Max-Min 3-dispersion on a Convex Polygon

Yasuaki Kobayashi^{1,a)} Shin-ichi Nakano^{2,b)} Kei Uchizawa^{3,c)} Takeaki Uno^{4,d)} Yutaro Yamaguchi^{5,e)} Katsuhisa Yamanaka^{6,f)}

Abstract: Given a set *P* of *n* points and an integer *k*, we wish to place *k* facilities on points in *P* so that the minimum distance between facilities is maximized. The problem is called the *k*-dispersion problem, and the set of such *k* points is called a *k*-dispersion of *P*. Note that the 2-dispersion problem corresponds to the computation of the diameter of *P*. Thus, the *k*-dispersion problem is a natural generalization of the diameter problem. In this paper, we consider the case of k = 3, which is the 3-dispersion problem, when *P* is in convex position. We present an $O(n^2)$ -time algorithm to compute a 3-dispersion of *P*.

1. Introduction

The facility location problem and many of its variants have been studied [11], [12]. Typically, given a set P of points in the Euclidean plane and an integer k, we wish to place k facilities on points in P so that a designated function on distance is minimized. In contrast, in the *dispersion problem*, we wish to place facilities so that a designated function on distance is maximized.

The intuition of the problem is as follows. Assume that we are planning to open several coffee shops in a city. We wish to locate the shops mutually far away from each other to avoid self-competition. In other words, we wish to find k points so that the minimum distance between the shops is maximized. See more applications, including *result diversification*, in [9], [20], [21].

Now, we define the *max-min k-dispersion problem*. Given a set *P* of *n* points in the Euclidean plane and an integer *k* with k < n, we wish to find a subset $S \subset P$ with |S| = k in which $\min_{u,v \in S} d(u, v)$ is maximized, where d(u, v) is the distance between *u* and *v* in *P*. Such a set *S* is called a *k*-dispersion of *P*. This is the max-min version of the *k*-dispersion problem [20], [24]. Several heuristics to solve the problem are compared [14]. The max-sum version [6], [7], [8], [9], [10], [15], [17], [20] and a variety of related problems [4], [6], [10] are studied.

The max-min *k*-dispersion problem is NP-hard even when the triangle inequality is satisfied [13], [24]. An exponential-time exact algorithm for the problem is known [2]. The running time

⁴ National Institute of Informatics, Japan

a) kobayashi@iip.ist.i.kyoto-u.ac.jp
b) pakana@ac.gupma.u.ac.ip

- c) uchizawa@yz.yamagata-u.ac.jp
- d) uno@nii.jp
- e) yutaro_yamaguchi@inf.kyushu-u.ac.jp

is $O(n^{\omega k/3} \log n)$, where $\omega < 2.373$ is the matrix multiplication exponent.

The problem in the *D*-dimensional Euclidean space can be solved in O(kn) time for D = 1 if a set *P* of points are given in the order on the line and is NP-hard for D = 2 [24]. One can also solve the case D = 1 in $O(n \log \log n)$ time [3] by the sorted matrix search method [16] (see a good survey for the sorted matrix search method in [1], Section 3.3), and in O(n) time [2] by a reduction to the path partitioning problem [16]. Even if a set *P* of points are not given in the order on the line the running time for D = 1 is $O((2k^2)^k n)$ [5]. Thus, if *k* is a constant, we can solve the problem in O(n) time. If *P* is a set of points on a circle, the points in *P* are given in the order on the circle, and the distance between them is the distance along the circle, then one can solve the *k*-dispersion problem in O(n) time [23].

For approximation, the following results are known. Ravi et al. [20] proved that, unless P = NP, the max-min *k*-dispersion problem cannot be approximated within any constant factor in polynomial time, and cannot be approximated with a factor less than two in polynomial time when the distance satisfies the triangle inequality. They also gave a polynomial-time algorithm with approximation ratio two when the triangle inequality is satisfied.

When k is restricted, the following results for the *D*-dimensional Euclidean space are known. For the case k = 3, one can solve the max-min k-dispersion problem in $O(n^2 \log n)$ time [18]. For k = 2, the max-min k-dispersion of *P* corresponds to the computation of the diameter of *P*, and one can compute it in $O(n \log n)$ time [19].

In this paper, we consider the case where *P* is a set of points in convex position and *d* is the Euclidean distance. See an example of a 3-dispersion of *P* in Fig. 1. By the brute force algorithm and the algorithm in [18] one can compute a 3-dispersion of *P* in $O(n^3)$ and $O(n^2 \log n)$ time, respectively, for a set of points on the plane. In this paper, we present an algorithm to compute a

¹ Kyoto University, Japan

² Gunma University, Japan

³ Yamagata University, Japan

⁵ Kyushu University, Japan

 ⁶ Iwate University, Japan
^{a)} Iwahawashi Qiin ist i Iwat

^{b)} nakano@cs.gunma-u.ac.jp

f) yamanaka@cis.iwate-u.ac.jp

Fig. 1 An example of 3-dispersion. $\{x, y, z\}$ is a 3-dispersion.

3-dispersion of *P* in $O(n^2)$ time using the property that *P* is a set of points in convex position.

2. Preliminaries

Let *P* be a set of *n* points in convex position on the plane. In this paper, we assume $n \ge 3$. We denote the Euclidean distance between two points *u*, *v* by d(u, v). The cost of a set $S \subset P$ is defined as $cost(S) = \min_{u,v\in S} d(u, v)$. Let S_3 be the set of all possible three points in *P*. We say $S \in S_3$ is a 3-dispersion of *P* if $cost(S) = \max_{S' \in S_3} cost(S')$.

We have the following two lemmas, which can be checked easily.

Lemma 1 If a triangle with corner points p_i, p_r, p_ℓ satisfies $d(p_i, p_r) \ge L$, $d(p_i, p_\ell) \ge L$ and $d(p_\ell, p_r) < L$ for some *L*, then $\angle p_\ell p_i p_r < 60^\circ$.

Lemma 2 If a triangle with corner points p_i, p_r, p_ℓ satisfies $d(p_i, p_r) < L$, $d(p_i, p_\ell) < L$ and $d(p_\ell, p_r) \ge L$ for some *L*, then $\angle p_\ell p_i p_r > 60^\circ$.

3. Algorithm

Let $P = \langle p_1, p_2, ..., p_n \rangle$ be the set of points in convex position and assume that they appear clockwise in this order. Note that the successor of p_n is p_1 . Let D be the distance matrix of the points in P, that is, the element at row y and column x is $d(p_x, p_y)$. Let $C_1 = \{d(p_i, p_j) \mid 1 \le i < j \le n\}$. The cost of a 3-dispersion in Pis the distance between some pair of points in P, so it is in C_1 .

The outline of our algorithm is as follows. Our algorithm is a binary search and proceeds in at most $\lceil 2 \log n \rceil$ stages. For each stage j = 1, 2, ..., k, where k is at most $\lceil 2 \log n \rceil$, we (1) compute the median r_i of C_j , where C_j is a subset of C_{j-1} , which is computed in the (j-1)st stage (except the case of j = 1), (2) compute *n* square submatrices of *D* defined by r_i along the main diagonal in D, and (3) check if at least one square submatrix among them has an element greater than or equal to r_i , or not. We prove later that at least one square submatrix above has an element greater than or equal to r_i if and only if P has a 3-dispersion with cost r_i or more. If the answer of (3) is YES then we set C_{i+1} as the subset of C_i consisting of the values greater than or equal to r_i , otherwise we set C_{i+1} as the subset of C_i consisting of the values less than r_i . Note that in either case the cost of a 3-dispersion of *P* is in C_{j+1} and $|C_{j+1}| \leq \lceil |C_j|/2 \rceil$ holds. Since the size of C_{j+1} is at most half of C_j and $|C_1| \le n^2$, the number of stages is at most $\lceil \log n^2 \rceil = \lceil 2 \log n \rceil.$

Fig. 2 An example of s_i and t_i for p_i . The drawn circle is a circle with the center of p_i the radius of length r_j .

Fig. 3 Illustrations for the square submatrix D_i of D for p_i .

Now, we explain the detail of each stage. For the computation of the median in (1), we simply use a linear-time median-finding algorithm [22].

Next, we explain the detail of (2) for each stage *j*. Given r_j , for each $p_i \in P$, we compute the first point, say $s_i \in P$, in *P* with $d(p_i, s_i) \ge r_j$ when we check the points clockwise from p_i . Similarly, we compute the first point, say $t_i \in P$, in *P* with $d(p_i, t_i) \ge r_j$ when we check the points counterclockwise from p_i . See such an example in Fig. 2. Note that, when we check the points clockwise from s_i to t_i , a point p_c between them may satisfy $d(p_i, p_c) < r_j$. See Fig. 2. For each p_i we define a square submatrix D_i of *D* induced by the rows s_i, \ldots, t_i and the columns s_i, \ldots, t_i . See Fig. 3(a). Note that D_i is located in *D* along the main diagonal. The square submatrix D_i on the clockwise contour from s_i to t_i . See Fig. 3(b).

Now, we explain how to compute s_i and t_i of p_i . The method for compute t_i can be done in the similar way for finding s_i . Hence, we focus on how to find s_i . If we search each s_i independently by scanning then the total running time for the search of s_1, s_2, \ldots, s_n is $O(n^2)$ in each stage, and $O(n^2 \log n)$ in the whole algorithm. We are going to improve this. Since s_{i+1} may appear before s_i on the clockwise contour (See Fig. 4) the search is not so simple.

We first explain how to compute s_i of p_i for each i = 1, 2, ..., nin stage 1. Given r_1 , we check each point clockwise starting at p_i , and s_i is the first point from p_i which has the distance r_1 or more. It can be observed that the total number of checks for the distance in stage 1 is at most $n + |C_1|/2 \le n + n^2/2$. In this estimation, n checks are required for the pairs of (s_i, p_i) for every i = 1, 2, ..., n and $|C_1|/2$ checks are required for the pairs (p, p_i) which satisfies that p appears between p_i and s_i clockwise and $d(p, p_i) < r_1$, for every i = 1, 2, ..., n. Remember that r_1 is the

Fig. 4 The point s_{i+1} may appear before s_i on the clockwise contour.

Fig. 5 An illustration for Lemma 3.

median of distances in C_1 . Then, in each stage $j = 2, 3, \ldots, k$ $(k \leq \lceil 2 \log n \rceil)$, given r_i , if the answer to (3) of the preceding stage j - 1 is YES then we check each point clockwise starting at s_i of the preceding stage j - 1 (since $r_i > r_{i-1}$ holds, all points before s_i of the preceding stage are within distance r_i from p_i), otherwise we check each point clockwise starting again at the starting point of the preceding stage j - 1. In either case, we check at most $jn + n^2/2 + n^2/2^2 + \cdots + n^2/2^j$ points in total for the search for s_1, s_2, \ldots, s_n in every stage ℓ for $\ell = 1, 2, \ldots, j$. In the estimation, *jn* is the total number of checks for s_1, s_2, \ldots, s_n and $n^2/2 + n^2/2^2 + \cdots + n^2/2^j$ is the total number of checks for the points with distance less than r_{ℓ} from its p_i . When j = n, we have the estimation $O(n^2)$ for the total number of checks for computing s_1, s_2, \ldots, s_n in all the stages. By the symmetric way, we can compute t_1, t_2, \ldots, t_n in each stage and the total number of checks for computing t_1, t_2, \ldots, t_n in all the stages is estimated in the same way.

Now, we present a lemma mentioned in (3). Assume that we are at stage j, and s_i and t_i of p_i are given. If there is a set of three points in P containing p_i with cost r_j or more, then the square submatrix D_i has an element greater than or equal to r_j . The reverse may be wrong. If the submatrix D_i for some p_i has an element greater than or equal to r_j at row y and column x, it only ensures $d(p_x, p_y) \ge r_j$. That is, $d(p_i, p_x) < r_j$ and/or $d(p_i, p_y) < r_j$ may hold. We show that this situation cannot occur in the following lemma.

Lemma 3 The square submatrix D_i of stage j has an element greater than or equal to r_j if and only if there is a set of three points $S \subset P$ including p_i with $cost(S) \ge r_j$.

Proof. If there is a set of three points $S \subset P$ including p_i with $cost(S) \ge r_j$ then clearly the square submatrix D_i of stage j has an element greater than or equal to r_j .

We only prove the other direction, that is, if the square subma-

trix D_i of stage *j* has an element greater than or equal to r_j , then there is a set of three points $S \subset P$ including p_i with $cost(S) \ge r_j$. Assume that D_i has an element greater than or equal to r_j at row *y* and column *x*, that is $d(p_x, p_y) \ge r_j$. We have the following four cases and in each case we show that there exists a set *S* of three points such that $cost(S) \ge r_j$.

Case 1: $d(p_i, p_x) \ge r_j$ and $d(p_i, p_y) \ge r_j$. The set $S = \{p_i, p_x, p_y\}$ has $cost(S) \ge r_j$.

Case 2: $d(p_i, p_x) < r_i$ and $d(p_i, p_y) < r_i$.

We show that, for $S = \{p_i, s_i, t_i\}$, $cost(S) \ge r_j$ holds. We assume for a contradiction that $d(s_i, t_i) < r_j$ holds. Then, we have $\angle s_i p_i t_i < 60^\circ$ by Lemma 1 and $\angle p_x p_i p_y > 60^\circ$ by Lemma 2. This is a contradiction to the convexity of *P*.

Case 3: $d(p_i, p_x) < r_j$ and $d(p_i, p_y) \ge r_j$.

In this case, we show that the set $\{p_i, s_i, p_y\}$ attains $cost(S) \ge r_j$. Since $d(p_i, p_y) \ge r_j$ and $d(p_i, s_i) \ge r_j$, we have to prove $d(s_i, p_y) \ge r_j$.

Assume for a contradiction that $d(s_i, p_y) < r_j$ holds. See Fig. 5. Now, we first show that $\{s_i, p_x, p_y\}$ forms an obtuse triangle with the obtuse angle p_x , below. We focus on the rectangle consisting of p_i , s_i , p_x , and p_y . Since $d(p_i, p_y) \ge r_j$ and $d(p_i, s_i) \ge r_j$, and $d(s_i, p_y) < r_j$, we have $\angle s_i p_i p_y < 60^\circ$ by Lemma 1. Let p' be the point on the line segment between p_i and s_i with $d(p_i, p') = r_j$. Since $\angle p_i p' p_x < 90^\circ$ holds, we can observe that $\angle p_i s_i p_x < 90^\circ$ holds. Since $d(p_i, p_y) \ge r_j$, $d(p_x, p_y) \ge r_j$, and $d(p_i, p_x) < r_j$, we have $\angle p_i p_y p_x < 60^\circ$ by Lemma 1. Now, the sum of the internal angles of the quadrangle consisting of p_i , s_i , p_x , and p_y implies that $\angle s_i p_x p_y \ge 150^\circ$, and $\{s_i, p_x, p_y\}$ are the points of an obtuse triangle with obtuse angle at p_x . However $d(p_x, p_y) \ge r_j$ and $d(s_i, p_y) < r_j$, which is a contradiction.

Case 4:
$$d(p_i, p_x) \ge r_j$$
 and $d(p_i, p_y) < r_j$.
Symmetry to Case 3. Omitted.

Now, we are ready to describe our algorithm and the estimation of the running time. First, as a preprocessing, we construct the set $C_1 = \{d(p_i, p_j) \mid 1 \le i < j \le n\}$ and $n \times n$ distance matrix D. Next, we repeat the following stage for each j = 1, 2, ..., k, where $k \le \lceil 2 \log n \rceil$. (1) we compute the median r_j of C_j , (2) compute s_i and t_i of p_i for i = 1, 2, ..., n, and (3) check whether there exists an index i, $(1 \le i \le n)$, such that the maximum value of D_i is greater than or equal to r_j . Then, if such i exists, we set $C_{j+1} = \{d(p_i, p_j) \in C_j \mid d(p_i, p_j) \ge r_j\}$, otherwise, we set $C_{j+1} = \{d(p_i, p_j) \in C_j \mid d(p_i, p_j) < r_j\}$.

The analysis of the running time is as follows. The preprocessing can be done in $O(n^2)$ time. For (1), we can compute the median r_j of stage j in $O(n^2/2^{j-1})$ time by using a lineartime median-finding algorithm [22], and hence $O(n^2)$ time for the whole algorithm. The computation for (2) can be done in $O(n^2)$ time in the whole algorithm, as described above. For (3), after $O(n^2)$ -time preprocessing for D, we can compute the maximum element in the given submatrix in D in O(1) time for each query by using the range-query algorithm [25], so we need O(n) time as preprocessing. (For a separated square as shown in Fig. 3(b), we need four queries but total time is still a constant.) Now, we have our main theorem.

Theorem 1 Let *P* be a set of *n* points in convex position. After $O(n^2)$ -time preprocessing, one can compute a 3-dispersion of *P* in $O(n^2)$ time.

Acknolwedgement. This work was supported by JSPS KAK-ENHI Grant Numbers JP18H04091, JP19K11812, JP20H05793, JP20H05962, JP20K19742. The fourth author is also supported by JST CREST Grant Number JPMJCR1401.

References

- P. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput. Surv., 30:412–458, 1998.
- [2] T. Akagi, T. Araki, T. Horiyama, S. Nakano, Y. Okamoto, Y. Otachi, T. Saitoh, R. Uehara, T. Uno, and K. Wasa. Exact algorithms for the max-min dispersion problem. *Proc. of FAW 2018*, LNCS 10823:263– 272, 2018.
- [3] T. Akagi and S. Nakano. Dispersion on the line. *IPSJ SIG Technical Reports*, 2016-AL-158-3, 2016.
- [4] K. Amano and S. Nakano. An approximation algorithm for the 2dispersion problem. *IEICE TRANS. INF.SYST.*, E103-D:506–508, 2020.
- [5] T. Araki and S. Nakano. The max-min dispersion on a line. Proc. of COCOA 2018, LNCS 11346:672–678, 2018.
- [6] C. Baur and S. P. Fekete. Approximation of geometric dispersion problems. *Proc. of APPROX 1998*, pages 63–75, 1998.
- B. Birnbaum and K. J. Goldman. An improved analysis for a greedy remote-clique algorithm using factor-revealing LPs. *Algorithmica*, 50:42–59, 2009.
- [8] A. Cevallos, F. Eisenbrand, and R. Zenklusen. Max-sum diversity via convex programming. *Proc. of SoCG 2016*, pages 26:1–26:14, 2016.
- [9] A. Cevallos, F. Eisenbrand, and R. Zenklusen. Local search for maxsum diversification. *Proc. of SODA 2017*, pages 130–142, 2017.
- [10] B. Chandra and M. M. Halldorsson. Approximation algorithms for dispersion problems. J. of Algorithms, 38:438–465, 2001.
- [11] Z. Drezner. Facility location: A Survey of Applications and Methods. Springer, 1995.
- [12] Z. Drezner and H. Hamacher. Facility Location: Applications and Theory. Springer, 2004.
- [13] E. Erkut. The discrete *p*-dispersion problem. *European Journal of Operational Research*, 46:48–60, 1990.
- [14] E. Erkut, Y. Ulkusal, and O. Yenicerioglu. A comparison of pdispersion heuristics. Computers & Operational Research, 21:1103– 1113, 1994.
- [15] S. P. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight cliques. *Algorithmica*, 38:501–511, 2004.
- [16] G. Frederickson. Optimal algorithms for tree partitioning. Proc. of SODA 1991, pages 168–177, 1991.
- [17] R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion. *Operation Research Letters*, 21:133–137, 1997.
- [18] T. Horiyama, S. Nakano, T. Saitoh, K. Suetsugu, A. Suzuki, R. Uehara, T. Uno, and K. Wasa. Max-min 3-dispersion problems. *Proc. of COCOON 2019*, LNCS 11653:291–300, 2019.
- [19] F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer-Verlag, 1985.
- [20] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for dispersion problems. *Operations Research*, 42:299–310, 1994.
- [21] M. Sydow. Approximation guarantees for max sum and max min facility dispersion with parameterised triangle inequality and applications in result diversification. *Mathematica Applicanda*, 42:241–257, 2014.
- [22] R. L. R. T. H. Cormen, C. E. Leiserson and C. Stein. Introduction to algorithms, Third Edition. MIT Press, 2000.
- [23] K. H. Tsai and D. W. Wang. Optimal algorithms for circle partitioning. Proc. of COCOON 1997, LNCS 1276:304–310, 1997.
- [24] D. W. Wang and Y.-S. Kuo. A study on two geometric location problems. *Information Processing Letters*, 28:281–286, 1988.
- [25] H. Yuan and M. J. Atallah. Data structures for range minimum queries in multidimensional arrays. *Proc. of SODA 2010*, pages 150–160, 2010.