualitative severity rankings of a set of values {Low, Medium, 
High} for assessing the security level, as described in Common 
Vulnerability Scoring System (CVSS) [17]. The assessment 
criterion is mainly based on the severity of the attack, which can 
be measured by security metrics such as confidentiality impact, 
integrity impact, and availability impact. A successful attack 
against availability, for example, may allow an attacker to launch 
denial-of-service (DoS) attacks while successful attacks against 
confidentiality and integrity may allow an attacker to read and 
modify some sensitive data of a system, respectively. 
3.1.2 Generating attack trees. In the activity of generating an 
attack tree, the attack goal will be decomposed as a set of 
sub-goals and atomic attacks, as shown in Fig. 4. Meanwhile, risk 
level should be assigned to each atomic attack and then to each 
attack scenario. Like security level, risk level in this paper ranges 
from Low to High (although any other ranking mechanism can be 
used). The assessment criterion is based on the probability of 
occurrence of each atomic attack. However, it is unlikely to 
calculate the exact probability because the availability of 
resources (e.g., money, time, etc.) of each attacker varies [18]. 
Nonetheless, it is possible to conduct a risk analysis to obtain 
relatively accurate results. To conduct a thorough risk analysis, 
experience and expertise are required. For the sake of simplicity, 
the following provides a basic risk assessing method for roughly 
calculating the risk level [18] [19]. 

 

Fig. 4. Generation of an attack tree. 

a) Risk identification: An attack is normally launched by the 
attacker who exploits certain vulnerability, but in some extreme 
cases it may be caused by system failures, user’s unintentional 
manipulation, etc. Therefore, there are two types of risk: hostile 
risk and random risk. To identify the type of risk can help the 
analyst choose an appropriate assessing method. When 
considering a hostile risk, for example, we should think mainly 
from the perspective of the attacker (instead of the defender). 

b) Required resources calculation: Consider that we need to do 
the analysis for a hostile risk. We will analyze what resources are 
required for an attacker to exploit the vulnerability. The resources 
may include money, time, raw materials, knowledge, skill, etc. 

c) Expected benefits calculation: We will analyze what expected 
benefits an attacker can gain from a successful attack. That will 
help us understand attacker’s motivation and expected returns. 

In order to calculate the risk level of the attack, we can do a 
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cost-benefit (risk-return) analysis using the resources and benefits 
mentioned above. For example, if a successful attack is expected 
to bring considerable benefits but only a few resources are 
required to launch the attack, there would be high likelihood that 
the attack will occur such that the risk level will be considered as 
High. 
3.1.3 Constructing code-matching patterns. In the activity of 
constructing code-matching patterns, patterns will be built for 
detecting vulnerable code during the process of code matching. 
Formally, a code matching is defined as follows. 

Definition 2. A code matching is a function 𝑐𝑐𝑐𝑐:𝑃𝑃 → 𝒫𝒫(𝐶𝐶) that 
maps patterns to vulnerable code, where 𝑃𝑃 is a set of patterns, 
𝒫𝒫 is the power set monad, and 𝐶𝐶 is the set of vulnerable code 
fragments. 

The construction of the patterns depends on the analysis of 
atomic attacks, which can be launched based on the exploitation 
of certain vulnerabilities. Let 𝑉𝑉 denote a set of vulnerabilities. In 
this paper, we assume that one atomic attack 𝑎𝑎 ∈ 𝐴𝐴 is caused by 
one vulnerability 𝑣𝑣 ∈ 𝑉𝑉. Let 𝐸𝐸 (𝐸𝐸 ⊂  𝐶𝐶) be a set of equivalent 
but differently formulated expressions or code fragments, each of 
which contains the vulnerability 𝑣𝑣. 𝐸𝐸 may be an infinite set. Let 
𝐾𝐾  be the subset of 𝐸𝐸  to denote the expressions or code 
fragments that are known by the designer. A set of features 𝐹𝐹 
can be extracted based on 𝐾𝐾 and be used to construct a pattern 
𝑝𝑝 ∈ 𝑃𝑃. We call the pattern derived pattern, and the definition is 
formally given as follows. 

Definition 3. A derived pattern 𝑝𝑝 ∈ 𝑃𝑃 is a pattern that matches a 
set of equivalent but differently formulated expressions or code 
fragments 𝐸𝐸, each of which contains the vulnerability 𝑣𝑣 ∈ 𝑉𝑉.  

The pattern 𝑝𝑝 can be derived from a set of features 𝐹𝐹, which 
are extracted based on 𝐾𝐾 (𝐾𝐾 ⊆  𝐸𝐸), where 𝐾𝐾  is the known 
subset of 𝐸𝐸 . 𝐾𝐾  is achieved based on the analysis of the 
vulnerability 𝑣𝑣 ∈ 𝑉𝑉 while 𝑣𝑣 is derived from the atomic attack 
𝑎𝑎 ∈ 𝐴𝐴. Fig. 5 shows the process of pattern construction. 

 
Fig.5. Process of pattern construction. 

The features 𝐹𝐹 determine whether the pattern 𝑝𝑝 is powerful 
enough to reduce false negatives (the pattern fails to match the 
real vulnerable code). On the other hand, the pattern Pi should not 
be too “powerful”; otherwise false positives (the pattern reports 
false warnings) could occur. We formally define the false 
negative and false positive as follows. 

Definition 4. Let 𝑀𝑀 be the set of expressions or code fragments 
that a pattern 𝑝𝑝 ∈ 𝑃𝑃 should match in theory, and let 𝑁𝑁 be the 
set of expressions or code fragments that the pattern 𝑝𝑝  can 
match in practice. If there exists an expression or code fragment 
𝑐𝑐 ∈  𝑀𝑀 –  𝑁𝑁  that the pattern 𝑝𝑝  fails to match, then a false 
negative occurs. If there exists an expression or code fragment 
𝑐𝑐 ∈  𝑁𝑁 –  𝑀𝑀 that the pattern 𝑝𝑝 does match, then a false positive 

occurs. 

To the best of our knowledge, there is no standard way to 
construct such derived patterns in practice, but some typical 
techniques, such as Regular Expressions [20] and Context-Free 
Grammar [21], are widely considered as at least a partial solution 
to this problem. Regular expressions, for example, are efficient 
for describing lexical structure of constructs such as identifiers, 
constants, keywords, and white space [21]. These typical 
techniques can be easily applied to our approach because the 
targeted attack has been decomposed as fine-grained atomic 
attacks using attack trees and the atomic attacks become smaller 
and simpler to model. This paper will use regular expressions as 
an example to illustrate some steps of the proposed framework. 
(The detailed regular-expression syntax will not be covered in 
this paper. Interested readers can see [20] for reference.) 

Example 1 and 2 illustrate false negatives and false positives, 
respectively. 

Example 1. Consider a code snippet in Fig. 6. Let us use regular 
expressions to match any method following myWriter.. If a 
pattern “myWriter[\w.]+\(.+\)” is used, then a false negative 
occurs due to the fact that it fails to match the method 
myWriter.close() in this code, as shown in Fig. 7. 

 

Fig.6. A code sample. 

 
Fig.7. Example of false negatives. 

Example 2. Consider a code snippet in Fig. 6. Let us use regular 
expressions to match any method following myWriter.. If a 
pattern “myWriter[\w.]+.+” is used, then a false positive occurs 
due to the fact that it mismatches the string myWriter.txt in this 
code, as shown in Fig. 8. 

Atomic attack a Vulnerability v Epressions/Code 
fragments K

Attack tree

Pattern p

Features F
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Fig.8. Example of false positives. 

After constructing the patterns for detecting certain vulnerable 
code, the designer should also work out a solution (i.e., 
countermeasure) to each corresponding atomic attack at this stage, 
so that the programmer can take it as a code fix suggestion. 
Ideally, the solution is also expected to provide a secure code 
example, thus allowing the programmer to adopt it directly. 

3.2 Pattern Application 
This stage includes three activities: detecting vulnerable code, 
indicating warning information, and fixing the code. 
3.2.1 Detecting vulnerable code. In the activity of detecting 
vulnerable code, particular code that can lead to possible atomic 
attacks will be automatically detected while the program is under 
construction. The detection will be performed by the computer 
based on the patterns constructed in the pattern preparation phase. 
In practice, the patterns will be stored in a vulnerability database, 
which can be read by a tool. Generally, one pattern can be used to 
monitor and capture one kind of vulnerability. The vulnerable 
code will be captured in real time once it triggers the 
corresponding pattern, which is the same as searching specific 
strings using Unix grep. 

Warning(s): The code contains sensitive information
Location: Line 20-30
Possible attack(s): SQL injection
Security level: High
Risk level: High
Solution(s): Do not contain any sensitive information

 

Fig. 9. Example of warning information. 

3.2.2 Indicating warning information. In the activity of 
indicating warning information, the programmer will be informed 
of what and where the vulnerability is, and how to fix the 
vulnerability. The warning information should include the 
location of the vulnerability, security and risk level information, 
solutions, etc. The security and risk level have been discussed in 
the pattern preparation phase. The solutions are the 
countermeasures for corresponding atomic attacks, which should 
also be prepared in the pattern preparation phase, and they will 
serve as suggestions for the programmer. Fig. 9 shows an 
example of warning information. 
3.2.3 Fixing the code. In the activity of fixing the code, the 

programmer can examine and fix the vulnerable code timely 
according to the warning information provided by the computer. 
The programmer can also decide to fix the code based on his/her 
own experience and expertise or to completely dismiss the 
warnings for some reason (e.g., false positives). Moreover, if the 
programmer is interested in viewing the attack trees and patterns 
of the warnings, he/she can check them in the vulnerability 
knowledge base and give feedback (if any) so that the knowledge 
base will thus be updated based on the those useful feedback 
from different programmers. 

4. Case Study 
In this section, we will illustrate the proposed approach in a case 

study. To demonstrate the main idea of the framework more 
clearly, we use a simple web-based stock exchange trading 
system and focus on some common issues that might be familiar 
to most researchers and practitioners. The stock exchange trading 
system allows customers and companies to register, buy or sell 
stocks, etc. Fig. 10 depicts the architecture of the stock exchange 
trading system. 

DatabaseServerUser Stock Issued 
Company  

Fig. 10. The architecture of the stock exchange trading system. 

We focus on a common vulnerability called SQL injection 
attacks (SQLIAs), which is mainly caused by insecure code or 
lack of input validation. As one of the Most Dangerous Software 
Weaknesses listed in the 2020 Common Weakness Enumeration 
(CWE) [16], SQL injection attacks can pose a serious threat to 
many web applications. 

4.1 Modeling SQLIAs with Proposed Framework 
Based on the proposed framework, this subsection describes the 

entire process for modeling SQLIAs from pattern preparation to 
pattern application. Each of the 6 steps below corresponds to 
Section 3.1.1 -3.1.3 and Section 3.2.1-3.2.3, respectively. 

(1) Identifying attack goals. We select the SQLIAs as the 
attack goal G0 and the web-based stock exchange trading system 
as the targeted system. We then assign a value of security level to 
this type of threat. Since SQLIAs can seriously affect a 
web-based system [16] [22] (e.g., violating the confidentiality, 
integrity, and availability of the system), we would assign the 
value High to indicate the security level of this threat. 

(2) Generating attack trees. We generate the attack tree against 
SQLIAs, as shown in Fig. 11. Note that a complete attack tree of 
SQLIAs could be much more complicated as it involves many 
different types of the attack and countless variations [22] [23]. 
For the sake of simplicity, we omit some details and generate a 
simplified, incomplete version based on the properties of the 
stock exchange trading system. 

Once the attack tree is generated, we calculate the risk level of 
each atomic attack and attack scenario. For example, the 
following uses the assessing method described in Section 3.1.2 to 
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illustrate how to calculate the risk level of the atomic attack 
Construct Malicious Values (i.e., node 1.1.1 of Fig. 11), which is 
also an attack scenario 〈1.1.1〉. 

First, we identify that this type of risk is a hostile risk. Second, 
we analyze what resources are required to perform this atomic 
attack. Since this type of SQL injection is common and easy to 
perform (see next step for details), it does not require much time, 

money, etc. All resources the attacker needs are a computer and 
some basic security knowledge. Finally, the expected benefits are 
good enough for the attacker to risk because this type of attack 
allows the attacker to gain much information from the database. 
For example, some customers’ stock trading information stored in 
the system will be revealed. Based on this cost-benefit analysis, 
we would consider the risk level of this atomic attack as High. 

 

Fig. 11. The attack tree against SQL injection.

 
(3) Constructing code-matching patterns. The construction of 

a pattern using regular expressions is illustrated by the example 
below. 

Consider that we want to construct a pattern for capturing the 
vulnerable code related to the attack scenario 〈1.1.1〉 (i.e., the 
atomic attack Construct Malicious Values). To clarify, we take an 
example of the following code fragment: 

 
Fig. 12. A sample code fragment. 

This code is vulnerable to SQLIAs because it creates SQL 
statements by using string concatenation [24] and the attacker can 
thus dynamically construct and execute a malicious SQL query. 
For example, the attacker can enter the string “abc' OR 1 = 1 --” 
for the name input field and the query becomes: 

SELECT * FROM customer WHERE name = 'abc' OR 1 = 1 --' 
AND pwd = ' '; 

The comment operator “--” makes the pwd input field irrelevant. 
Since 1 = 1 is always true, the WHERE clause will always 
evaluate to true. In other words, the WHERE clause will be 
transformed into a tautology and the attacker can finally bypass 
the authentication even if he/she does not know what the name or 
password is. 

To match such type of SQL query in code, we first extract a set 

of important features 𝐹𝐹  based on known queries set 𝐾𝐾  (see 
Section 3.1.3): keywords (e.g., SELECT), concatenation (using 
single quotes), and semicolon. In contrast, strings like “customer” 
and “name” are irrelevant. Accordingly, we can create a pattern 
shown as follows: 

(\w+\s*=\s*)+"SELECT\s\S+\sFROM\s\S+\sWHERE\s\S+\s*=\s
*'[^;]* 

Note that this pattern is just an illustrative example and it is not 
necessarily accurate. Then we can verify the pattern by writing 
some simple code in any programming development environment 
(see next step). Finally, we should double check the pattern to 
avoid false positives. 

In addition, as a designer, we should work out a solution to the 
atomic attack at this stage. For example, using parameterized 
queries [24] instead of string concatenation to build queries is one 
possible solution to avoid this type of SQL injection attack. The 
programmer can take it as a code fix suggestion if necessary (see 
step 6). 

(4) Detecting vulnerable code. As shown in Fig. 13, line 5-6 is 
the corresponding vulnerable code captured in real time by the 
pattern indicated at the bottom of the figure. Here we use a text 
editor to show the result although any programming development 
environment can be used. 

SQLIAs

1.1.1 Construct 
Malicious Values

H

...

1. Tautology Query 
Attack

2. Logically Incorrect 
Query Attack

2.1.1 Exploit Error 
Messages

M

H = High
M = Medium

3. Union Query Attack

...

4. Piggy-Backed Query 
Attack

...

...

...2.1 Exploit Improper 
SQL Exception

1.1 Exploit Vulnerable 
SQL Commands

  
 

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 134



  
 

 

Fig. 13. Detect vulnerable code based on a pattern. 

(5) Indicating warning information. The warnings indicate 
information including the location of vulnerable code, the type of 
possible attack, security and risk level information, etc., as shown 
in Fig. 14. The location is revealed in step 4. The security and 
risk level have been discussed in step 1 and step 2, respectively. 
The solution, as mentioned in step 3, is also given. 

Warning(s): The SQL query uses string concatenation
Location: Line 5-6
Possible attack(s): SQL injection
Security level: High
Risk level: High
Solution(s): Consider using parameterized queries

 

Fig. 14. The warning information for the illustrative code. 

(6) Fixing the code. Finally, the programmer can examine and 
fix the code according to the warning information. For example, 
the programmer might accept the suggestion and use a 
parameterized query as follows: 

query = "SELECT * FROM customer WHERE name = ? AND 
pwd = ?"; 

This query uses question marks as placeholders, which can help 
avoid SQL injection. For example, if the attacker tries to enter 
“abc' OR 1 = 1 --” for the name input field, the entire input will 
be inserted into the name field as a name and no SQL injection 
will occur. For more information on parameterized queries, see 
[24]. 

5. Related Work 

To develop secure code, defensive programming techniques are 
proposed to check whether the code is executing correctly by 
adding assertions [21] [25]. This is due to the fact that an 
assertion must be evaluated true when the program is executing; 
otherwise, the execution will be terminated [21]. Teto et al [6] 
apply defensive programming to mitigate I/O cybersecurity 
attacks by using input validation and escaping (i.e., encoding) 
techniques. Though defensive programming is promising, there 
remain critical issues. One of the major challenges of using 
defensive programming is that programmers are required to 
possess sufficient security knowledge such as adding appropriate 
assertions. 

Static analysis is a popular method for uncovering 
security-related bugs during software development [26]. Static 

analysis techniques can be used to statically examine the source 
code of a program without executing it [2]. Basic lexical analysis 
is adopted by practical tools such as ITS4 [4] for identifying 
security vulnerabilities in C and C++ code. The tool ITS4 breaks 
the source code into a set of lexical tokens and then matches 
vulnerable functions from a database. Larochelle and Evans [27] 
[5] use annotations to syntactically perform static analysis for 
detecting buffer overflow vulnerabilities. The annotations can be 
exploited to check whether the code is consistent with certain 
properties. Livshits and Lam [28] present a static analysis 
approach based on points-to analysis for finding security 
vulnerabilities such as SQL injections and cross-site scripting in 
Java applications. In [28], to find as many vulnerabilities as 
possible, complete user-provided specifications of vulnerabilities 
should be prepared and translated into static analyzers. Compared 
with manual security analysis, most static analysis approaches 
encapsulate security knowledge so that the programmer (i.e., the 
tool operator) is not required to possess as much security 
expertise as the designer (i.e., the tool developer). However, most 
existing static analysis methods are not systematic and thorough 
due to not decomposing targeted attacks into atomic attacks. 

6. Conclusion and Future Work 

Detecting security vulnerabilities during software development 
can be challenging. This paper presents a framework for 
systematically and automatically identifying and correcting the 
vulnerability-related bugs during the construction of programs. 
The framework is expected to serve as the foundation for 
building an intelligent tool support for Human-Machine Pair 
Programming. We discuss the whole process of the idea, such as 
modeling an attack based on attack trees, conducting risk analysis 
and constructing patterns. Finally, we conduct a case study on 
SQL injection attacks to illustrate the proposed framework. 
However, there are some issues that remain unsolved. For 
example: 
 Since some tasks are unlikely or even impossible to be done 

with regular expressions due to their intrinsic restrictions, 
more methods for constructing code-matching patterns 
should be explored. 

 What other factors should be taken into account when 
conducting risk analysis in practice? 

 Some security vulnerabilities are able to be addressed in 
various phases of the software life cycle, but resources (e.g., 
money, time, etc.) required to detect and mitigate these 
vulnerabilities must vary from phase to phase. Therefore, a 
classification of security vulnerabilities in terms of the 
software life cycle is critical. 

In future work, we plan to conduct further research on these 
topics. In addition, to develop a tool that can be used in practical 
development is also part of our future work. 
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