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Abstract: Deep learning surrogate models can replace simulation solver computations by a low-latency infer-
ence. However, current surrogate models have important drawbacks such as inefficient memory usage when
mapping mesh into regular-grids or limited predictive capabilities to specific input conditions. We propose an
efficient surrogate model based on graph convolutional neural network designed for any finite-element mesh
and boundary conditions. The accuracy is guaranteed by a mapping of the FEA data into the GCN graph
while scalability is achieved by using the principal component analysis on the stiffness matrix. Our technique
achieves significant speed-up and maintain accuracy with 1e-03 precision compared with HPC simulations.
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1. Introduction

Computer-aided engineering (CAE) covers a broad range

of applications for high performance computing (HPC) such

as finite element analysis (FEA) or computational fluid dy-

namics (CFD). These simulations compute the dynamics of

physical objects and output relevant information for design-

ers and scientists. When dealing with large scale simula-

tion models, the computation becomes very time-consuming

as the number of iterations required for convergence is,

in general, proportional to the problem size. In the post

Moore’s law era, multiple methods exist for improving the

performance of scientific simulations. In addition to special-

ized/hybrid computer systems, novel algorithms or software

tuning, the somewhat recent emergence of deep learning and

its ability to train efficient predictive models has caught the

attention of the HPC community. Using simulation data,

supervised deep learning algorithms and GPU computation

power, many researchers [1] [2] have developed efficient sur-

rogate models which are able to predict simulation results

at very low latency (compared with the traditional solvers)

with yet, a certain trade-off in accuracy.

Besides the usual speed/accuracy trade-off, surrogate

models raise important limitations, especially when prob-
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lem size is large. In general, the simulation input mesh is

mapped into a regular-grid and fed into a neural network

for training. This ”image-based” method is highly ineffi-

cient in terms of memory usage and computation as a large

part of the regular-grid consists in void areas surrounding

the actual model. In addition to performance deficiency,

predictive capabilities of surrogate models are often limited

to specific simulation conditions and thus, making a change

in the input mesh or the boundary conditions often involves

a drastic modification of the training data design.

We propose a general method for building accurate sur-

rogate models for large structural analysis simulations. In-

stead of using input boundary conditions, we directly map

the FEA linear system data into a graph convolutional neu-

ral network (GCN) for replacing the iterative solver com-

putation. Relying on standard FEA data only, our method

can be applied for any input mesh and boundary conditions.

Moreover, the GCN local neighborhood convolution enables

high training performance without waste of memory usage

compared with ”image-based” training. Also, we use the

principal component analysis (PCA) to achieve scalability

for larger problem size and to avoid the empirical limitation

of GCN in propagating the local neighborhood information

through large mesh.

We evaluated the predictive performance of our GCN-

based surrogate model using different model sizes up to more

than nine thousand nodes. For all cases, high accuracy is

achieved with 1e-03 precision compared with the FEA sim-

ulation results. Using a nine thousand nodes model, our
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trained GCN achieves more than 3x acceleration compared

with FEA simulation. Such approach can help designers

and engineers during design space exploration by accelerat-

ing the discovery of optimal parameters for structures.

The following is a summary of the paper contributions.

(1) We designed a general method for building accurate sur-

rogate models of FEA simulations using graph convolutional

neural network. Instead of using specific boundary condi-

tions, we map the standard stiffness matrix and forcing vec-

tor data into a graph for GCN supervised training. (2) We

scaled the predictive capabilities of GCN-based surrogate

models to large input graph by applying the PCA reduction

technique to a custom stiffness matrix. (3) We evaluated the

inference accuracy of our trained model using different prob-

lem size and achieved speed-up compared with traditional

FEA simulations.

2. Background

In this section, we explain the motivations of graph-based

surrogate models for predicting FEA simulations results.

2.1 Structural Analysis simulations

Structural Analysis (SA) simulation is a computer pro-

gram used by designers and engineers for computing the

effects of loads applied on physical structures. From an in-

put mesh and boundary conditions, the program generates

a linear system, Ax = b, using the finite element method.

Then an iterative solver, such as the Conjugate Gradient,

is called for computing an estimate of the solution x. In the

case of SA simulation, the solution is the nodal displacement

vector which represents how much the structure has been de-

formed from its initial position. In general, SA simulations

require HPC platforms for optimized sparse matrix-vector

multiplication (SpMV) and to achieve faster convergence.

2.2 Why surrogate models ?

Even though efficient preconditioners have been devel-

oped for solving large sparse linear system, such as Alge-

braic Multigrid, a further need for acceleration is still re-

quired for design applications. Often, engineers must it-

erate on a large input parameters space where each trial

can be very time-consuming, especially when problem size

is large. Because each simulation instance generates a valu-

able amount of data, it became legitimate for researchers

to leverage data-driven algorithms, such as supervised deep

learning, for building low latency prediction models. Such

incentive has become stronger recently in HPC for two rea-

sons. First, deep learning achieved state-of-the-art perfor-

mance in several applications such as computer vision or

natural language processing. Secondly because many spe-

cialized hardware devices (GPU,TPU) has been developed

for efficient neural network training and inference.

2.3 Image-based deep learning

Unlike conventional HPC algorithms, surrogate models’

performances (accuracy and generalization) rely on many

design choices [3] such as training data, network architec-

ture and hyperparameters. A naive approach for surrogate

model training is to incorporate the unstructured mesh into

a regular grid because convolutional neural network (CNN)

are designed for regular tensor processing. However, such

method has important issues. First, it generates a high

number of additional points resulting in increased memory

usage. Secondly, it removes important spatial information

from the original structure such as distance between nodes

and local neighborhood density. These are the reasons why

geometric deep learning [4] has emerged and is attempting

to generalize deep learning to non-Euclidean domains such

as graphs.

2.4 Graph Neural Network

Graph neural network (GNN) is a deep learning method

which operates directly on graphs and is used for different

tasks such as node classification, link prediction or cluster-

ing. Depending on the graph type (oriented or not, static

or dynamic, etc...), the learning task (node-level, edge-level

or graph-level) or the training setting (supervised or unsu-

pervised), GNN models can have different architectures and

capabilities. In general, a GNN is built by combining three

types of computational blocks (propagation, sampling, and

pooling) which are stacked for computing expressive graph

representation through the network. The propagation block

aggregates both the features and topological information be-

fore propagating them between nodes via message passing.

When the graph is large, a sampling block can be used to

facilitate the propagation and, in a similar way to image-

based deep learning, pooling blocks can extract high-level

subgraphs or graphs when it is needed. The existence of

several variant for each computational block [5] leads to dif-

ferent possible instances of GNN. In this paper, we focus

on the mostly used propagation block for GNN models: the

convolution operator.

2.5 Convolution on graphs

As convolutional neural networks (CNN) can construct

highly expressive representations by extracting localized

spatial features from images, several researches tried to

generalize the convolution to graph domain. Indeed, CNN

properties such as local connection, shared weights and

the use of multiple layers are also important in solving

problems on graphs. There are two main methods for

applying convolutions on graphs: the spectral and the

spatial approaches.

2.5.1 Spectral methods

The spectral methods apply the convolution in the spec-

tral domain using the graph Fourier transform. First the

graph signal is transformed to the spectral domain, then

the convolution is computed. After convolution, the re-

turned signal is transformed back using the inverse Fourier

transform. Such method requires to compute the eigenvec-

tors of the graph Laplacian which is compute expensive.

c© 2021 Information Processing Society of Japan 2

IPSJ SIG Technical Report Vol.2021-HPC-180 No.10
2021/7/20



However, ChebNet [6][7] approximated the learnable filters

using Chebyshev polynomials and thus defined an efficient

K-localized spectral convolution which does not require the

computation of eigenvectors anymore.

2.5.2 Spatial methods

The spatial methods apply the convolution directly in the

graph domain by considering its topology. Such methods

process an input node by considering an aggregation of the

local neighborhood’s features. One of the main challenges

of spatial methods is to define the convolution on graphs

containing a variable neighborhood density (nodes with dif-

ferent degrees). The GraphSAGE method [8] is one state-

of-the-art implementation for spatial convolution which uses

a sampling strategy for always aggregating the information

from a fixed size set of neighbors.

2.5.3 Graph Convolutional Networks

The Graph Convolutional Networks (GCN) method [9]

is the convolution operator we use in this paper. GCN can

be considered as both a spectral and spatial convolutional

method. On one hand, it operates directly on the graph

domain, encoding both the local graph structure and nodes

features. On the other hand, it is based on a first order

localized spectral convolution and brings simplifications to

Chebnet. The GCN convolution is described as:

H = D̃−1/2ÃD̃−1/2XW (1)

where X ∈ RN×F is the node features matrix, W ∈ RF×F ′

is the learnable weights matrix and H ∈ RN×F ′
is the out-

put matrix representing the convolved features. The graph

structure is represented by the adjacency matrix A ∈RN×N

which includes the nodes self-loop (Ã = A + IN ). It is

worth noting that the adjacency matrix is normalized by

the degree matrix D so that GCN can handle varying nodes

degrees. In this paper notation, N is the number of nodes,

F is the number of node features and F’ is the new num-

ber of features obtained after convolution. As GCN demon-

strated high scalability and accuracy performance for tra-

ditional nodes classification problems, we decided to rely

on this method to train a graph-based surrogate model for

structural analysis simulation.

3. Related Work

In this section, we present research that employed ma-

chine learning (ML) in scientific computing to achieve better

trade-off between computational cost and accuracy. We sep-

arate the techniques which use ML for improving simulation

algorithms from the surrogate models which replace entirely

the governing equations and provide low latency predictive

capabilities with yet a trade-off in the accuracy.

3.1 ML for improving simulation algorithms

Several works applied machine learning for improving sci-

entific simulations. In Molecular Dynamics, neural networks

(NN) [10] and gaussian processes [11] have been trained with

DFT simulations to reconstruct Potential Energy Surfaces.

In the field of Computational Fluid Dynamics, NN could

predict turbulence velocity vector fields [12], flow around

air foil [13] and Reynolds anisotropy tensors [14]. For Struc-

tural Analysis simulations, some works used DNN to infer

the stress applied on concrete given the strain of mesoscale

simulation [15] or even bypassed the high resolution com-

putation of stress around fillet using coarse sharp corner

parameters [16]. Such methods can speed-up traditional

simulation techniques, but the obtained acceleration is of-

ten limited as the conventional numerical methods are still

used. Instead of assisting a numerical method, our proposal

replaces it by a surrogate model to make direct predictions.

3.2 Surrogate models based on neural networks

Surrogate models aim to predict instantaneous informa-

tion that are too time-consuming to compute through con-

ventional simulation methods. By training NN with domain-

specific dataset, surrogate models have been used in several

engineering problems. In quantum mechanics, [17] directly

predicted molecules ground states from nuclear charges and

atomic position instead of solving expensive Schrodinger’s

equation. Using NN in flow analysis, [18] predicted multi-

phase flow properties from impedance data, [19] adjusted the

mass flow rates of jets for reducing the drag around aircraft

cylinder body and [20] optimized the design of structure for

CFD simulations. Like our target application, [21] used NN

to predict the stress applied on materials from strain tensors

in order to identify material characteristics. While sharing

the same objectives, our proposal relies instead on graph

processing for extracting knowledge not only from the fea-

tures space but also directly from the topology.

3.3 Surrogate models based on graph networks

Recently, graph-based surrogate models have been used to

represent and process unstructured data in a more natural

way. In biology, [22] proposed a GCN method for protein in-

terface prediction by representing the residues as nodes. In

particle systems, [23] used GNN to predict particle trajec-

tories from learned interaction graphs. In a broader scope,

[24] developed a general framework for particle-based simu-

lations by combining an ”encode-process-decode” architec-

ture with a learning of dynamics based on message-passing.

More recently, [25] has extended this framework to mesh-

based simulations and presented a speed-up of two orders of

magnitude compared with traditional simulations. Focusing

on the learning of graph isometric transformation invariant

features, [26] enhanced the GCN layer and demonstrated ef-

ficient scalability and prediction accuracy on nonlinear heat

diffusion problems compared with conventional FEA simu-

lations. In these works, the surrogate models are trained

to predict future physical states from the previous one by

learning the transient evolution of the node features. Such

method has the main disadvantage to accumulate the pre-

diction error through the iterations because previous pre-

dictions become the inputs for next inferences. Moreover,

when choosing problem specific data to represent node fea-

tures such as the input temperature field, it becomes difficult
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Fig. 1 Difference between the conventional FEA simulation and
our proposal which replaces the solver computation bot-
tleneck by a GCN inference.
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Fig. 2 FrontISTR simulation: CPU time breakdown of a single
Newton-Raphson iteration for several application models.

to generalize to other types of simulation input conditions.

Our proposal deals with such limitations by processing di-

rectly a nodal representation of the FEA system using GCN.

4. Proposal

We explain in this section the design choices and the im-

plementation details of our proposed GCN-based surrogate

model of FEA structural analysis simulations.

4.1 Structural Analysis simulations bottleneck

As explained in Section 2 and illustrated in the top frame

of Figure 1, a Structural Analysis simulation is composed

of two main computational blocks: the FEA and the linear

solver. Figure 2 shows the CPU time breakdown of a sin-

gle Newton-Raphson (NR) iteration for several application

models. Each NR iteration is composed of one FEA call

and one linear solver call. Readers can imagine that these

breakdown results are repeated for multiple NR iterations

throughout the entire nonlinear SA simulations. Indepen-

dently of the problem size, which is indicated after the ap-

plication model name, Figure 2 reveals that the major part

of the computation is spent by the linear solver. The details

of the experimental environment are described in Section 5.

For this breakdown measurement, we used the CG solver

with AMG preconditioner, a solver tolerance of 1−08 and a

single OMP thread for all models except for the drone and

mold which use 36 threads. Because the FEA computation

is negligible compared to the solver one, we propose a sur-

rogate model for replacing only the solver block. Instead

of using an end-to-end black box, we keep the FEA com-

putation and leverage its output data for training our AI

model in predicting the solver estimation at lower latency.

This global mechanism is described in Figure 1 and will be

explained in the following sections.

4.2 Linear System as input for Surrogate Model

Using the linear system data ”Ax = b” generated by the

FEA as the input of our surrogate model has several advan-

tages. First it standardizes the training data for all types of

simulations input mesh and boundary conditions. Surrogate

models are often trained with specific conditions dataset

which makes difficult the generalization to other types of

analysis. As the stiffness matrix A and the forcing vector

b are constructed in a similar way whatever the simulation

input data is, our proposal can be used for any types of

FEA-based simulations such as stress, flow or heat conduc-

tion analysis. Another merit of using input A and b for

predicting x is the confidence we have in the ability of our

predictive model for solving the inverse problem x = A−1b

and providing satisfying accuracy. At the inference phase,

our proposal is designed to predict the linear solution from

the FEA output within a chosen NR iteration. Because the

FEA data is generated by the simulation itself, our mecha-

nism avoids a typical error accumulation as it is often the

case when a surrogate model is fed by its own previous pre-

diction.

4.3 Understanding the FEA data

During the simulation, each NR iteration relies on the

FEA to generate a new stiffness matrix A and forcing vec-

tor b. The stiffness matrix encodes the topology of the in-

put mesh, the relationship between the nodes as well as the

material properties. On the other hand, the forcing vector

encodes the applied boundary conditions (external forces f)

on the structure. Figure 3 illustrates an example of A and

b generated from a simple 3D-mesh composed of a single 3-

nodes triangle element. In such case, the matrix A is like the

local stiffness matrix corresponding to that element. Given

the number of nodes n (equals 3 here) and the number of de-

gree of freedom dof (equals 3 also because we work in 3D),

such matrix can be split into n2 blocks of ”n ∗ dof” com-
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Fig. 3 Example of linear system data generated by FEA from a
simple 3-nodes triangle element in 3D space.

c© 2021 Information Processing Society of Japan 4

IPSJ SIG Technical Report Vol.2021-HPC-180 No.10
2021/7/20



n1

e12

Input graph of GCN
with FEA-based 

node/edge features

n2

n3

e23

e31
* * *

* * *

* * *

n3 ➔ n1

Local 
stiffness matrix A

* * *

* * *

* * *

n3 ➔ n2

* * *

* * *

* * *

n3

* * *

* * *

* * *

n2 ➔ n1

* * *

* * *

* * *

n2

* * *

* * *

* * *

n2 ➔ n3

* * *

* * *

* * *

* * *

* * *

* * *

n1 ➔n2

* * *

* * *

* * *

n1 ➔ n3n1

fx
1

fy
1

fz
1

fx
2

fy
2

fz
2

fx
3

fy
3

fz
3

Local 
forcing 

vector b

Fig. 4 The mapping from the FEA data to the input graph of
GCN which defines the FEA-based node/edge features.

ponents. The diagonal blocks represent the local stiffness

data of each individual node in the mesh, while the sym-

metric off-diagonal blocks represent the stiffness relationship

between each pair of nodes. Because FEA mesh are not full-

connected graphs, a large number of the off-diagonal blocks

are filled in with zeros, explaining why the stiffness matrix

is sparse. The definition of the forcing vector is much sim-

pler: it contains the 3D components (x,y,z) of the external

boundary conditions for each individual node. Besides the

matrix sizes, the construction of A and b for larger mesh

and different types of elements is similar.

4.4 Mapping the FEA data to the GCN graph

In this paper, we generate the GCN input graph identi-

cal to the FEA mesh. For learning, we must associate to

each node and edges an input features vector. Choosing the

appropriate set of features is an important step of the sur-

rogate model design. However, there is no standard rules

which help to make this choice as it often depends on the

targeted task. This paper proposes a mapping which is a

standard and a natural choice for building a surrogate model

for FEA simulations. From the definition of matrix A and

vector b, we slice the FEA matrix data into a set of blocks

which are either related to a node or an edge of the GCN

graph. As shown in Figure 4, the stiffness matrix diagonal

blocks, along with the forcing vector components, are as-

signed to theirs corresponding nodes and become the ”node

features”. Instead, the stiffness matrix off-diagonal blocks

are allocated to theirs corresponding edges and become the

”edge features”. Such mapping translates the stiffness data

from the regular matrix to a graph representation and makes

possible the GCN training.

4.5 GCN: Training Data and Architecture

The Figure 5 describes an example of the node and edge

features vectors generated by our mapping. When generat-

ing the training data, we associate each GCN input graph

with a label graph which encodes the FEA simulation re-

sults. In this label graph, each node is associated with a 3D

features vector representing the nodal displacement values

computed by the simulation solver. Our GCN model is fed

by these pairs of graphs and trained in a supervised man-

ner to predict the displacement field over the output graph.

n1

e12

n2

n3

e23

e31
u1

xx u1
xy u1

xz u1
yx u1

yy u1
yz u1

zx u1
zy u1

zz f1
x f1

y f1
z

u12
xx u12

xy u12
xz u12

yx u12
yy u12

yz u12
zx u12

zy u12
zz

GCN input graph

I

N

P

U

T

G

C

N

T

A

N

H

F

C

G

C

N

T

A

N

H n1

n2

n3 d1
x d1

y d1
z

GCN Network Architecture with two ‘hops’

Predicted
Nodal displacement

node/edge features vectors

Fig. 5 GCN graph with FEA-based nodes/edges features as in-
put of GCN network for predicting SA simulation results.

The architecture of the GCN model is composed of three

types of layer. First the GCN layer applies the convolution

on each node and outputs a new set of features as explained

in Section 2.5.3. After each GCN layer, we use a hyperbolic

tangent as we want to learn a nonlinear function which can

outputs real numbers. Finally, we predict the 3D displace-

ment vectors by using a full-connected layer without addi-

tional activation. The number of ”GCN-tanh” blocks inside

the neural network is an important hyperparameter which

controls how far the node features are propagated to distant

neighbours. For example, the model in Figure 5 propagates

each local node features ”two hops” away because two blocks

are used. Section 5 explains in more details the impact of

this hyperparameter on the model performance.

5. Experimental Evaluation

In this section, we explain the experiments we conducted

to evaluate the performance of our proposed surrogate

model. We also discuss the scalability limitation when us-

ing the raw FEA data and describe the improvements we

obtained when incorporating the PCA in our method.

5.1 Experimental Environment

All experiments were conducted on a dual-socket machine

with two 2.1 GHz 18-core (36-thread) Intel Xeon E5-2695 v4

processors and 8 16GiB DDR4 memory modules (128 GiB

total). The machine is equipped with an Intel NVMe SSD

750 Series with a storage capacity of 1.2 TiB and two Nvidia

Tesla P100 GPUs with a memory capacity of 16 GiB. The

installed operating system is CentOS 7.2 with Linux kernel

v3.10. For FEA structural analysis simulation, we use Fron-

tISTR v5.2 built with Intel compilers v18.0 and linked with

Intel MKL and Lapack external libraries. For GCN training

and inference, we use PyTorch Geometric v1.7 installed with

Python 3.7.9 and Cuda 10.2.

5.2 Application models and Training phase

To evaluate the performance of our proposal, we started

by generating different sizes of FrontISTR cantilever models

going from 28 to 1035 nodes as shown in Figure 7. After

that, we evaluated the limitation of GCN propagation and

the benefits of the PCA representation by experimenting

on larger cantilever versions of size 2238 and 4473 nodes as
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problem size epochs training time
28 50 15.9 sec
60 50 16.01 sec
130 50 16.45 sec
260 500 165.76 sec
516 500 195 sec
1035 1000 760.61 sec
2238 1000 2430 sec
4473 1000 11 hours
9162 1000 1.35 days
14119 1000 3 days

Table 1 Problem size (number of nodes), epochs and training
time. The GCN surrogate model is trained using PCA
dataset, one GCN layer and a single GPU.

shown in Figure 9. Finally, we evaluated our proposal on

two additional models, a wheel model (9k nodes) from the

ABC dataset and a plastic can model (14k nodes) from the

FrontISTR tutorial. For the cantilever models, the simula-

tion keeps the leftmost area fixed and applies an external

load on the rightmost area so that the structure is bent

down. The wheel model is pushed from top to down while

the plastic can is pulled out from right to left. For each appli-

cation models, we generate 200 training samples by varying

the external load intensity in some range depending on the

structure dimension. Then we use these samples to train a

GCN model as illustrated in Figure 5. The training time

depends on the problem size and the number of epochs that

we used for obtaining accurate enough prediction results.

We summarized such information in the Table 1.

5.3 Node features matrix representations

As explained in Section 4, we generate the graph fea-

tures from the FEA data A and b. However, because the

GCN layer cannot handle edge features processing, we im-

plemented a ”node features only” version of the Figure 4

mapping by concatenating the edge features with the cor-

responding node features. In such case, the obtained node

features vector incorporates both the targeted node stiffness

data (diagonal block) and the stiffness relationship with all

the other nodes (the off-diagonal blocks of the correspond-

ing ”row”). As illustrated in the top-middle image of Figure

6, we reshaped the n 3∗3 blocks into a single 1D vector and

obtain a node features matrix that we call ’original data’.

In this representation, each node (row) has 9n+3 features

(columns). The ”original data” column of Table 2 shows

the evolution of the features number with increased prob-

lem sizes. As the dimension of stiffness matrix grows with

O(9n) complexity, it becomes not practical to use the ’origi-

nal data’ representation for GCN training (in such case, the

GPU memory becomes the bottleneck). To overcome this

problem, our first approach is to consider only the nonzero

values of the (sparse) stiffness matrix A.

5.4 The nonzero representation

When we remove the zeros from the ’original data’, we

obtain the ’nonzero’ representation shown in the top-right

image of Figure 6. In this case, the new number of node

features ”nz” is equal to the maximum number of nonzero

FEA stiffness matrix node features matrix

‘original data’

node features matrix

‘nonzero’

node features matrix

‘PCA’

reshape nonzero

max

abs

scaler

PCA

• Problem size: 28 nodes

• FEA matrix: (84, 84)

• original data: (28, 255)

• nonzero: (28, 106)

• PCA: (28, 20)

Fig. 6 Three possible representations of the GCN node features
matrix generated from FEA data.

problem size original data nonzero data PCA data
28 255 106 20
60 543 127 42
130 1173 120 89
260 2343 138 173
516 4647 138 341
1035 9318 156 692
2238 20145 156 1511
4473 40260 — 2998
9162 82461 — 6546
14119 127071 — 9527

Table 2 Comparison of the node features vector size for each
data representations. Data type is 64-bit floating point.
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Fig. 7 Using nonzero data: comparison between FEA (baseline),
GCN 1 hop and GCN with tuned hops (propagation).

elements that a single node can have. Because all nodes

must have the same number of features, we use zero-padding

to artificially extend the size of the smaller vectors up to

”nz”. As shown in the ’nonzero data’ column of Table 2,

this method drastically reduces the number of node features

which does not proportionally increase with the problem size

anymore. Indeed, the number ”nz” is generated by the node

which has the highest degree (more connections in the graph

means more nonzero values in the matrix) and not by the

graph size.
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FEAProblem size: 2238 nodes

Limited 

propagation

GCN tuned hop

Fig. 8 GCN propagation limitation for larger graph.

5.5 GCN propagation

From the cantilever simulations, we generate a training

dataset based on the nonzero representation. For each prob-

lem size, we train a GCN model and evaluate its prediction

accuracy using an input Dirichlet intensity of -1cm. The set

of images in Figure 7 shows for each problem size the differ-

ence between the FEA baseline (top row), the GCN predic-

tion using a single ”gcn-tanh” block (middle-row) and the

GCN prediction using a tuned number of blocks (bottom-

row). By looking at the ”GCN 1 hop” error curve, we see

that using a single hop is not enough for obtaining a good

accuracy as the nodal mean square error increases with the

problem size. If we tune the number of hops, as well as the

GCN number of output features, we can improve the pre-

diction accuracy, at least for small problem sizes. However,

the ”GCN tuned hops” error curve starts to increase from

the 1035 nodes graph and shows the limits of GCN propa-

gation by stacking multiple layers. Figure 8 illustrates this

limitation with a 2238 nodes model. As the graph size in-

creases, we must stack more GCN layers to propagate the

information to more distant hops. However, we observed an

empirical threshold after 15 layers from which the validation

loss increases abruptly. Because of such limit, it becomes dif-

ficult to achieve good prediction accuracy with larger graph.

To overcome this limitation, we proposed another data rep-

resentation for the node feature vectors which incorporates

more global information instead of local ones.

5.6 PCA representation

When it comes to large input graph, GCN-based surrogate

models using FEA data must deal with two main challenges:

scalability and propagation of information. As the nonzero

representation can only solve the first problem, we propose

a better representation to deal with the propagation limita-

tion. As shown in Figure 6, we process the FEA ’original

data’ on a different path and generate a new representation

that we call ’PCA’. First, we use the max absolute scaler

formula:

x̃i = xi/absolute(xmax) (2)

for normalizing each feature vector in the [-1,1] range with-

out destroying any sparsity of the original data (the zeros

are not modified). Such normalization makes all features

share the same standard deviation which is a requirement

130n 260n 516n 1035n

GCN + PCA (1 hop)

FEA

Problem size

2238n 4473n

Fig. 9 Using PCA data: comparison between FEA (baseline) and
GCN prediction. MSE is always below 0.001

for computing a relevant projection of the dataset into a

smaller dimension space. To do so, we apply the PCA on

our scaled FEA data and generate a reduced set of feature

vectors which has the merit of preserving a large part of

the original dataset variance. For example, Table 2 third

column shows that a features matrix, coming from a 9162

nodes graph, can be reduced from 82k to a 6k features while

95% of the original information are retained. This percent-

age value is an input parameter that we use to indicates the

PCA how many eigenvectors (dominant modes) it should

extract for computing the new set of feature vectors. Be-

cause the extraction prioritizes eigenvectors with the largest

eigenvalues, the PCA computed features incorporate a large

part of the original dataset variance. The lowest error curve

of Figure 7 and the images of Figure 9 show the performance

of GCN model predictions which have been trained using a

PCA-reduced dataset and only one GCN layer in the neu-

ral network. Because PCA computes global feature vectors

before the training, a propagation using stacked GCN lay-

ers is not required anymore which leads to an easier and

simpler neural network architecture design. Using a single

GCN layer, better prediction accuracy can be obtained with

larger models compared with previous data representation.

5.7 Acceleration of design optimization

In this work, we aim to accelerate design optimization

for engineers and designers. In the design workflow, several

instances of a simulation are run, using a fixed structure

mesh but with different boundary conditions and/or ma-

terial properties so that the designers can understand the

behaviour of the structure. Because different conditions or

material properties do not affect the stiffness matrix data,

the PCA in our proposal must be computed only once for the

targeted structure. By eliminating the need for new PCA

computation on the stiffness matrix (only normalization for

the new forcing vector is required), our proposed surrogate

model can be used to replace the solver computation for each

NR iteration and thus can provide a significant speed-up.

5.8 Speed-up of our proposal

The Figure 10 shows a comparison of the execution time of

a single NR iteration when it is computed by the CG-AMG

solver using 36 threads versus when the results is directly

inferred by our proposal using GPU. The proposal elapsed

time incorporates the loading of stored PCA results, the
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Fig. 10 GCN speed-up using different problem size models.

FEA results GCN prediction

Absolute difference: FEA – GCN Distribution of values

0.5 1

>7000

>1500

Fig. 11 The ABC Wheel 9k nodes model: FEA vs. GCN

normalization of the new vector b for the NR iteration and

the GCN inference itself. The proposal time does not in-

corporate the PCA computation time (which for example

takes approximatively one hour for the 9k wheel model), as

it is computed only once and reused for different simulation

input conditions. Also, the GCN inference time does not

incorporate the training time which is described in Section

5.2. The obtained average speed-up for all the models that

we analysed is around 7 times faster than traditional NR

iteration. In the case of nonlinear analysis, where many NR

iterations are required, such speed-up can be accumulated

and thus it can lead to drastic acceleration of the overall

simulation time. The Figures 11 and 12 show a comparison

of the structure deformations computed by the FEA versus

the GCN prediction for the Wheel and Can models. The im-

age and bar graph of the nodal difference values shows that

GCN prediction is accurate on a large part of the simulation

model.

6. Conclusion

Our proposed surrogate model can accelerate any simula-

tion based on finite element method such as structural anal-

ysis or computational fluid dynamics. We mapped the FEA

data into the input graph of GCN and created a standard

way to train an AI prediction model which works for any

input mesh and any boundary conditions. Using the PCA

to represent our feature vectors, we overcome the propaga-

FEA results GCN prediction

Absolute Difference: FEA - GCN Distribution of values
12k

1.5k

<500

10 20 30

Fig. 12 The FrontISTR Can 14k nodes model: FEA vs. GCN

tion limitation of GCN and achieved scalability with larger

graphs. We applied our method to structural analysis mod-

els (up to 14k nodes) and achieved both a significant speed-

up of NR iteration computation (an average of x7 speed-up

for all models) and high accuracy results with 1e-03 preci-

sion. In future work, we plan to demonstrate similar results

with larger model sizes using distributed GCN training.
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