Max-Min 3-dispersion on a Convex Polygon

Yasuaki Kobayashi ${ }^{1, \text { a) }}$ Shin-ichi Nakano ${ }^{2, b)}$ Kei Uchizawa ${ }^{3, c}$ c) Takeaki Uno ${ }^{4, d)}$
Yutaro Yamaguchi ${ }^{5, \mathrm{e})}$ Katsuhisa Yamanaka ${ }^{6, \mathrm{f})}$

Abstract

Given a set P of n points and an integer k, we wish to place k facilities on points in P so that the minimum distance between facilities is maximized. The problem is called the k-dispersion problem, and the set of such k points is called a k-dispersion of P. Note that the 2-dispersion problem corresponds to the computation of the diameter of P. Thus, the k-dispersion problem is a natural generalization of the diameter problem. In this paper, we consider the case of $k=3$, which is the 3 -dispersion problem, when P is in convex position. We present an $O\left(n^{2}\right)$-time algorithm to compute a 3 -dispersion of P.

1. Introduction

The facility location problem and many of its variants have been studied [11], [12]. Typically, given a set P of points in the Euclidean plane and an integer k, we wish to place k facilities on points in P so that a designated function on distance is minimized. In contrast, in the dispersion problem, we wish to place facilities so that a designated function on distance is maximized.

The intuition of the problem is as follows. Assume that we are planning to open several coffee shops in a city. We wish to locate the shops mutually far away from each other to avoid selfcompetition. In other words, we wish to find k points so that the minimum distance between the shops is maximized. See more applications, including result diversification, in [9], [20], [21].

Now, we define the max-min k-dispersion problem. Given a set P of n points in the Euclidean plane and an integer k with $k<n$, we wish to find a subset $S \subset P$ with $|S|=k$ in which $\min _{u, v \in S} d(u, v)$ is maximized, where $d(u, v)$ is the distance between u and v in P. Such a set S is called a k-dispersion of P. This is the max-min version of the k-dispersion problem [20], [24]. Several heuristics to solve the problem are compared [14]. The max-sum version [6], [7], [8], [9], [10], [15], [17], [20] and a variety of related problems [4], [6], [10] are studied.

The max-min k-dispersion problem is NP-hard even when the triangle inequality is satisfied [13], [24]. An exponential-time exact algorithm for the problem is known [2]. The running time

[^0]is $O\left(n^{\omega k / 3} \log n\right)$, where $\omega<2.373$ is the matrix multiplication exponent.

The problem in the D-dimensional Euclidean space can be solved in $O(k n)$ time for $D=1$ if a set P of points are given in the order on the line and is NP-hard for $D=2$ [24]. One can also solve the case $D=1$ in $O(n \log \log n)$ time [3] by the sorted matrix search method [16] (see a good survey for the sorted matrix search method in [1], Section 3.3), and in $O(n)$ time [2] by a reduction to the path partitioning problem [16]. Even if a set P of points are not given in the order on the line the running time for $D=1$ is $O\left(\left(2 k^{2}\right)^{k} n\right)$ [5]. Thus, if k is a constant, we can solve the problem in $O(n)$ time. If P is a set of points on a circle, the points in P are given in the order on the circle, and the distance between them is the distance along the circle, then one can solve the k-dispersion problem in $O(n)$ time [23].

For approximation, the following results are known. Ravi et al. [20] proved that, unless $P=N P$, the max-min k dispersion problem cannot be approximated within any constant factor in polynomial time, and cannot be approximated with a factor less than two in polynomial time when the distance satisfies the triangle inequality. They also gave a polynomialtime algorithm with approximation ratio two when the triangle inequality is satisfied.

When k is restricted, the following results for the D dimensional Euclidean space are known. For the case $k=3$, one can solve the max-min k-dispersion problem in $O\left(n^{2} \log n\right)$ time [18]. For $k=2$, the max-min k-dispersion of P corresponds to the computation of the diameter of P, and one can compute it in $O(n \log n)$ time [19].

In this paper, we consider the case where P is a set of points in convex position and d is the Euclidean distance. See an example of a 3-dispersion of P in Fig. 1. By the brute force algorithm and the algorithm in [18] one can compute a 3-dispersion of P in $O\left(n^{3}\right)$ and $O\left(n^{2} \log n\right)$ time, respectively, for a set of points on the plane. In this paper, we present an algorithm to compute a

Fig. 1 An example of 3-dispersion. $\{x, y, z\}$ is a 3-dispersion.

3-dispersion of P in $O\left(n^{2}\right)$ time using the property that P is a set of points in convex position.

2. Preliminaries

Let P be a set of n points in convex position on the plane. In this paper, we assume $n \geq 3$. We denote the Euclidean distance between two points u, v by $d(u, v)$. The cost of a set $S \subset P$ is defined as $\operatorname{cost}(S)=\min _{u, v \in S} d(u, v)$. Let \mathcal{S}_{3} be the set of all possible three points in P. We say $S \in \mathcal{S}_{3}$ is a 3 -dispersion of P if $\operatorname{cost}(S)=\max _{S^{\prime} \in \mathcal{S}_{3}} \operatorname{cost}\left(S^{\prime}\right)$.
We have the following two lemmas, which can be checked easily.

Lemma 1 If a triangle with corner points p_{i}, p_{r}, p_{ℓ} satisfies $d\left(p_{i}, p_{r}\right) \geq L, d\left(p_{i}, p_{\ell}\right) \geq L$ and $d\left(p_{\ell}, p_{r}\right)<L$ for some L, then $\angle p_{\ell} p_{i} p_{r}<60^{\circ}$.

Lemma 2 If a triangle with corner points p_{i}, p_{r}, p_{ℓ} satisfies $d\left(p_{i}, p_{r}\right)<L, d\left(p_{i}, p_{\ell}\right)<L$ and $d\left(p_{\ell}, p_{r}\right) \geq L$ for some L, then $\angle p_{\ell} p_{i} p_{r}>60^{\circ}$.

3. Algorithm

Let $P=\left\langle p_{1}, p_{2}, \ldots, p_{n}\right\rangle$ be the set of points in convex position and assume that they appear clockwise in this order. Note that the successor of p_{n} is p_{1}. Let D be the distance matrix of the points in P, that is, the element at row y and column x is $d\left(p_{x}, p_{y}\right)$. Let $C_{1}=\left\{d\left(p_{i}, p_{j}\right) \mid 1 \leq i<j \leq n\right\}$. The cost of a 3-dispersion in P is the distance between some pair of points in P, so it is in C_{1}.

The outline of our algorithm is as follows. Our algorithm is a binary search and proceeds in at most $\lceil 2 \log n\rceil$ stages. For each stage $j=1,2, \ldots, k$, where k is at most $\lceil 2 \log n\rceil$, we (1) compute the median r_{j} of C_{j}, where C_{j} is a subset of C_{j-1}, which is computed in the $(j-1)$ st stage (except the case of $j=1$), (2) compute n square submatrices of D defined by r_{j} along the main diagonal in D, and (3) check if at least one square submatrix among them has an element greater than or equal to r_{j}, or not. We prove later that at least one square submatrix above has an element greater than or equal to r_{j} if and only if P has a 3-dispersion with cost r_{j} or more. If the answer of (3) is YES then we set C_{j+1} as the subset of C_{j} consisting of the values greater than or equal to r_{j}, otherwise we set C_{j+1} as the subset of C_{j} consisting of the values less than r_{j}. Note that in either case the cost of a 3-dispersion of P is in C_{j+1} and $\left|C_{j+1}\right| \leq\left\lceil\left|C_{j}\right| / 2\right\rceil$ holds. Since the size of C_{j+1} is at most half of C_{j} and $\left|C_{1}\right| \leq n^{2}$, the number of stages is at most $\left\lceil\log n^{2}\right\rceil=\lceil 2 \log n\rceil$.

Fig. 2 An example of s_{i} and t_{i} for p_{i}. The drawn circle is a circle with the center of p_{i} the radius of length r_{j}.

Fig. 3 Illustrations for the square submatrix D_{i} of D for p_{i}.

Now, we explain the detail of each stage. For the computation of the median in (1), we simply use a linear-time median-finding algorithm [22].

Next, we explain the detail of (2) for each stage j. Given r_{j}, for each $p_{i} \in P$, we compute the first point, say $s_{i} \in P$, in P with $d\left(p_{i}, s_{i}\right) \geq r_{j}$ when we check the points clockwise from p_{i}. Similarly, we compute the first point, say $t_{i} \in P$, in P with $d\left(p_{i}, t_{i}\right) \geq r_{j}$ when we check the points counterclockwise from p_{i}. See such an example in Fig. 2. Note that, when we check the points clockwise from s_{i} to t_{i}, a point p_{c} between them may satisfy $d\left(p_{i}, p_{c}\right)<r_{j}$. See Fig. 2. For each p_{i} we define a square submatrix D_{i} of D induced by the rows s_{i}, \ldots, t_{i} and the columns s_{i}, \ldots, t_{i}. See Fig. 3(a). Note that D_{i} is located in D along the main diagonal. The square submatrix D_{i} may appear in D as four separated squares if it contains p_{1} on the clockwise contour from s_{i} to t_{i}. See Fig. 3(b).
Now, we explain how to compute s_{i} and t_{i} of p_{i}. The method for compute t_{i} can be done in the similar way for finding s_{i}. Hence, we focus on how to find s_{i}. If we search each s_{i} independently by scanning then the total running time for the search of $s_{1}, s_{2}, \ldots, s_{n}$ is $O\left(n^{2}\right)$ in each stage, and $O\left(n^{2} \log n\right)$ in the whole algorithm. We are going to improve this. Since s_{i+1} may appear before s_{i} on the clockwise contour (See Fig. 4) the search is not so simple.

We first explain how to compute s_{i} of p_{i} for each $i=1,2, \ldots, n$ in stage 1. Given r_{1}, we check each point clockwise starting at p_{i}, and s_{i} is the first point from p_{i} which has the distance r_{1} or more. It can be observed that the total number of checks for the distance in stage 1 is at most $n+\left|C_{1}\right| / 2 \leq n+n^{2} / 2$. In this estimation, n checks are required for the pairs of $\left(s_{i}, p_{i}\right)$ for every $i=1,2, \ldots, n$ and $\left|C_{1}\right| / 2$ checks are required for the pairs (p, p_{i}) which satisfies that p appears between p_{i} and s_{i} clockwise and $d\left(p, p_{i}\right)<r_{1}$, for every $i=1,2, \ldots, n$. Remember that r_{1} is the

Fig. 4 The point s_{i+1} may appear before s_{i} on the clockwise contour.

Fig. 5 An illustration for Lemma 3.
median of distances in C_{1}. Then, in each stage $j=2,3, \ldots, k$ ($k \leq\lceil 2 \log n\rceil$), given r_{j}, if the answer to (3) of the preceding stage $j-1$ is YES then we check each point clockwise starting at s_{i} of the preceding stage $j-1$ (since $r_{j}>r_{j-1}$ holds, all points before s_{i} of the preceding stage are within distance r_{j} from p_{i}), otherwise we check each point clockwise starting again at the starting point of the preceding stage $j-1$. In either case, we check at most $j n+n^{2} / 2+n^{2} / 2^{2}+\cdots+n^{2} / 2^{j}$ points in total for the search for $s_{1}, s_{2}, \ldots, s_{n}$ in every stage ℓ for $\ell=1,2, \ldots, j$. In the estimation, $j n$ is the total number of checks for $s_{1}, s_{2}, \ldots, s_{n}$ and $n^{2} / 2+n^{2} / 2^{2}+\cdots+n^{2} / 2^{j}$ is the total number of checks for the points with distance less than r_{ℓ} from its p_{i}. When $j=n$, we have the estimation $O\left(n^{2}\right)$ for the total number of checks for computing $s_{1}, s_{2}, \ldots, s_{n}$ in all the stages. By the symmetric way, we can compute $t_{1}, t_{2}, \ldots, t_{n}$ in each stage and the total number of checks for computing $t_{1}, t_{2}, \ldots, t_{n}$ in all the stages is estimated in the same way.

Now, we present a lemma mentioned in (3). Assume that we are at stage j, and s_{i} and t_{i} of p_{i} are given. If there is a set of three points in P containing p_{i} with cost r_{j} or more, then the square submatrix D_{i} has an element greater than or equal to r_{j}. The reverse may be wrong. If the submatrix D_{i} for some p_{i} has an element greater than or equal to r_{j} at row y and column x, it only ensures $d\left(p_{x}, p_{y}\right) \geq r_{j}$. That is, $d\left(p_{i}, p_{x}\right)<r_{j}$ and/or $d\left(p_{i}, p_{y}\right)<r_{j}$ may hold. We show that this situation cannot occur in the following lemma.

Lemma 3 The square submatrix D_{i} of stage j has an element greater than or equal to r_{j} if and only if there is a set of three points $S \subset P$ including p_{i} with $\operatorname{cost}(S) \geq r_{j}$.

Proof. If there is a set of three points $S \subset P$ including p_{i} with $\operatorname{cost}(S) \geq r_{j}$ then clearly the square submatrix D_{i} of stage j has an element greater than or equal to r_{j}.

We only prove the other direction, that is, if the square subma-
trix D_{i} of stage j has an element greater than or equal to r_{j}, then there is a set of three points $S \subset P$ including p_{i} with $\operatorname{cost}(S) \geq r_{j}$. Assume that D_{i} has an element greater than or equal to r_{j} at row y and column x, that is $d\left(p_{x}, p_{y}\right) \geq r_{j}$. We have the following four cases and in each case we show that there exists a set S of three points such that $\operatorname{cost}(S) \geq r_{j}$.

Case 1: $d\left(p_{i}, p_{x}\right) \geq r_{j}$ and $d\left(p_{i}, p_{y}\right) \geq r_{j}$.
The set $S=\left\{p_{i}, p_{x}, p_{y}\right\}$ has $\operatorname{cost}(S) \geq r_{j}$.
Case 2: $d\left(p_{i}, p_{x}\right)<r_{j}$ and $d\left(p_{i}, p_{y}\right)<r_{j}$.
We show that, for $S=\left\{p_{i}, s_{i}, t_{i}\right\}, \operatorname{cost}(S) \geq r_{j}$ holds. We assume for a contradiction that $d\left(s_{i}, t_{i}\right)<r_{j}$ holds. Then, we have $\angle s_{i} p_{i} t_{i}<60^{\circ}$ by Lemma 1 and $\angle p_{x} p_{i} p_{y}>60^{\circ}$ by Lemma 2. This is a contradiction to the convexity of P.

Case 3: $d\left(p_{i}, p_{x}\right)<r_{j}$ and $d\left(p_{i}, p_{y}\right) \geq r_{j}$.
In this case, we show that the set $\left\{p_{i}, s_{i}, p_{y}\right\}$ attains $\operatorname{cost}(S) \geq$ r_{j}. Since $d\left(p_{i}, p_{y}\right) \geq r_{j}$ and $d\left(p_{i}, s_{i}\right) \geq r_{j}$, we have to prove $d\left(s_{i}, p_{y}\right) \geq r_{j}$.

Assume for a contradiction that $d\left(s_{i}, p_{y}\right)<r_{j}$ holds. See Fig. 5. Now, we first show that $\left\{s_{i}, p_{x}, p_{y}\right\}$ forms an obtuse triangle with the obtuse angle p_{x}, below. We focus on the rectangle consisting of p_{i}, s_{i}, p_{x}, and p_{y}. Since $d\left(p_{i}, p_{y}\right) \geq r_{j}$ and $d\left(p_{i}, s_{i}\right) \geq r_{j}$, and $d\left(s_{i}, p_{y}\right)<r_{j}$, we have $\angle s_{i} p_{i} p_{y}<60^{\circ}$ by Lemma 1 . Let p^{\prime} be the point on the line segment between p_{i} and s_{i} with $d\left(p_{i}, p^{\prime}\right)=r_{j}$. Since $\angle p_{i} p^{\prime} p_{x}<90^{\circ}$ holds, we can observe that $\angle p_{i} s_{i} p_{x}<90^{\circ}$ holds. Since $d\left(p_{i}, p_{y}\right) \geq r_{j}, d\left(p_{x}, p_{y}\right) \geq r_{j}$, and $d\left(p_{i}, p_{x}\right)<r_{j}$, we have $\angle p_{i} p_{y} p_{x}<60^{\circ}$ by Lemma 1 . Now, the sum of the internal angles of the quadrangle consisting of p_{i}, s_{i}, p_{x}, and p_{y} implies that $\angle s_{i} p_{x} p_{y} \geq 150^{\circ}$, and $\left\{s_{i}, p_{x}, p_{y}\right\}$ are the points of an obtuse triangle with obtuse angle at p_{x}. However $d\left(p_{x}, p_{y}\right) \geq r_{j}$ and $d\left(s_{i}, p_{y}\right)<r_{j}$, which is a contradiction.

Case 4: $d\left(p_{i}, p_{x}\right) \geq r_{j}$ and $d\left(p_{i}, p_{y}\right)<r_{j}$.
Symmetry to Case 3. Omitted.
Now, we are ready to describe our algorithm and the estimation of the running time. First, as a preprocessing, we construct the set $C_{1}=\left\{d\left(p_{i}, p_{j}\right) \mid 1 \leq i<j \leq n\right\}$ and $n \times n$ distance matrix D. Next, we repeat the following stage for each $j=1,2, \ldots, k$, where $k \leq\lceil 2 \log n\rceil$. (1) we compute the median r_{j} of C_{j}, (2) compute s_{i} and t_{i} of p_{i} for $i=1,2, \ldots, n$, and (3) check whether there exists an index $i,(1 \leq i \leq n)$, such that the maximum value of D_{i} is greater than or equal to r_{j}. Then, if such i exists, we set $C_{j+1}=\left\{d\left(p_{i}, p_{j}\right) \in C_{j} \mid d\left(p_{i}, p_{j}\right) \geq r_{j}\right\}$, otherwise, we set $C_{j+1}=\left\{d\left(p_{i}, p_{j}\right) \in C_{j} \mid d\left(p_{i}, p_{j}\right)<r_{j}\right\}$.

The analysis of the running time is as follows. The preprocessing can be done in $O\left(n^{2}\right)$ time. For (1), we can compute the median r_{j} of stage j in $O\left(n^{2} / 2^{j-1}\right)$ time by using a lineartime median-finding algorithm [22], and hence $O\left(n^{2}\right)$ time for the whole algorithm. The computation for (2) can be done in $O\left(n^{2}\right)$ time in the whole algorithm, as described above. For (3), after $O\left(n^{2}\right)$-time preprocessing for D, we can compute the maximum element in the given submatrix in D in $O(1)$ time for each query by using the range-query algorithm [25], so we need $O(n)$ time as preprocessing. (For a separated square as shown in Fig. 3(b), we need four queries but total time is still a constant.)

Now, we have our main theorem
Theorem 1 Let P be a set of n points in convex position. After $O\left(n^{2}\right)$-time preprocessing, one can compute a 3-dispersion of P in $O\left(n^{2}\right)$ time.

Acknolwedgement. This work was supported by JSPS KAKENHI Grant Numbers JP18H04091, JP19K11812, JP20H05793, JP20H05962, JP20K19742. The fourth author is also supported by JST CREST Grant Number JPMJCR1401.

References

[1] P. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput. Surv., 30:412-458, 1998.
[2] T. Akagi, T. Araki, T. Horiyama, S. Nakano, Y. Okamoto, Y. Otachi, T. Saitoh, R. Uehara, T. Uno, and K. Wasa. Exact algorithms for the max-min dispersion problem. Proc. of FAW 2018, LNCS 10823:263272, 2018.
[3] T. Akagi and S. Nakano. Dispersion on the line. IPSJ SIG Technical Reports, 2016-AL-158-3, 2016.
[4] K. Amano and S. Nakano. An approximation algorithm for the 2dispersion problem. IEICE TRANS. INF.SYST., E103-D:506-508, 2020.
[5] T. Araki and S. Nakano. The max-min dispersion on a line. Proc. of COCOA 2018, LNCS 11346:672-678, 2018.
[6] C. Baur and S. P. Fekete. Approximation of geometric dispersion problems. Proc. of APPROX 1998, pages 63-75, 1998.
[7] B. Birnbaum and K. J. Goldman. An improved analysis for a greedy remote-clique algorithm using factor-revealing LPs. Algorithmica, 50:42-59, 2009.
[8] A. Cevallos, F. Eisenbrand, and R. Zenklusen. Max-sum diversity via convex programming. Proc. of SoCG 2016, pages 26:1-26:14, 2016.
[9] A. Cevallos, F. Eisenbrand, and R. Zenklusen. Local search for maxsum diversification. Proc. of SODA 2017, pages 130-142, 2017.
[10] B. Chandra and M. M. Halldorsson. Approximation algorithms for dispersion problems. J. of Algorithms, 38:438-465, 2001.
[11] Z. Drezner. Facility location: A Survey of Applications and Methods. Springer, 1995.
[12] Z. Drezner and H. Hamacher. Facility Location: Applications and Theory. Springer, 2004.
[13] E. Erkut. The discrete p-dispersion problem. European Journal of Operational Research, 46:48-60, 1990.
[14] E. Erkut, Y. Ulkusal, and O. Yenicerioglu. A comparison of pdispersion heuristics. Computers \mathcal{E} Operational Research, 21:11031113, 1994.
[15] S. P. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight cliques. Algorithmica, 38:501-511, 2004.
[16] G. Frederickson. Optimal algorithms for tree partitioning. Proc. of SODA 1991, pages 168-177, 1991.
[17] R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion. Operation Research Letters, 21:133-137, 1997.
[18] T. Horiyama, S. Nakano, T. Saitoh, K. Suetsugu, A. Suzuki, R. Uehara, T. Uno, and K. Wasa. Max-min 3-dispersion problems. Proc. of COCOON 2019, LNCS 11653:291-300, 2019.
[19] F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer-Verlag, 1985.
[20] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for dispersion problems. Operations Research, 42:299-310, 1994.
[21] M. Sydow. Approximation guarantees for max sum and max min facility dispersion with parameterised triangle inequality and applications in result diversification. Mathematica Applicanda, 42:241-257, 2014.
[22] R. L. R. T. H. Cormen, C. E. Leiserson and C. Stein. Introduction to algorithms, Third Edition. MIT Press, 2000.
[23] K. H. Tsai and D. W. Wang. Optimal algorithms for circle partitioning. Proc. of COCOON 1997, LNCS 1276:304-310, 1997.
[24] D. W. Wang and Y.-S. Kuo. A study on two geometric location problems. Information Processing Letters, 28:281-286, 1988.
[25] H. Yuan and M. J. Atallah. Data structures for range minimum queries in multidimensional arrays. Proc. of SODA 2010, pages 150-160, 2010.

[^0]: Kyoto University, Japan
 Gunma University, Japan
 Yamagata University, Japan
 National Institute of Informatics, Japan
 Kyushu University, Japan
 Iwate University, Japan
 kobayashi@iip.ist.i.kyoto-u.ac.jp
 nakano@cs.gunma-u.ac.jp
 uchizawa@yz.yamagata-u.ac.jp
 uno@nii.jp
 yutaro_yamaguchi@inf.kyushu-u.ac.jp
 yamanaka@cis.iwate-u.ac.jp

