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Abstract: The range mode problem is a fundamental problem and there is a lot of work about it. There
is also some work for the dynamic version of it and the enumerating version of it, but there is no previous
research about the dynamic and enumerating version of it. We found an efficient algorithm for it.
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1. Introduction

Definition 1 (mode). A : multiset

a ∈ A is a mode of A

⇔ ∀b ∈ A (the multiplicty of a in A) ≥ (the multiplicty of

b in A)

In the following, “a mode of multiset

{A[l], A[l + 1], . . . , A[r]}” is abbreviated to “a mode

of A[l : r]” for a sequence A.

Problem 2 (Range mode problem). Given a sequence A

over an alphabet set Σ, process a sequence of queries.

• mode(l, r): output one of the modes of A[l:r]

The range mode problem is a fundamental problem and

there is a lot of work about it.
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Table 1 The results of previous research about the range mode

problem. n is the length of a string and m is the max-
imum frequency of an item. Space complexity does not
include the input string.

As a natural extension of the range mode problem, we can

consider the enumeration version of the problem.

Problem 3 (Range mode enumeration problem). Given a

sequence A over an alphabet set Σ, process a sequence of

queries.

• modes(l, r): enumerate the modes of A[l:r]

There is another natural extension of it, the dynamic ver-

sion of the problem.
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Problem 4 (Dynamic range mode problem). Given a se-

quence A over an alphabet set Σ, process a sequence of

queries of the following three types:

• insert(c, i): insert c (∈ Σ) so that it becomes the i-th

element of A

• delete(i): delete the i-th element of A

• mode(l, r): output one of the modes of A[l:r]

There is some work about the range mode enumeration

problem and the dynamic range mode problem.
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Table 2 The results of previous research about the range mode
enumeration problem. n is the length of a string and m
is the maximum frequency of an item. Space complexity
does not include the input string.
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Table 3 The results of previous research about the dynamic
range mode problem where n is the length of string and
nmax is the limit of the length of the string. Space com-
plexity does not include the input string. The query
time comlexity is same in all the query types. The word-
size is Ω(logn).

Considering the normal version, enumerating version, and

the dynamic version of the problem, we can consider another

problem, the dynamic enumerating version one.

Problem 5 (Dynamic range mode enumeration problem).

Given a sequence A over an alphabet set Σ, process a se-

quence of queries of the following three types:

• insert(c, i): insert c (∈ Σ) so that it becomes the i-th

element of A

• delete(i): delete the i-th element of A

• modes(l, r): enumerate the modes of A[l:r]

There is no previous research about the dynamic range
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mode enumeration problem.

It is known that the range mode problem is related to the

boolean matrix problem and the set intersection problem [5].

Problem 6 (Set intersection problem). Given multisets

S1, S2, . . . , SN of a universe U , process a sequence of fol-

lowing queries.

• intersect(i, j): check whether Si and Sj intersect or

not

If the range mode problem can be solved efficiently, it can

be checked if two sets intersect efficiently. We can solve the

set intersection problem by building a data structure for a

sequence of 2N |U | elements as follows

(elements of) S1, S
c
1, S

c
1, S1, S2, S

c
2, S

c
2, S2, . . . , SN , Sc

N , Sc
N , SN

and calling mode(2i |U | − |Si| , 2(j − 1) |U |+ |Sj |) query for

a intersect(i, j) (i < j) query.

Therefore if the dynamic range mode enumeration problem

can be solved efficiently, the computation of the intersection

of two sets and modifying of the sets can be done efficiently.

Our contribution

Existing methods for the dynamic range mode problem

cannot be applied to the dynamic range mode enumeration

problem. The step 3 of Algorithm 1 of [7] cannot be used for

the dynamic range mode enumeration problem. Problem 7

of [8] needs only one index and the algorithm of this paper is

based on this problem. In this paper, we found the first al-

gorithm for the range dynamic enumeration problem, which

can deal with insert and delete queries in O
(
N

2
3 log σ′

)
time per query and modes query in O

(
N

2
3 log σ′ + |output|

)
time per query where N is the length of the sequence and

σ′ = |{c ∈ Σ|c appears in the sequence}|.

2. Main Result

The following theorem is the main result.

Theorem 7. There exists a data structure for the dynamic

range mode enumeration problem in the word RAM model

with Ω(logN + log σ) bits wordsize in O
(
N

2
3 log σ′

)
time

per insert and delete query and O
(
N

2
3 log σ′ + |output|

)
time per modes query where N is the length of the sequence

and

σ′ = |{c ∈ Σ|c appears in the sequence}|. The space com-

plexity is O
(
N +N

2
3 σ′

)
words.

Our main idea is to divide the sequence into L = Θ(Nα)

subsequences of length which may be zero but not greater

than C = Θ
(
N1−α

)
for some parameter a. Let Bi be the

i-th subsequence. We call it a block. For sequences X,Y ,

we define X +Y as the sequence obtained by concatenating

X and Y in this order.

The data structure consists of the following components.

• TA : A data structure for the sequence A. It can process

the following queries.

– access A [l : r] (0 ≤ l ≤ r < |A|) in O(T1,r−l+1) time.

– insert a character c (∈ Σ) into i-th position of A

(0 ≤ i ≤ |A|) in O(T2) time.

– delete the i-th character of X (0 ≤ i < |A|) in O(T3)

time.

• TB : A data structure for the array

(|B0| , |B1| , . . . , |BL−1|), which is used to com-

pute which block a character in A belongs to. It can

process the following queries.

– increase or decrease the i-th element (0 ≤ i < L) in

O(T4) time.

– calculate argmini |Bi| in O(T5) time.

– calculate min
{
k
∣∣∣∑k

i=0 |Bi| ≥ a
} (

0 < a ≤
∑

i |Bi|
)

in O(T6) time.

– insert a value x into i-th position of the array in O(T7)

time.

– delete the i-th element of the array in O(T8) time.

• S(l,r) (0 ≤ l ≤ r < L) : A data structure for the ordered

set

{((the multiplicity of c in Bl + · · ·+Br) , c) |
c appears in Bl+· · ·+Br}. It can process the following

queries.

– create an empty set in O(T9) time.

– increment or decrement the multiplicity of character

c (∈ Σ) in O(T10) time.

– compute the multiplicity of a character c (∈ Σ) in

O(T11) time.

– access the largest element in O(T12) time.

– access the next largest to the last accessed element in

O(T13) time.

We introduce new operations moveLeft (i) and

moveRight (i). The operation moveLeft (i) moves the

first element of i-th block to the (i − 1)-st block. In

such an operation, we only need to modify the following

components.

• TB

• S(0,i−1), . . . , S(i−1,i−1), S(i,i), . . . , S(i,L−1)

This can be done in O(T4 + LT10) time. The operation

moveRight (i) moves the last element of i-th block to the

(i+1)-st block. It can be done in the same time in a similar

way.

We process the queries by the following method.

delete

Let j be the index of the block that contains the i-th el-

ement. It can be computed in O(T6) time. TA and TB can

be modified easily in O(T1,1 + T3 + T4) time. We need to

modify S(l,r) for all l, r such that 0 ≤ l ≤ j ≤ r < L. It can

be done in O
(
L2T10

)
time.

insert

Let j be min
{
k
∣∣∣∑k

l=0 |Bl| ≥ i
}
. We insert c into the j-

th block, and modify the data structure in a similar way to

a delete query.

The length of j-th block may become larger than C. In such

a case we balance the length of blocks in the following way.

( 1 ) Find a block Bk such that |Bk|+ 1 ≤ C.

( 2 ) Operate moveLeft or moveRight several times so that

|Bj | decreases by 1, |Bk| increases by 1 and the rest

remain.
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Step 1. can be done in O(T5) time. Step 2. can be

done in O(L (T4 + LT10)) time because we call moveLeft

or moveRight only O(L) times.

modes

Let (i, j) be the maximal interval of blocks which is in

A[l : r]. It can be computed in O(T6) time. If A[l : r] does

not contain any blocks, Bi + · · · + Bj stands for an empty

sequence and Sl,r stands for an empty set below.

It holds that |A[l : r] \ (Bi + · · ·+Bj) | ≤ 2C. It can be

said that every mode of A[l : r] is a mode of Bi+ · · ·+Bj or

appears in A[l : r]\ (Bi + · · ·+Bj). If there does not exists

such a character c that meets the following conditions

• c is a mode of A[l : r]

• c does not appear in A[l : r] \ (Bi + · · ·+Bj)

then every mode of A[l : r] appears in A[l : r] \
(Bi + · · ·+Bj). We scan the elements in A[l : r] \
(Bi + · · ·+Bj) and count the occurrences of each char-

acter in A[l : r] using S(i,j) and a new ordered

set in O(T9 + CT10 + T1,C + CT11) time, and compute

the number of occurrences of a mode of A[l : r] in

O(T1,C + CT11 + T12) time. We can judge if there exists

a character satisfying the conditions above using the value

and the ordered set. If there does not exist such a char-

acter, the enumeration is done. If exists, every mode of

Bi+ · · ·+Bj is also a mode of A[l : r], so we can enumerate

the modes of A[l : r] by the privious scan and the enumer-

ation of the modes of Bi + · · · + Br, which can be done in

O(T12 + T13 |output|) time. Algorithm 1 denotes the algo-

rithm for the modes query.

In order to keep L = Θ(Nα) and C = Θ
(
N1−α

)
, we use

Algorithm 1: The algorithm for the modes query.

Input: range (l, r)

Output: all modes of S[l : r]

1 Function Main:
2 (i, j)← maximal interval such that

Bi + · · ·+Bj ⊂ A[l : r]

3 T ← a new empty ordered set

4 for c ∈ A[l : r] \ (Bi + · · ·Bj) do
5 increment the multiplicity of c in T

6 app← 0

7 for (appc, c) ∈ T do
8 app = max(app, appc +

(the number of appearences of c in Bi + · · ·Bj))

9 ans← ∅
10 for (appc, c) ∈ T do
11 if app = appc +

(the number of appearences of c in Bi + · · ·Bj)

then
12 ans← ans ∪ {c}

13 (appc, c)← the top element of S(i,j)

14 while c ̸= NULL and appc = app do
15 ans← ans ∪ {c}
16 (appc, c)← the next largest to (appc, c) in S(i,j)

17 return ans

the technique for dynamic data structures [9]. We group the

blocks into three types p, c, n(previous, current, next). Set

the number and size of the blocks as follows.

• Lp = ⌈
(
N
2

)α⌉, Cp = ⌈
(
N
2

)1−α⌉
• Lc = ⌈Nα⌉, Cc = ⌈N1−α⌉
• Ln = ⌈(2N)α⌉, Cn = ⌈(2N)1−α⌉

When we initialize the data structure, all elements are

stored in c blocks and initialize the data structure for

L = Lp + Lc + Ln blocks.

insert

Move elements so that the sum of the elements in n blocks

increases by two and that in p blocks decreases by one (un-

less they are already empty) compared to before the query.

To achieve this, we move elements as follows

• insertion into p: p → c, p → c, c → n, c → n

• insertion into c: p → c, c → n, c → n

• insertion into n: p → c, c → n

where x → y means moving the last element of x blocks to

y blocks. If all x blocks are empty, it is ignored.

delete

Move elements so that the sum of the elements in n blocks

decreases by two (unless they are already empty) and that

in p blocks increases by one compared to before the query.

To achieve this, we move elements as follow

• insertion into p: c ← n, c ← n, p ← c, p ← c

• insertion into c: c ← n, c ← n, p ← c

• insertion into n: c ← n, p ← c

where x ← y means moving the first element of y blocks to

x blocks. If all y blocks are empty, it is ignored.

Lemma 8. [9] When the length of the string becomes dou-

ble, all elements are in n blocks.

When the length of the string becomes half, all elements

are in p blocks.

If the length of the string becomes double, set the blocks

as follows

(p, c, n)← (pp, p, c)

and if the length of the string becomes half, set the blocks

as follows

(p, c, n)← (c, n, nn)

where pp (previous to the previous) and nn (next to the

next) are other types of blocks and Lpp, Cpp, Lnn, and Cnn

are defined as follow.

• Lpp = ⌈
(
N
4

)α⌉, Cpp = ⌈
(
N
4

)1−α⌉
• Lnn = ⌈(4N)α⌉, Cnn = ⌈(4N)1−α⌉

We need to add O
(
N1+2α

)
extra elements for

S(l,r)(0 ≤ l ≤ r < Lpp + Lp + Lc +Ln + Lnn) in

order to prepare pp blocks and nn blocks and are prepared

from when the block reset occured. There are Ω(N) queries.

These operations need

O
(
T5 + T7 + T8 + L (T4 + LT10) +N2αT10 +max

(
1, N2α−1

)
T9

)
time per query.

Theorem 9. There exists a data structure for

the dynamic range mode enumeration problem in

O
(
T1,1 + T2 + T3 + T5 + T6 +NαT4 +N2αT10 +max

(
1, N2α−1

)
T9

)
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time per insert and delete query and

O
(
T6 + T1,Θ(N1−α) +N1−αT11 + T12 + T13 |output|

)
time per modes query where N is the length of the

sequence and σ = |Σ|.

Proof of Theorem 7. We use balanced binary search trees

for TA and TB .

We use two balanced binary search trees for each S(l,r). One

of them is the one whose key is a character in Bl + · · ·+Br

and value is the number of the occurrences of the charac-

ter in Bl + · · · + Br. The other is used as a ordered set

{(t (c) , c)|c ∈ Σ, t (c) > 0}, where t (c) is the number of the

occurrences of c in Bl+ · · ·+Br. Then, following equations

hold.

T1,a = O(a+ logN)

T2 = O(logN)

T3 = O(logN)

T4 = O(logL) = O(logN)

T5 = O(logL) = O(logN)

T6 = O(logL) = O(logN)

T7 = O(logL) = O(logN)

T8 = O(logL) = O(logN)

T9 = O(1)

T10 = O
(
log σ′)

T11 = O
(
log σ′)

T12 = O(1)

T13 = O(1)

Setting α = 1
3 , we obtain theorem 7.

3. Concluding Remarks

We introduced a new problem, the dynamic range mode

enumeration problem. We found an algorithm for it whose

time complexity of a modes query is linear to the output

size plus some term. However, the term is larger than the

time complexity of a mode query of the dynamic range mode

problem. It may be possible to found a new algorithm for

the dynamic range mode enumeration problem whose time

complexity for a query is equal to that of the dynamic range

mode problem except the term depending on the output size.
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