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Max-Min 3-dispersion on a Convex Polygon
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Yutaro Yamaguchi5,e) Katsuhisa Yamanaka6,f)

Abstract: Given a set P of n points and an integer k, we wish to place k facilities on points in P so that the minimum
distance between facilities is maximized. The problem is called the k-dispersion problem, and the set of such k points
is called a k-dispersion of P. Note that the 2-dispersion problem corresponds to the computation of the diameter of
P. Thus, the k-dispersion problem is a natural generalization of the diameter problem. In this paper, we consider the
case of k = 3, which is the 3-dispersion problem, when P is in convex position. We present an O(n2)-time algorithm to
compute a 3-dispersion of P.

1. Introduction
The facility location problem and many of its variants have

been studied [11], [12]. Typically, given a set P of points in the
Euclidean plane and an integer k, we wish to place k facilities on
points in P so that a designated function on distance is minimized.
In contrast, in the dispersion problem, we wish to place facilities
so that a designated function on distance is maximized.

The intuition of the problem is as follows. Assume that we
are planning to open several co↵ee shops in a city. We wish to
locate the shops mutually far away from each other to avoid self-
competition. In other words, we wish to find k points so that the
minimum distance between the shops is maximized. See more
applications, including result diversification, in [9], [20], [21].

Now, we define the max-min k-dispersion problem. Given a
set P of n points in the Euclidean plane and an integer k with
k < n, we wish to find a subset S ⇢ P with |S | = k in which
minu,v2S d(u, v) is maximized, where d(u, v) is the distance be-
tween u and v in P. Such a set S is called a k-dispersion of P. This
is the max-min version of the k-dispersion problem [20], [24].
Several heuristics to solve the problem are compared [14]. The
max-sum version [6], [7], [8], [9], [10], [15], [17], [20] and a va-
riety of related problems [4], [6], [10] are studied.

The max-min k-dispersion problem is NP-hard even when the
triangle inequality is satisfied [13], [24]. An exponential-time ex-
act algorithm for the problem is known [2]. The running time
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is O(n!k/3 log n), where ! < 2.373 is the matrix multiplication
exponent.

The problem in the D-dimensional Euclidean space can be
solved in O(kn) time for D = 1 if a set P of points are given
in the order on the line and is NP-hard for D = 2 [24]. One can
also solve the case D = 1 in O(n log log n) time [3] by the sorted
matrix search method [16] (see a good survey for the sorted ma-
trix search method in [1], Section 3.3), and in O(n) time [2] by a
reduction to the path partitioning problem [16]. Even if a set P

of points are not given in the order on the line the running time
for D = 1 is O((2k

2)k
n) [5]. Thus, if k is a constant, we can solve

the problem in O(n) time. If P is a set of points on a circle, the
points in P are given in the order on the circle, and the distance
between them is the distance along the circle, then one can solve
the k-dispersion problem in O(n) time [23].

For approximation, the following results are known.
Ravi et al. [20] proved that, unless P = NP, the max-min k-
dispersion problem cannot be approximated within any constant
factor in polynomial time, and cannot be approximated with
a factor less than two in polynomial time when the distance
satisfies the triangle inequality. They also gave a polynomial-
time algorithm with approximation ratio two when the triangle
inequality is satisfied.

When k is restricted, the following results for the D-
dimensional Euclidean space are known. For the case k = 3,
one can solve the max-min k-dispersion problem in O(n2 log n)
time [18]. For k = 2, the max-min k-dispersion of P corresponds
to the computation of the diameter of P, and one can compute it
in O(n log n) time [19].

In this paper, we consider the case where P is a set of points
in convex position and d is the Euclidean distance. See an exam-
ple of a 3-dispersion of P in Fig. 1. By the brute force algorithm
and the algorithm in [18] one can compute a 3-dispersion of P

in O(n3) and O(n2 log n) time, respectively, for a set of points on
the plane. In this paper, we present an algorithm to compute a
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Fig. 1 An example of 3-dispersion. {x, y, z} is a 3-dispersion.

3-dispersion of P in O(n2) time using the property that P is a set
of points in convex position.

2. Preliminaries
Let P be a set of n points in convex position on the plane. In

this paper, we assume n ≥ 3. We denote the Euclidean distance
between two points u, v by d(u, v). The cost of a set S ⊂ P is
defined as cost(S ) = minu,v∈S d(u, v). Let S3 be the set of all pos-
sible three points in P. We say S ∈ S3 is a 3-dispersion of P if
cost(S ) = maxS ′∈S3 cost(S ′).

We have the following two lemmas, which can be checked eas-
ily.

Lemma 1 If a triangle with corner points pi, pr, p� satisfies
d(pi, pr) ≥ L, d(pi, p�) ≥ L and d(p�, pr) < L for some L, then
∠p�pi pr < 60◦.

Lemma 2 If a triangle with corner points pi, pr, p� satisfies
d(pi, pr) < L, d(pi, p�) < L and d(p�, pr) ≥ L for some L, then
∠p�pi pr > 60◦.

3. Algorithm
Let P = 〈p1, p2, . . . , pn〉 be the set of points in convex position

and assume that they appear clockwise in this order. Note that the
successor of pn is p1. Let D be the distance matrix of the points
in P, that is, the element at row y and column x is d(px, py). Let
C1 = {d(pi, p j) | 1 ≤ i < j ≤ n}. The cost of a 3-dispersion in P
is the distance between some pair of points in P, so it is in C1.

The outline of our algorithm is as follows. Our algorithm is a
binary search and proceeds in at most 
2 log n� stages. For each
stage j = 1, 2, . . . , k, where k is at most 
2 log n�, we (1) compute
the median r j of C j, where C j is a subset of C j−1, which is com-
puted in the ( j−1)st stage (except the case of j = 1), (2) compute
n square submatrices of D defined by r j along the main diagonal
in D, and (3) check if at least one square submatrix among them
has an element greater than or equal to r j, or not. We prove later
that at least one square submatrix above has an element greater
than or equal to r j if and only if P has a 3-dispersion with cost
r j or more. If the answer of (3) is YES then we set C j+1 as the
subset of C j consisting of the values greater than or equal to r j,
otherwise we set C j+1 as the subset of C j consisting of the values
less than r j. Note that in either case the cost of a 3-dispersion of
P is in C j+1 and |C j+1| ≤ 
|C j|/2� holds. Since the size of C j+1 is
at most half of C j and |C1| ≤ n2, the number of stages is at most

log n2� = 
2 log n�.
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Fig. 2 An example of si and ti for pi. The drawn circle is a circle with the
center of pi the radius of length r j.
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Fig. 3 Illustrations for the square submatrix Di of D for pi.

Now, we explain the detail of each stage. For the computation
of the median in (1), we simply use a linear-time median-finding
algorithm [22].

Next, we explain the detail of (2) for each stage j. Given r j,
for each pi ∈ P, we compute the first point, say si ∈ P, in P
with d(pi, si) ≥ r j when we check the points clockwise from
pi. Similarly, we compute the first point, say ti ∈ P, in P with
d(pi, ti) ≥ r j when we check the points counterclockwise from
pi. See such an example in Fig. 2. Note that, when we check
the points clockwise from si to ti, a point pc between them may
satisfy d(pi, pc) < r j. See Fig. 2. For each pi we define a square
submatrix Di of D induced by the rows si, . . . , ti and the columns
si, . . . , ti. See Fig. 3(a). Note that Di is located in D along the
main diagonal. The square submatrix Di may appear in D as four
separated squares if it contains p1 on the clockwise contour from
si to ti. See Fig. 3(b).

Now, we explain how to compute si and ti of pi. The method
for compute ti can be done in the similar way for finding si.
Hence, we focus on how to find si. If we search each si indepen-
dently by scanning then the total running time for the search of
s1, s2, . . . , sn is O(n2) in each stage, and O(n2 log n) in the whole
algorithm. We are going to improve this. Since si+1 may appear
before si on the clockwise contour (See Fig. 4) the search is not
so simple.

We first explain how to compute si of pi for each i = 1, 2, . . . , n
in stage 1. Given r1, we check each point clockwise starting at
pi, and si is the first point from pi which has the distance r1 or
more. It can be observed that the total number of checks for the
distance in stage 1 is at most n + |C1|/2 ≤ n + n2/2. In this es-
timation, n checks are required for the pairs of (si, pi) for every
i = 1, 2, . . . , n and |C1|/2 checks are required for the pairs (p, pi)
which satisfies that p appears between pi and si clockwise and
d(p, pi) < r1, for every i = 1, 2, . . . , n. Remember that r1 is the
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Fig. 4 The point si+1 may appear before si on the clockwise contour.
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Fig. 5 An illustration for Lemma 3.

median of distances in C1. Then, in each stage j = 2, 3, . . . , k
(k ≤ 
2 log n�), given r j, if the answer to (3) of the preceding
stage j − 1 is YES then we check each point clockwise starting
at si of the preceding stage j − 1 (since r j > r j−1 holds, all points
before si of the preceding stage are within distance r j from pi),
otherwise we check each point clockwise starting again at the
starting point of the preceding stage j − 1. In either case, we
check at most jn + n2/2 + n2/22 + · · · + n2/2 j points in total for
the search for s1, s2, . . . , sn in every stage � for � = 1, 2, . . . , j. In
the estimation, jn is the total number of checks for s1, s2, . . . , sn

and n2/2 + n2/22 + · · · + n2/2 j is the total number of checks for
the points with distance less than r� from its pi. When j = n,
we have the estimation O(n2) for the total number of checks for
computing s1, s2, . . . , sn in all the stages. By the symmetric way,
we can compute t1, t2, . . . , tn in each stage and the total number
of checks for computing t1, t2, . . . , tn in all the stages is estimated
in the same way.

Now, we present a lemma mentioned in (3). Assume that we
are at stage j, and si and ti of pi are given. If there is a set of three
points in P containing pi with cost r j or more, then the square sub-
matrix Di has an element greater than or equal to r j. The reverse
may be wrong. If the submatrix Di for some pi has an element
greater than or equal to r j at row y and column x, it only ensures
d(px, py) ≥ r j. That is, d(pi, px) < r j and/or d(pi, py) < r j may
hold. We show that this situation cannot occur in the following
lemma.

Lemma 3 The square submatrix Di of stage j has an element
greater than or equal to r j if and only if there is a set of three
points S ⊂ P including pi with cost(S ) ≥ r j.

Proof. If there is a set of three points S ⊂ P including pi with
cost(S ) ≥ r j then clearly the square submatrix Di of stage j has
an element greater than or equal to r j.

We only prove the other direction, that is, if the square subma-

trix Di of stage j has an element greater than or equal to r j, then
there is a set of three points S ⊂ P including pi with cost(S ) ≥ r j.
Assume that Di has an element greater than or equal to r j at row y
and column x, that is d(px, py) ≥ r j. We have the following four
cases and in each case we show that there exists a set S of three
points such that cost(S ) ≥ r j.

Case 1: d(pi, px) ≥ r j and d(pi, py) ≥ r j.
The set S = {pi, px, py} has cost(S ) ≥ r j.

Case 2: d(pi, px) < r j and d(pi, py) < r j.
We show that, for S = {pi, si, ti}, cost(S ) ≥ r j holds. We as-

sume for a contradiction that d(si, ti) < r j holds. Then, we have
∠si piti < 60◦ by Lemma 1 and ∠px pi py > 60◦ by Lemma 2. This
is a contradiction to the convexity of P.

Case 3: d(pi, px) < r j and d(pi, py) ≥ r j.
In this case, we show that the set {pi, si, py} attains cost(S ) ≥

r j. Since d(pi, py) ≥ r j and d(pi, si) ≥ r j, we have to prove
d(si, py) ≥ r j.

Assume for a contradiction that d(si, py) < r j holds. See Fig. 5.
Now, we first show that {si, px, py} forms an obtuse triangle with
the obtuse angle px, below. We focus on the rectangle consisting
of pi, si, px, and py. Since d(pi, py) ≥ r j and d(pi, si) ≥ r j, and
d(si, py) < r j, we have ∠si pi py < 60◦ by Lemma 1. Let p′ be the
point on the line segment between pi and si with d(pi, p′) = r j.
Since ∠pi p′px < 90◦ holds, we can observe that ∠pisi px < 90◦

holds. Since d(pi, py) ≥ r j, d(px, py) ≥ r j, and d(pi, px) < r j, we
have ∠pi pypx < 60◦ by Lemma 1. Now, the sum of the internal
angles of the quadrangle consisting of pi, si, px, and py implies
that ∠si px py ≥ 150◦, and {si, px, py} are the points of an obtuse
triangle with obtuse angle at px. However d(px, py) ≥ r j and
d(si, py) < r j, which is a contradiction.

Case 4: d(pi, px) ≥ r j and d(pi, py) < r j.
Symmetry to Case 3. Omitted. �

Now, we are ready to describe our algorithm and the estima-
tion of the running time. First, as a preprocessing, we construct
the set C1 = {d(pi, p j) | 1 ≤ i < j ≤ n} and n × n distance matrix
D. Next, we repeat the following stage for each j = 1, 2, . . . , k,
where k ≤ 
2 log n�. (1) we compute the median r j of C j, (2)
compute si and ti of pi for i = 1, 2, . . . , n, and (3) check whether
there exists an index i, (1 ≤ i ≤ n), such that the maximum value
of Di is greater than or equal to r j. Then, if such i exists, we
set C j+1 = {d(pi, p j) ∈ C j | d(pi, p j) ≥ r j}, otherwise, we set
C j+1 = {d(pi, p j) ∈ C j | d(pi, p j) < r j}.

The analysis of the running time is as follows. The prepro-
cessing can be done in O(n2) time. For (1), we can compute
the median r j of stage j in O(n2/2 j−1) time by using a linear-
time median-finding algorithm [22], and hence O(n2) time for the
whole algorithm. The computation for (2) can be done in O(n2)
time in the whole algorithm, as described above. For (3), after
O(n2)-time preprocessing for D, we can compute the maximum
element in the given submatrix in D in O(1) time for each query
by using the range-query algorithm [25], so we need O(n) time as
preprocessing. (For a separated square as shown in Fig. 3(b), we
need four queries but total time is still a constant.)
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Now, we have our main theorem.

Theorem 1 Let P be a set of n points in convex position. Af-
ter O(n2)-time preprocessing, one can compute a 3-dispersion of
P in O(n2) time.
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