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k-Dispersion on Intervals

Tetsuya Araki1,a) Hiroyuki Miyata1,b) Shin-ichi Nakano1,c)

Abstract:
Given a set of n disjoint intervals on a line, and an integer k, we want to find k points in the intervals so
that the minimum pairwise distance of the k points is maximized. Intuitively, given a set of n disjoint time
intervals on a timeline, each of which is a time span we are allowed to check something, and an integer k,
which is the number of times we will check something, we plan the k checking times so that the checks occur
at equal time intervals as much as possible, that is, we want to maximize the minimum time interval between
the k checking times. The problem is called the k-dispersion problem on intervals. If we need to choose
exactly one point in each interval, so k = n, and the disjoint intervals are given in the sorted order on the
line, then two O(n) time algorithms to solve the problem are known.
In this paper we give the first O(n) time algorithm to solve the problem for any constant k. Here one can
check twice or more in one time interval. Our algorithm works even if the disjoint intervals are given in any
(not sorted) order. If the disjoint intervals are given in the sorted order on the line, then, by slightly mod-
ifying the algorithm, one can solve the problem in O(logn) time. This is the first sublinear time algorithm
to solve the problem. Also we show some results on the k-dispersion problem on disks, including a PTAS.
keywords: dispersion problem, algorithm

1. Introduction

The facility location problem and many of its variants

have been studied [11], [12]. Typically, given a set of lo-

cations on which facilities can be placed and an integer k,

we want to place k facilities on some locations so that a

designated objective function is minimized. By contrast in

the dispersion problem, we want to place facilities so that a

designated objective function is maximized.

In this paper we consider the dispersion problem on in-

tervals. Given a set of n disjoint intervals on a line, and an

integer k, we want to find k points in the intervals so that

the minimum pairwise distance of the k points is maximized.

See an example in Fig. 1.

Intuitively, given a set of n disjoint (non-overlapping) time

intervals on a timeline, each of which is a time span we are

allowed to check something, and an integer k, which is the

number of times we will check something, we plan the k

Fig. 1 An example of the dispersion problem on intervals with
k = 6.
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checking times so that the checks occur at equal time inter-

vals as much as possible, that is, we want to maximize the

minimum time interval between the k checking times. We

call the problem the k-dispersion problem on intervals. Let

S be a set of optimal k points on the line (corresponding

to the k checking times), and cost(S) = min{s,t}⊂S{d(s, t)}
the minimum pairwise distance of the k points in S.

If we need to choose exactly one point in each time inter-

val, and so k = n, and the disjoint intervals are given in the

sorted order on the line, two O(n) time algorithms to solve

the problem are known [5], [18].

Our result In this paper we give the first O(n) time al-

gorithm to solve the problem for any constant k. Here one

can choose two or more points in one interval. Our algo-

rithm works even if the disjoint intervals are given in any

(unsorted) order. Our algorithms is based on the pigeon-

hole principle, and is a generalization of the algorithm in [3]

to solve a similar dispersion problem.

If the disjoint intervals are given in the sorted order on the

line, then, by slightly modifying the algorithm, one can solve

the problem in O(logn) time. This is the first sublinear time

algorithm to solve the problem.

Related result Given a set P of n possible locations, and

a distance function d for each pair of locations, and an in-

teger k with k ≪ n, the max-min k-dispersion problem

computes a subset S ⊂ P with |S| = k such that the

cost cost(S) = min{u,v}⊂S{d(u, v)} is maximized. Several

results are known for this max-min k-dispersion problem

[1], [2], [14], [19], [21], For the max-sum version several re-

sults are also known [4], [6], [8], [9], [10], [15], [17], [19]. For
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a variety of related problems, see [4], [10]. See more appli-

cations, including result diversification, in [9], [19], [20].

Given a set of disks, we want to choose one point in each

disk so that the minimum distance among the points is max-

imized. The problem is called the dispersion problem on

disks, and some results are known [7], [13], [16]. The k-

dispersion problem on intervals is the 1D version of the dis-

persion problem on disks.

The remainder of this paper is organized as follows. In

Section 2 we design an O(n) time simple algorithm to solve

the dispersion problem when intervals are given “unsorted”

on a line. Section 3 gives an O(logn) time algorithm to solve

the dispersion problem when intervals are given sorted on a

line. In Section 4 we show some results on the k-dispersion

problem on disks. Finally Section 5 is a conclusion.

2. k-dispersion for unsorted intervals

In this section we design a simple O(n) time algorithm to

solve the k-dispersion problem on intervals when the disjoint

n intervals are given unsorted on a line. The idea of our al-

gorithm is a simple divide and conquer algorithm using the

pigeonhole principle, as follows. Similar idea is used to solve

a similar max-min dispersion problem on a line [3].

Let I be a set of disjoint intervals on a horizontal line and

pℓ and pr are the leftmost point and the rightmost point in

I. One can find pℓ and pr in O(n) time.

If k = 1 then a solution S of the 1-dispersion problem is

{pℓ}.
If k = 2 then the solution S of the 2-dispersion problem

is {pℓ, pr}.
If k = 3 then let the solution S be {pℓ, ps, pr}. The solu-

tion S consists of pℓ and pr and exactly one more point ps

in some interval in I. We can compute ps as follows.

Let i0 = pℓ, i2 = pr, and let i1 be the midpoint between

pℓ and pr. If some interval in I contains i1 then ps = i1.

Otherwise, let U1 be the interval (i0, i1), and U2 be the in-

terval (i1, i2). Now ps appears in either U1 or U2. So, by

pigeonhole principle, ps does not appear in U1 or U2. Thus

we have two cases.

Case 1: ps does not appear in U1.

In this case, S consists of pℓ and the solution of the 2-

dispersion problem on intervals in (i1, i2], say R ⊂ I, which

consists of (1) the leftmost point in R and (2) pr.

Case 2: ps does not appear in U2.

In this case, S consists of pr and the solution of the 2-

dispersion problem on intervals in [i0, i1), say L ⊂ I, which

consists of (1) the rightmost point in L and (2) pℓ.

We can generalize this method for a constant k > 3, as

follows.
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Fig. 2 Illustration of U1, U2, · · · for k = 8.

Algorithm 1 Find-dispersion-on-Intervals(I, k)

/* pℓ and pr are the leftmost point and the rightmost point in

I */

if k = 1 then

S = {pℓ}
return S

end if

if k = 2 then

S = {pℓ, pr}
return S

end if

/* i0 = pℓ, ik−1 = pr and let i1, i2, · · · , ik−2 be the points which

evenly spaced on the line between pℓ and pr */

/* k ≥ 3 */

if each of i1, i2, · · · , ik−2 is contained in some interval in I then

S = {i0, i1, · · · , ik−1}
return S

end if

/* Case: S has no point in U1 = (i0, i1]) */

Let R be the set of intervals in (i1, ik−1].

(if there is an interval in I containing i1 then replace its left end

to i1 )

SL = {pℓ}
SR =Find-dispersion-on-a-line(R, k − 1)

S = SL ∪ SR

/* Case: S has no point in Uj = (ij−1, ij ] for j = 2, 3, · · · , k− 2

*/

for j = 2 to k − 2 do

Let L be the intervals in [i0, ij−1].

(If there is an interval in I containing ij−1 then replace its

right end to ij−1)

Let R be the intervals in (ij , ik−1].

(If there is an interval in I containing ij then replace its left

end to ij)

for s = 1 to k − 1 do

SL =Find-dispersion-on-a-line(L, s)

SR =Find-dispersion-on-a-line(R, k − s)

if cost(SL ∪ SR) > cost(S) then

S = SL ∪ SR

end if

end for

end for

/* Case: S has no point in Uk−1 = (ik−2, ik−1) */

Let L be the set of intervals in [i0, ik−2].

(If there is an interval in I containing ik−2 then replace its right

end to ik−2)

SL =Find-dispersion-on-a-line(L, k − 1)

SR = {pr}
if cost(SL ∪ SR) > cost(S) then

S = SL ∪ SR

end if

return S
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Let i0 = pℓ, ik−1 = pr and let i1, i2, · · · , ik−2 be the

points which evenly spaced on the line between pℓ and

pr. Clearly the cost of the solution is at most d(i0, i1),

where d(i0, i1) is the distance between i0 and i1, If each

of i1, i2, · · · , ik−2 is contained in some interval in I, then

{i0, i1, · · · , ik−1} is the solution, and the cost is d(i0, i1).

Assume otherwise. Let Uj be the interval (ij−1, ij ] for

j = 1, 2, · · · , k − 2, and Uk−1 be the interval (ik−2, ik−1).

See an example in Fig. 2.

The solution for the k-dispersion problem consists of pℓ
and pr and exactly k−2 points in (i0, ik−1). So, by pigeon-

hole principle, S has no point in at least one of U1, U2, · · · ,
Uk−1. Thus we have k − 1 cases as follows.

Case 1: S has no point in U1.

If there is an interval in I containing i1, then replace its

left end to i1.

In this case, S consists of (1) pℓ and (2) the solution of

(k − 1)-dispersion problem for the intervals in [i1, ik−1].

Case 2: S has no point in U2.

In this case, for some s with 1 ≤ s ≤ k − 1, S consists of

(1) the solution of s-dispersion problem for the intervals, say

L, in [i0, i1] (if there is an interval in I containing i1 then

replace its right end to i1) and (2) the solution of (k − s)-

dispersion problem for the intervals, say R, in [i2, ik−1] (if

there is an interval in I containing i2 then replace its left

end to i2). Note that since S has no point in U2 the solution

for L does not affect the solution for R, so we can solve the

two smaller subproblems independently. Also note that if

there is an interval in I containing both i1 and i2, then two

subintervals of the interval appear one in L and the other in

R.

Case 3: S has no point in U3.

Similar to Case 2.

· · ·
Case k − 2: S has no point in Uk−2.

Similar to Case 2.

Case k − 1: S has no point in Uk−1.

If there is an interval in I containing ik−2, then replace

its right end to ik−2.

In this case, S consists of (1) the solution of (k − 1)-

dispersion problem for the intervals in [i0, ik−2] and (2) pr.

We (recursively) check all possible cases and choose the

best one. See algorithm Find-dispersion-on-intervals.

Thus if we have the solution of at most 2k2 smaller

child dispersion problems then we can solve the original k-

dispersion problem.

We have the following theorem.

Theorem 1. One can solve the k-dispersion problem on

intervals in O(n) time even when the intervals are given

unsorted on a line.

Proof. Consider the tree structure of the recursive calls.

Each inner node has at most 2k2 children and the height of

the tree is at most k, so the number of inner node is at most

(2k2)k. Before calling the children one needs to compute

pℓ, pr, L and R by scanning the list of unsorted intervals

with buckets L and R. So it needs O(n) time, where n is

the number of intervals. Thus each inner node needs O(n)

time except for the calls for its children. Therefore the total

running time of the algorithm is O((2k2)kn). Since k is a

constant it is O(n).

By slightly modifying the algorithm we can solve the sim-

ilar dispersion problem on intervals where we can choose at

most one point in each interval, as follows. (We can not

choose two or more point in one interval in I.) If there is an

interval, say I ′ ∈ I, containing both endpoints of an empty

interval (ij−1, ij) in Case j, then we need to consider the

following two more subcases. Case (L): The subinterval of I ′

appears only in L, with its right endpoint (ij−1). Case (R):

the subinterval of I ′ appears only in R, with its left endpoint

(ij) . Now the number of subproblems is at most (4k2)k,

and the total running time of the algorithm is O((4k2)kn).

Since k is a constant it is O(n).

Theorem 2. One can solve the k-dispersion problem on

intervals with the constraint that we can choose at most

one point in each interval in O(n) time even when the in-

tervals are given unsorted on a line.

3. k-dispersion for sorted intervals

If I is a set of sorted intervals on a line, and the coordi-

nates of the endpoints of intervals are given as an array in

which the coordinates are stored in the sorted order, then by

slightly modifying the algorithm we can solve the dispersion

problem in O(logn) time.

We can compute pℓ and pr in O(logn) time using the ar-

ray. We can also decide whether some point i is contained in

some interval or not in O(logn) time by binary search on the

array. Also instead of computing L explisitly, we can com-

pute the leftmost interval in L and the rightmost interval

in L in O(logn) time by binary search, and we can regard

L as the intervals in I between those two intervals. Similar

for R. Thus we can call each child with those information

as arguments, instead of L and R. Now the running time is

O((2k2)k logn), which is O(logn) since k is a constant.

Theorem 3. One can solve the k-dispersion problem on

intervals in O(logn) time when the intervals are given

sorted on a line.

4. Dispersion on Disks

Given a set D of disjoint disks and an integer k ≤ |D|, we
wish to find k points in those disks so that the minimum dis-

tance between them is maximized. We can choose at most

one point in each disk. The problem is called the dispersion

problem on disks. The 1D version of the problem is the k-

dispersion problem on intervals, which we have discussed in

Section 2.

We need some notations. Let D∗ be an optimal set of

k points in D such that D∗ contains at most one point in

each disk, and C(D∗) be the set of k center points of disks

containing D∗. For a set S of points let cost(S) be the min-
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imum distance between two points in S. Let C be the set of

center points of the disks in D, and S∗ the set S of k points

in C maximizing cost(S). Let d∗ = cost(S∗).

For k = n the problem is NP-hard, APX-hard, and a

polynomial-time 0.707-approximation algorithm is known

[13].

For k ≤ n no results are known for the problem. We have

the following lemma and two theorems.

Lemma 1. Given a set C of n points and an integer k ≤ n

one can choose a set SA ⊂ C of k points in O(n2) time so

that cost(SA) ≥ cost(S∗)/2.

Proof. First we choose two points having the maximum

distance in C. Let SA be the set of the two points. Then

repeatedly we append to SA a point in C − SA having the

maximum distance to SA so that SA has k points. We call

this algorithm the greedy algorithm.

Consider the set SD of k disks with radii d∗/2 having

the centers C(D∗). When we append a point to SA there

is a disk in SD not containing a point in SA. Now the

disk has no point in SA. Thus we can always find a point

having no point in SA within distance d∗/2. Therefore

cost(SA) ≥ d∗/2 = cost(S∗)/2 holds.

Theorem 4. When D is a set of n disjoint disks with ar-

bitrary radii, given an integer k ≤ n one can choose a set

S of k points in D in O(n2) time so that (1) no two point

is contained in a disk in D and (2) cost(S) ≥ cost(D∗)/4

holds.

Proof. Now since D is disjoint cost(C(D∗)) ≥ cost(D∗)/2

holds. Also cost(S∗) ≥ cost(C(D∗)) holds. If we find a

set SA by Lemma 1 we have cost(SA) ≥ cost(S∗)/2 ≥
cost(C(D∗))/2 ≥ cost(D∗)/4.

Theorem 5. When D is a set of disjoint disks with uni-

form radii, say r, given an integer k ≤ n one can find a

set S of k points in D in O(n2) time so that cost(S) ≥
cost(D∗)/3 holds.

Proof. Now cost(D∗) ≥ cost(S∗). Since D is disjoint,

cost(D∗) − 2r ≤ cost(S∗) holds. Thus cost(D∗) ≤
cost(S∗)+2r holds. If we find a set SA by Lemma 1 we have

cost(SA) ≥ cost(S∗)/2 and so cost(S∗) ≤ 2cost(SA). Now

cost(D∗) ≤ 2cost(SA)+2r. Therefore, since cost(SA) ≥ 2r,

cost(SA)/cost(D
∗) ≥ cost(SA)/(2cost(SA) + 2r) = 1/(2 +

2r/cost(SA)) ≥ 1/3 holds.

See Fig. 3. The cost of optimal k points is 2 (See Fig.

3(a)), however the cost of k points computed by the greedy

algorithm in the proof of Lemma 1 is 1. (See Fig. 3(b)).

Thus there is an example for which the greedy algorithm

computes a set SA with cost(SA) = cost(S∗)/2.

If we can choose any number of points in each disk, we

have the following theorem for this version of the dispersion

problem on disks. Let D∗ be an optimal set of k points of

the problem.

Theorem 6. When D is a set of n disjoint disks with ar-

bitrary radii, given an integer k ≤ n and a real number

(a)

(b)

Fig. 3 An example with cost(SA) = cost(S∗)/2. The radii of
disks are 0.5.

ϵ ≤ 1 one can choose a set S of k points in D in O(n2/ϵ4)

time so that cost(S) ≥ cost(D∗)/(2(1 + ϵ)) holds.

Also one can choose a set S of k points in D in

O((n/ϵ2)k) time so that cost(S) ≥ cost(D∗)/(1 + ϵ) holds.

Proof. Let r be the radius of the largest disk in D, and

(x′, y′) the coordinate of the center of the largest disk. Since

we can locate k points in the largest disk so that they evenly

spaced on a line segment corresponding to the diameter,

cost(D∗) ≥ 2r/(k − 1) > 2r/k holds.

A point p located at (x, y) is a grid point iff x = x′ +

(rϵ/ck)i and y = y′ + (rϵ/ck)j with some integers i and j.

We will explain later the constant c which define the size of

the cell of the grid.

Let S be the set of points that consists of (1) the centers

of disks in D, and (2) the grid points contained in disks in

D. Now |S| ≤ n + (2r/(rϵ/ck))2n = n + 4(ck/ϵ)2n holds,

so |S| is O(n/ϵ2).

Let S(D∗) be the set of points derived from D∗ by choos-

ing a nearest point in S for each point in D∗. We choose

c large enough so that (1) cost(S(D∗)) ≥ cost(D∗)/(1 + ϵ)

holds and (2) no two points in D∗ have the common nearest

point in S.

If we find a set SA from S in O(|S|2) time by the greedy

algorithm in the proof of Lemma 1, we have cost(SA) ≥
cost(S∗)/2 ≥ cost(S(D∗))/2 ≥ cost(D∗)/(2(1 + ϵ)).

If we find a set S∗ in O(|S|k) time by a brute force al-

gorithm we have cost(S∗) ≥ cost(S(D∗)) ≥ cost(D∗)/(1 +

ϵ).

Thus this version of the dispersion problem on disks has

a PTAS.

5. Conclusion

In this paper we have designed a simple algorithm to solve

the k-dispersion problem on intervals. This is the first O(n)

time algorithm to solve the problem for any constant k.

Then we have shown, if intervals are given sorted on a

line, by slightly modifying the algorithm, one can solve the

problem in O(logn) time. This is the first sublinear time

algorithm to solve the problem.

If disjoint intervals on a circle are given sorted an O(n)

time algorithm to solve the n-dispersion problem is known

[5], [18]. Can we apply the method in this paper for the

k-dispersion problem on disjoint intervals on a circle for any

constant k?

We also have given some results for the k-dispersion prob-
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lem on disjoint disks.
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