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Preliminary investigation of obstacle recognition via

smartphone active sound sensing for pedestrian

safety

Thilina Dissanayake1 前川 卓也1 原 隆浩1

Abstract: To ensure the safety of the pedestrians that use a smartphone while walking, numerous smart-
phone applications have been developed. The most common method is to use the back camera of the
smartphone to record the video in real-time to recognize obstacles such as approaching vehicles and people.
However, this imposes problems such as limited detection ranges, and poor performance in the dark. To
overcome these problems, we design a method that can recognize common obstacles such as vehicles, trees,
signposts, etc. using smartphone active sound sensing. We mimic the echolocation of bats and emit sine
waves and sweep signals from the smartphone and record the reflected waves. We exploit the spectral and
spatial characteristics of the stationary and non-stationary obstacles and recognize them, making our method
adaptable to numerous applications such as assisting visually impaired people, managing smartphone alert
levels, and providing information regarding how crowded the sidewalk is.．

Keywords: Mobile sensing, Pedestrian safety

1. Introduction

With the popularity of the smartphone on the rise, the

safety of pedestrians using smartphones while walking has

become a main concern to pedestrian safety as well as a

popular theme for studies in the ubiquitous computing

research community. Distracted pedestrians often bump

into various roadside obstacles and even into other pedes-

trians causing severe injuries and even death. As an exam-

ple, Nasar et al. [1] mention that the estimated number

of injuries due to mobile phone use among pedestrians

in the United States was 1506 in 2010, based on data

from National Electronic Injury Surveillance System for

2004 - 2010. This issue has now become a socio-economic

problem, increasing the burden on the health care and

rehabilitation services sector.

To address the above problem, smartphone applications

have been developed employing sensor data from different

smartphone sensors. As an example, the rear camera of

the smartphone is used to record the video in real-time
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and that footage is used to recognize obstacles such as

approaching vehicles [2]. However, this solution has draw-

backs such as limited detection range, poor performance

in the dark, and high computational cost. Furthermore,

recording videos in the public may sometimes be privacy-

invasive and hence be illegal on some occasions.

Therefore, methods that are based on acoustic ap-

proaches have been exploited. As an example, Wen et

al. [3] proposed a method that attaches an ultrasonic

sensor to the back of the smartphone to detect abrupt

changes in the ground in front of the user, such as stairs

and potholes. Li et al. [4] proposed a method that em-

ploys passive noise from the vehicles to detect and count

approaching vehicles. Furthermore, Wang et al. [5] pro-

posed a method based on active sound sensing to detect

upcoming obstacles using two microphones of off-the-shelf

smartphones. However, these studies only concentrate on

either (I) detecting the presence of an obstacle or (II)

detecting a certain class of obstacles. In contrast, our

method is designed not only to detect an obstacle prior

to a collision but also to classify it into a class that pro-

vides rich information about it that can be adapted into
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applications such as crowdsensing. As an example, by rec-

ognizing humans walking or riding bicycles on a sidewalk,

crowdsensing applications can alert the user regarding the

upcoming traffic. Furthermore, automation and manag-

ing alert levels in smart devices can also be achieved using

obstacle recognition. For example, a person riding a bicy-

cle towards the distracted smartphone user is much more

dangerous than a garbage can placed on the sidewalk.

The contributions of our method can be listed as fol-

lows.

• To the best of our knowledge, this is the first study

that recognizes classes of the obstacles in front of a

smartphone user using active acoustic sensing.

• We propose a novel feature extraction method that

can combine inherent acoustic features of an object

such as the sound absorption using multiple micro-

phones of the smartphone.

• We conducted a preliminary investigation on our

methodology using data under several environmental

conditions and under real-life situations.

2. Related works

Here, we discuss the studies related to improving pedes-

trian safety using smartphones.

2.1 Non-acoustic obstacle detection systems

In this section, we focus on pedestrian safety systems

that employ sensors such as accelerometers, cameras, and

infrared. Jain et al. [6] employ the camera of the smart-

phone to recognize the material on the pedestrian’s walk-

ing surface. They identify when the distracted smart-

phone user is about to enter the street, which can be used

to warn the user to be cautious. Wang et al. [2] propose

a smartphone application that employs the rear camera

of the smartphone to detect vehicles approaching the user

and to alert the user prior to a collision. In contrast to the

above approaches, we employ an acoustic sensing-based

approach that minimizes the constraints to the holding

orientation of the smartphone.

2.2 Acoustic-based obstacle detection systems

In this section, we present pedestrian safety systems

that employ acoustic sensors such as microphones. Tange

et al. [7] installed ultrasonic, gyro, and acceleration sen-

sors in a white walking stick and create a system that can

detect static obstacles such as walls and stairs to assist

visually impaired persons. In contrast to this study, our

proposed method is designed to work with smartphone

sensors which enables it to be adapted to more versa-

tile applications. Wang et al. [5] propose a method that

can detect obstacles with smartphone active sound sens-

ing. They emit inaudible sweep signals from the smart-

phone and use the reflections of the signals to calculate

the distance from the user to the obstacle. In contrast,

our method is not only designed to detect the obstacles

but also to classify them into a specific obstacle class. Fur-

thermore, we employ a combination of sweep signals and

sine waves to recognize dynamic obstacles such as walking

people.

Auto++, proposed by Li et al. [4] employ the passive

noise from the approaching motor vehicles to detect them

and estimate their driving direction. Furthermore, they

extend their study and propose a method to count the

number of vehicles around the user. In contrast to their

method, our proposed method is designed to detect and

recognize several obstacle classes using active sound sens-

ing.

3. Preliminary investigation on obstacle

detection using acoustic signals

In this section, we investigate the acoustic sensing meth-

ods to detect and classify stationary and locomotive ob-

stacles. Furthermore, we design a probing signal which

can be used for this task.

3.1 Detection of locomotive and static obstacles

with Doppler shift

Here, we investigate the feasibility of employing a well-

known phenomenon known as the “Doppler effect” or the

“Doppler shift” to detect locomotive and static obstacles

on the sidewalk. Doppler shift is the phenomenon of ob-

serving an increment or a decrement in the frequency of a

wave when the observer is moving towards or away from

the sound source. In this study, as we use the same smart-

phone to emit an 18 kHz sine wave and record the re-

flected waves, the smartphone becomes both the sound

source and the observer. The Doppler shift is created

on the reflected sine wave when the user moves with the

smartphone relative to the obstacle, or the obstacle moves

relative to the user by which the sound wave gets reflected.

For ease of analysis, we separate locomotive obstacle

detection into two main scenarios.

( 1 ) The user is stationary: Here, we assume that the user

is holding the smartphone while staying stationary

and the obstacle (a walking person) approaches the

user. Figure 1 (a) and (b) shows the FFT spectro-
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図 1 Doppler shifts created during different scenarios. (a) The

user is stationary and a person is walking towards the user

from the front. (b) The user is stationary and a person

is walking towards the user from behind. (c) The user is

walking towards a person while the person is also walk-

ing towards the user. (d) The user is walking towards a

stationary person.

gram of the Doppler shift created on the sine wave

when the walking person approaches the user from

the front and from behind respectively. When the

person walks towards the user, it creates a Doppler

shift towards the positive direction of the spectro-

gram. When the person passes the user and moves

away from the user, it creates a Doppler shift towards

the negative direction of the spectrogram. Note that,

when the obstacle is approaching from the front, it

creates a longer positive Doppler shift followed by

a shorter negative Doppler shift after the obstacle

passes the user. Similarly, when the obstacle is ap-

proaching from behind, it creates a shorter positive

Doppler shift followed by a longer negative Doppler

shift after the obstacle passes the user. When the

user is holding the smartphone in front of him, his

body blocks the wave traveling to his rear, hence,

the shorter Doppler shift when the obstacle is at the

user’s back.

( 2 ) The user is mobile: Here, we assume that the user

is holding the smartphone while moving forward and

the obstacle (a person) is either moving towards the

user from the front or remain stationary. Figure 1 (c)

and (d) shows the FFT spectrogram of the Dopper

shift created when the obstacle is moving towards

the user and remains stationary respectively. Both

(a) and (b) contain periodic positive and negative

Doppler shifts created by moving arms, and legs of

the user. However, Figure 1 (c) contains a charac-
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図 2 Reflections of the obstacle, recorded on the impulse re-

sponse

teristically large Doppler shift created by the person

moving towards the user. Note that this Doppler shift

is larger than the Doppler shifts created in Figure 1

(a) and (b) because in this scenario the user is also

moving towards the person resulting in an increment

of the relative velocity component of the person to-

wards the user. However, when the person is station-

ary (Figure 1 (d)), the Doppler shift created by him

cannot be distinguished clearly amongst the Doppler

shifts created by the user. This is because now the

relative velocity of the obstacle is roughly equal to

the velocity of the user, hence having a relative ve-

locity smaller than that of the moving body parts of

the user. Therefore, it is necessary to implement a

method to detect stationary obstacles that are not

based on Doppler shifts.

3.2 Detecting stationary obstacles with sine

sweeps

Here, we describe a method of detecting stationary ob-

stacles with sine sweeps. The basic idea is to emit a short

excitement signal to capture the reflections off the obsta-

cle. Hence, we select a short sweep signal that sweeps

the frequencies from 18 kHz to 21 kHz which lies in the

inaudible range of human beings. We periodically emit

(0.1 sec long sweeps every 0.5 sec) these sweeps from the

smartphone and record the reflected waves. Next, we cal-

culate the correlation between the recorded signal and the

emitted sweep signal (See Section 4.3.2). Then, we extract

the upper envelope of the resulted correlation.

Figure 2 shows the envelopes of 50 sweeps stacked ac-

cording to their recorded time when the user is moving

towards an obstacle (wall). As can be seen in the figure,

the reflection from the wall gets closer to the user when
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図 3 Two designs for the probing signal

he moves closer to the obstacle. Therefore, we will em-

ploy this method to detect stationary obstacles that are

in front of the user.

3.3 Designing the signal

Since sweep signals can only be emitted discretely, by

using only sweep signals, it is impossible to continuously

probe for obstacles. Especially, when it comes to loco-

motive obstacles with high velocities, it is necessary to

detect them from as far from the user as possible. There-

fore, a probing signal that is compatible with both the

sine sweep component and the sine wave component is

necessary. Here, we explain two wave designs that can be

used for this purpose.

Figure 3 shows the FFT spectrograms of the two wave

designs. Figure 3 (a) shows a composite wave that is de-

signed to emit periodic sweeps while emitting the sine

wave uninterruptedly. This design allows detecting loco-

motive obstacles using the 22 kHz sine wave and station-

ary obstacles with 18 kHz - 21 kHz sweeps. The sine wave

is separated from the upper bound frequency of the sweep

with a 1 kHz bandwidth so that the Doppler shifts that

occur on the sine wave will not get mixed with the sweep

signal which will alter their frequency response. However,

this design has two main flaws. The first one is that, as

we are emitting two types of waves at the same time using

the speakers, the sweep and the sine wave will be emitted

with half the maximum power of the speakers, each. This

adversely affects the maximum detection and recognition

range of our method. The second flaw is caused by the

signal power leakage between two consecutive sweep sig-

nals. Strong signal power leakages can be observed at the

start and the end of each sweep due to frequency hopping.

Unfortunately, these leaks make the sweep signals audible

to the human ear. Xie et al. [8] proposed a method to

reduce the influence of the signal power leakage by adding

a tapered cosine window on the emitting signals. This

method gradually increases the power of the sweep signal

at the beginning from zero and decreases at the end back

to zero. This reduces the power leakage at the start and

the end of the sweep. However, this also changes the am-

plitudes of the sweep and alters the frequency response of

the sweeps making it harder to be employed for obstacle

classification. Therefore, it is necessary to design a novel

signal to overcome these problems.

Since the signal power leakage is caused by frequency

hopping, we design a wave combining sweeps and sine

waves in a continuous manner. Figure 3 (b) shows the

FFT spectrogram of the novel signal design. Here, every

18 kHz - 21kHz sweep is followed by a 21 kHz sine wave,

which is then followed by a 21 kHz - 18 kHz inverse sine

sweep and an 18 kHz sine wave. As can be seen in the

figure, the signal power leakage has been diminished.

Using this method, we can probe for stationary obsta-

cles using the sweep waves and locomotive obstacles using

the sine waves. Since the locomotive obstacles can be con-

sidered to be high-priority obstacles, the length of the sine

wave can be increased compared to the sweep signal. As

an example, each 0.1 sec sweep can be followed up with a

0.5 sec sine wave. This way, it is possible to prioritize the

locomotive obstacles

3.4 Classification of stationary obstacles

Here we explain how we classify the stationary obsta-

cles. As mentioned in the Section 3.2, the frequency range

of the sweep signal is from 18 kHz to 21 kHz. As the

impulse responses of the sweeps contain reflections from

the obstacle, we believe that the frequency responses of

these impulse responses contain valuable information that

can be used to distinguish between the obstacle classes.

Therefore, we consider the amplitudes of the frequency

bands in between the aforementioned frequencies.

Figure 4 shows the FFT spectra of six different obstacle

classes between 18 kHz and 21 kHz, 50 different instances

each. As can be seen in the figure, there are distinguish-
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図 4 FFT spectra of different stationary obstacles

図 5 Overview of the proposed method

able features in spectra in different obstacle classes. As

an example, the minimum value for the Tree class mostly

occurs between 19 kHz and 19.5 kHz. In contrast, the

minimum value for the Car class mostly occurs between

19.5 kHz and 20 kHz. We believe that we can employ

these characteristic spectra to classify different obstacles

into obstacle classes.

4. Method

4.1 Preliminaries

For this study, we assume that the user is holding a

smartphone in front of his body. We assume the smart-

phone’s position and the holding orientation, such that

the user can view the content on the smartphone screen.

A combination of inaudible short sweep signals and a sine

wave will be emitted from the top and the bottom speakers

of the smartphone with maximum volume. At the same

time, the top and the bottom microphones of the smart-

phone record the reflected signals at a sampling frequency

of 192 kHz.

4.2 Overview

Figure 5 shows the overview of the proposed method.

After recording the reflections from the sine wave and the

periodic sweeps, we extract two types of features. From

the sine wave, we extract features for the Doppler shift.

From the sweeps, we extract features for impulse response.

During the next step, we use the features for Doppler shift

to detect mobile obstacles and impulse responses to detect

stationary obstacles. Furthermore, we employ these fea-

tures and train Random Forest classifiers to recognize lo-

comotive obstacle classes and stationary obstacle classes.

4.3 Feature extraction

4.3.1 Features for Doppler shift

Here we explain the process of extracting features for

the Doppler shift. We apply 0.1 sec sliding window with

90% overlap to calculate the FFT spectrogram. We use

the Hannig window as the window function. As we are

only interested in the neighborhood of 18 kHz, we select

4000 frequency bins from either side of the bandwidths

of the 18 kHz sine wave [9]. This produces an 8000-

dimensional frequency vector sequence.

4.3.2 Features for impulse response

An impulse is a signal that is equal to one at time zero

and is zero otherwise. It contains all the frequencies in

the frequency domain. Since it is hard to generate such

a strong pulse in the real world, we employ a sine sweep

signal that sweeps the frequencies between 18 kHz and

21 kHz within 0.1 sec. At the same time, we record the

reverberation of the reflected wave using the top and the

bottom microphones (mT and mB) at the same time.

Next we calculate the impulse response of the recorded

signal. Here, we calculate the convolusion of the recorded

signal with the time-reverced trancemitted sweep signal.

Let the received sweep signal at the top microphone mT

be RT (t). The impulse reponse IRk(t) of the signal RT (t)

is given by
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IRT (t) =

∫ t2

t1

RT (τ)S(t− τ)dτ. (1)

Here, S(t− τ) is the time-reversed signal of the emitted

sweep.

Next, we extract the upper envelope of the resulted im-

pulse response. The peaks of the envelop correspond to

reflections from obstacles (Figure 2). By analyzing the

time-series envelopes, that is, stacking a sequence of en-

velopes when the user is moving forward, we can detect

the stationary obstacles in front of the user.

Next, we calculate the FFT spectrum of each im-

pulse response. Furthermore, we extract 12th order Mel-

Frequency Cepstral Coefficients (MFCC) of each sweep

that give us the temporal variations of different frequency

bands. Since the MFCC algorithm is more discriminative

at lower frequencies and less discriminative at higher fre-

quencies, we optimize it to our preferred 18 kHz - 20 kHz

frequency range by adjusting the Mel-filter banks. Next,

we flatten the MFCCs of each sweep along the time axis

and concatenate them with the FFT spectrum vector of

the sweep. Concatenated frequency and time-domain vec-

tors are then used to recognize the stationary obstacles.

4.4 Detecting obstacles

The extracted envelops of the impulse responses from

the sweeps will be employed to detect the stationary ob-

stacles. We employ a peak detection algorithm that de-

tects peaks that are higher than a given threshold. If a

peak that exceeds the threshold is detected, we consider

that an obstacle is nearby. Furthermore, by the position

of the peak in the impulse response, the distance to the

obstacle from the phone can be calculated. When look-

ing at the first strongest peak in the impulse response, it

can be considered as a result of direct propagation of the

sweep wave from the speaker to the microphone. As the

distance between the microphone and the speaker is not

more than few centimeters, we can use this peak as the

origin of a distance measuring coordinate system. After

we recognize this peak, we calculate the number of sam-

ples until the next significant peak which represents an

obstacle. Note that, there is a peak caused by the reflec-

tions from the user’s body which occurs very close to the

first peak. As we are recording the audio at a sampling

rate of 192 kHz, by considering the speed of sound as 345

m/sec, we can calculate that each sample in the impulse

response corresponds to 0.18 cm. In other words, the dis-

tance resolution of this method is 0.18 cm. As can be

seen in Figure 2, for a considerable large obstacle such as

a wall, we can detect reflections when the wall is 4.5 m

away from the smartphone.

To detect locomotive obstacles, we leverage the Doppler

shifts created by the moving obstacles.Here, we employ

the frequency vectors we tailored in Section 4.3.1. We

train a classifier with these vectors and recognize the

Doppler shift created by a target obstacle. Furthermore,

we use the characteristics of the Doppler shifts (see Sec-

tion 3.1) to recognize if the obstacle is approaching from

behind or from the front of the user.

4.5 Obstacle recognition

4.5.1 Locomotive obstacle recognition

Here, we recognize locomotive obstacles with the fea-

tures extracted in Section 4.3.1. Since we are recogniz-

ing the obstacles that are on the sidewalk, we consider

two main classes of locomotive obstacles, walking person-

als and moving bicycles. Implementing this section and

testing the recognition range is an important part of our

future works.

4.5.2 Stationary obstacle recognition

Here, we recognize the stationary obstacles with the

features described in Section 4.3.2. We assume six sta-

tionary obstacle classes, namely; Tree, Wall, Bike, Bush,

Signpost, and Car. We train a classifier using the fea-

ture vectors extracted from the impulse responses. Next,

we use the classifier to recognize the class of the target

obstacle.

5. Preliminary evaluation

5.1 Dataset

Here, we explain the process with which we collected

the data for evaluation. A participant was asked to carry

a Samsung Galaxy S20 Ultra 5G smartphone in his hand.

He was asked to hold it in front of him in a way that he

can read the content on the smartphone screen. Next, he

was instructed to walk towards different obstacles in dif-

ferent environments at a normal speed. We collect eights

sweeps when the user is within 1 m from each obstacle.

As we are assuming six different obstacle classes, this can

be considered as a six-class classification problem. We

collected data from 20 different obstacles from each class,

each situated in a different environment. As an exam-

ple, the dataset of the Car class consists of different body

types such as sedan-style cars, SUVs, and convertibles.

Furthermore, we collected additional nine sessions of

data to evaluate the proposed locomotive obstacle detec-

tion. We separated the data into three different scenarios
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図 6 Visual confusion matrix of the overall results of stationary

obstacle detection

表 1 Macro-averaged precision, recall, and F-measure of the

stationary obstacle recognition

Precision Recall F-measure

Overall 0.77 0.76 0.76

Majority vote 0.85 0.83 0.83

according to the locomotive patterns of the user and the

obstacle.

• An obstacle is approaching from behind, the user is

stationary (BS).

• An obstacle (a person) is approaching from the front,

the user is stationary (FS).

• An obstacle is approaching from the front, the user is

walking towards the obstacle (FW).

In addition, we also try to recognize the two additional

classes, the Doppler shifts created during the user’s walk-

ing (“Walking” class) and all the other data (“Other”

class), including the Doppler shifts that occurred by mov-

ing the smartphone while standing still. Therefore, this

problem can be considered as a five-class classification

problem.

5.2 Evaluation methodology

We evaluate the proposed locomotive obstacle detection

method, using “leave-one-session-out” cross-validation,

where the Doppler shifts during one session were used as

test data, and the Doppler shifts created from the remain-

ing sessions were used as the training data.

We evaluate the proposed stationary obstacle recog-

nition method, using “leave-one-obstacle-out” cross-

validation, where sweeps collected from one obstacle were

used as test data, and the sweeps collected from the re-

maining obstacles were used as the training data.

A: FS

B: BS

C: FW

A: BS

B: FS

C: FW

D: Walking

E: Other

A B C D E

68%

62%

65%

93%

81%

図 7 Visual confusion matrix of the overall results of locomotive

obstacle detection

表 2 Macro-averaged precision, recall, and F-measure of the lo-

comotive obstacle detection.

Precision Recall F-measure

BS 0.63 0.68 0.66

FS 0.70 0.62 0.66

FW 0.77 0.65 0.71

Walking 0.84 0.93 0.88

Other 0.82 0.81 0.81

5.3 Stationary obstacle recognition

Figure 6 shows the visual confusion matrix of the over-

all results of the stationary obstacle recognition. As can

be seen in the figure, all the classes have achieved good

results. Table 1 shows the overall results of the station-

ary obstacle recognition. The overall macro-averaged pre-

cision, recall, and F-measure were 77%, 76%, and 76%

respectively. The results of the Tree class is somewhat

poor. Some of the Tree obstacles we collected the data

from were situated close to a boundary wall. This could

be the reason why some of the Tree instances have been

misclassified into the Wall class.Designing a method to

distinguish between multiple obstacles is a main part of

our future work.

Since we have collected data by emitting eight sweeps

per obstacle, we determine the obstacle class using the

majority vote results of the sweeps. Table 1 also shows

the results of the majority vote method. The macro-

averaged precision, recall, and F-measure of the majority

vote method were 85%, 83%, and 83% respectively.

5.4 Locomotive obstacle detection

Table 2 shows the overall results of the locomotive ob-

stacle detection. As can be seen in the table, our method

can differentiate between the Doppler shifts created by

the user and the moving obstacles. Furthermore, it can

also differentiate the Doppler shifts created by the moving
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obstacle under three different approaching scenarios.

6. Discussion

6.1 Device heterogeneity

To test the device heterogeneity of our method, we ad-

ditionally collected sweep data from three instances from

each class using the Galaxy Note20 Ultra 5G smartphone.

We trained a classifier using the data collected from S20

and test the data collected from Note20. The macro-

averaged precision, recall, F-measure was 15%, 14%, and

10% respectively. We believe that there are two main

reasons why cross-device recognition failed. The first rea-

son is that the frequency response of the microphone of

Note20 is different from S20 at high frequencies, which

made FFTs of the impulse responses to have different

characters across the devices. Furthermore, we found out

that there are random delays in the timestamps related to

sweep emission times in Note20. Therefore, it was hard for

our algorithm to correctly and accurately determine the

start and the end of each sweep which made the sweeps

from the Note20 to have different MFCCs from the S20

sweeps. Since the consistency of both the frequency and

time-domain features in Note20 have failed, our method

could not accurately recognize the classes of the obstacles.

As a part of our future work, we will design a method to

dynamically detect sweeps recorded in time-series audio

data.

6.2 Limitations

We employ the speakers of the smartphone to emit sine

sweeps and sine waves. Since the sweeps have to be emit-

ted frequently to recognize the obstacles, it affects the bat-

tery life of the smartphone. However, it is not necessary

to emit sweeps that frequently if there is no obstacle is

in close proximity. During our experiments, we found out

that to accurately recognize stationary obstacles, the ob-

stacle should be within 1 m from the smartphone. There-

fore, we believe that we can increase the battery life of

the smartphone by dynamically selecting how frequently

the sweeps should be emitted. By emitting sweeps less

frequently (2 sweeps per sec), we can probe for obstacles

in close proximity. If a stationary obstacle is detected and

it is within 1 m of the phone, the sweeps can be emitted

more frequently (10 sweeps per sec) to recognize it.

7. Conclusion

We presented a preliminary investigation on a method

for detecting and recognizing obstacles using smartphone

active sound sensing for pedestrian safety. We discussed

the theory of operation with which we can detect station-

ary and locomotive obstacles and recognize them. We

also proposed two novel designs for probing signals and

discussed a method to reduce the effect of the signal

power leakage from frequency hopping. We evaluated our

method on recognizing stationary obstacles and detecting

and recognizing locomotive obstacles and achieved state-

of-the-art performance. As a part of our future works, we

plan to evaluate the sensing range of our method.
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