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Abstract: This paper presents hierarchical latent words language models (h-LWLMs) for improving automatic speech
recognition (ASR) performance in out-of-domain tasks. Language models called h-LWLM are an advanced form of
LWLM that are one one hopeful approach to domain robust language modeling. The key strength of the LWLMs is
having a latent word space that helps to efficiently capture linguistic phenomena not present in a training data set. How-
ever, standard LWLMs cannot consider that the function and meaning of words are essentially hierarchical. Therefore,
h-LWLMs employ a multiple latent word space with hierarchical structure by estimating a latent word of a latent word
recursively. The hierarchical latent word space helps us to flexibly calculate generative probability for unseen words.
This paper provides a definition of h-LWLM as well as a training method. In addition, we present two implementation
methods that enable us to introduce the h-LWLMs into ASR tasks. Our experiments on a perplexity evaluation and an
ASR evaluation show the effectiveness of h-LWLMs in out-of-domain tasks.

Keywords: hierarchical latent words language models, automatic speech recognition, domain robust language mod-
eling

1. Introduction

In recent practical automatic speech recognition (ASR) sys-
tems, language models (LMs) that estimate generative probability
of words are an essential component along with acoustic models.
It is widely known that the performance of LMs strongly depends
on the quality and quantity of their training data sets [1], [2], [3].
Superior performance is usually obtained by using enormous
domain-matched training data sets to construct LMs. Unfortu-
nately, in practical ASR tasks, large amounts of domain-matched
data sets are not available, so LMs are often required to robustly
predict the probability of unobserved linguistic phenomena. In
this paper, we focus on a method that aims to improve the ro-
bustness of LMs and make them more flexible in dealing with
out-of-domain tasks.

For domain robust language modeling, several technologies
have been proposed. Fundamental techniques are smoothing [4]
and clustering [5]. Other solutions are Bayesian modeling [6] and
ensemble modeling [7], [8]. Moreover, continuous representation
of words in neural network LMs including feed-forward neural
network LMs, recurrent neural network (RNN) LMs, long short-
term memory LMs and transformer LMs can also support robust
modeling [9], [10], [11], [12], [13], [14]. However, most previ-
ous studies are focused on maximizing performance in the same
domain as that of the training data. In other words, whether or
not these technologies can robustly support out-of-domain tasks
is still uncertain.

In contrast, latent words LMs (LWLMs) that are generative
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models with a latent word space are known as an effective way
of improving out-of-domain tasks [15]. The latent word space
can flexibly take into account relationships between words and
the modeling helps to efficiently increase the robustness to out-
of-domain tasks. In addition, domain robust mixture modeling
can be achieved by using multiple LWLMs [16], [17], In fact,
the LWLMs can be applied to ASR using two kinds of methods.
One method is n-gram approximation that converts LWLMs into
smoothed n-gram structure [18]. The other method is the Viterbi
approximation that only considers one latent word assignment
for computing the generative probability of words [19]. Previous
studies reported that LWLMs was significantly superior in out-
of-domain ASR tasks while the performance was comparable to
conventional LMs in domain-matched tasks.

However, standard LWLMs merely represent the latent word
space as n-gram modeling of latent words. It is considered that
the function and meaning of words are thought to have an essen-
tially hierarchical structure. The hierarchical structure can take
into account the process of abstracting the function and meaning
of words. Examples of the abstraction process include the use of
“apple” as a typical word in referring to fruits, while “food” is
a typical word in referring to foods including “apple” and other
fruits. Conventional LWLMs do not model the hierarchy while
the latent words are used to represent the function and meaning
of words. This hierarchical stuture will prove useful in increasing
the robustness to out-of-domain tasks.

In this paper, we present LWLMs with multiple latent word
spaces that are hierarchically structured. We refer to these as hier-
archical LWLM or h-LWLM. The h-LWLMs assume that there is
a latent word behind a latent word. The h-LWLMs are related to
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generative modeling methods with a hierarchical latent variable
structure. Examples of such methods are the hierarchical hid-
den Markov models (h-HMMs) [20], [21] and the hierarchical la-
tent Dirichlet allocation (h-LDA) [22]. The h-HMMs and h-LDA
are generalizations of standard HMMs and standard LDA, respec-
tively. Similarly, the h-LWLMs can be regarded as a generalized
form of the standard LWLMs. Thus, standard LWLMs corre-
spond to h-LWLM with only one layer. Unlike original LWLMs,
these h-LWLM with multiple latent word spaces will allow flex-
ibly calculating the generative probability of unseen words. In
addition, the h-LWLMs are related to other extended modeling
of LWLMs. One related modeling is latent words RNN LMs
(LWRNNLMs) [23], [24] that use the RNN modeling for latent
variable modeling instead of n-gram modeling. The h-LWLMs
differ from these extended models by taking into account the hi-
erarchical structure of latent words.

In order to create a hierarchical latent word structure from
training data sets, this paper introduces a layer-wise inference
method. The key idea for modeling the hierarchy in the la-
tent word space is estimating a latent word of a latent word re-
cursively. The initial idea for this inference method is a deep
Boltzmann machine [25] that stacks up restricted Boltzmann ma-
chines [26]. The inference can be achieved using the Gibbs sam-
pling. In addition, this paper presents two implementation meth-
ods for ASR, n-gram approximation and the Viterbi approxima-
tion, as well as the standard LWLM since it is impractical to di-
rectly apply the h-LWLM to the ASR decoding process. In ex-
periments, the effectiveness of the proposed method is shown by
perplexity and speech recognition evaluation.

Note that this paper is an extended study of our previous
work [27]. Main differences are as follows.
• This paper provides detailed definitions of h-LWLMs and

their training methods.
• This paper introduces not only n-gram approximation but

also the Viterbi approximation to implement h-LWLMs into
ASR.

• This paper examines perplexity evaluation using PennTree-
bank corpus that is the most representative evaluation set.

This paper is organized as follows. Section 2 explains LWLMs
that are the conventional method in this work. Section 3 provides
a definition of h-LWLMs. In addition, a training method and two
ASR implementation methods for h-LWLM are introduced in de-
tail. Sections 4 and 5 describe a perplexity evaluation and an ASR
evaluation. Section 6 concludes this paper.

2. Latent Words Language Models

This section briefly describes definition and a training method
of latent words LMs (LWLMs).

2.1 Definition
LWLMs are generative models that have a latent variable for

every observed word. A graphic representation of LWLM is
shown in Fig. 1. In this figure, relationships between latent words
were modeled by 3-gram modeling. The gray circles denote ob-
served words and the white circles denote latent variables.

In the generative process of LWLM, a latent variable called

Fig. 1 Model structure of LW-LMs.

latent word ht, is generated depending on the transition probabil-
ity distribution given context lt = {ht−n+1, ..., ht−1}, where n is an
n-gram order. Next, an observed word wt is generated depending
on the emission probability distribution given latent word ht, i.e.,

ht ∼ P(ht |lt,Θlw), (1)

wt ∼ P(wt |ht,Θlw), (2)

where Θlw is a model parameter of LWLM. Here, P(ht |lt,Θlw) is
expressed as an n-gram model for latent words, and P(wt |ht,Θlw)
models the dependency between the observed word and the latent
word.

LWLMs have an important property in which the latent word
is expressed as a specific word that can be selected from an entire
vocabulary V. Thus, the number of latent words is the same as
the vocabulary size |V|. This is the reason the latent variable is
called a latent word.

In the Bayesian approach, the generative probability of ob-
served words w = {w1, · · · , wT } is defined as:

P(w) =
∫ ∑

h

P(w|h,Θlw)P(h|Θlw)P(Θlw)dΘlw

=

∫ T∏
t=1

∑
ht

∑
lt

P(wt |ht,Θlw) (3)

P(ht |lt,Θlw)P(Θlw)dΘlw,

where h = {h1, · · · , hT } is a latent word assignment. The Bayesian
approach takes account of all possible model parameters. Since
the integral with respect to Θlw is essentially intractable, a sam-
pling technique is utilized as a feasible approximation. Equa-
tion (3) is approximated as:

P(w) � 1
M

M∑
m=1

∑
h

P(w|h,Θm
lw)P(h|Θm

lw)

� 1
M

M∑
m=1

T∏
t=1

∑
ht

∑
lt

P(wt |ht,Θ
m
lw)P(ht |lt,Θm

lw), (4)

where Θm
lw

means the m-th point estimated model parameter. The
generative probability can be approximated using M instances of
Θm
lw

. In fact, an ensemble of several models (M > 1) is effective
for LMs such as random class based LMs [8] and random forest
LMs [7].

LWLM has a similar structure to the standard class based n-
gram model. The latent word approximately corresponds to the
class of the standard class based n-gram model [5]. LWLM has a
soft word clustering structure that differs from a simple hard word
clustering structure in the standard class based n-gram model. In
the hard word clustering structure, one word belongs to only one
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class. In the soft word clustering structure, on the other hand, one
word belongs to multiple classes. Strictly speaking, each word
belongs to all classes in LWLM. In addition, LWLM has a vast
class space, about as large as the vocabulary, while the number of
classes in the standard class based n-gram model is often defined
as several hundreds or thousands of classes.

2.2 Training
LWLMs are trained from a training data set W. In LWLM

training, the latent word assignment H behind W has to be in-
ferred. In fact, multiple latent word assignments {H1, · · · ,HM}
are estimated for the Bayesian modeling. Once a latent word
assignment Hm is defined, P(wt |ht,Θ

m
lw

) and P(ht |lt,Θm
lw

) can be
calculated.

To estimate the latent word assignments, Gibbs sampling is
suitable. Gibbs sampling samples a new value for the latent word
in accordance with its distribution and places it at position k in
H . The conditional probability distribution of possible values for
latent word ht is given by:

P(ht |W,H−t) ∝ P(wt |ht,Θlw,−t)
t+n−1∏

j=t

P(h j|l j,Θlw,−t), (5)

where H−t represents all latent words except for ht. In the sam-
pling procedure, P(ht |lt,Θlw,−t) and P(wt |ht,Θlw,−t) can be calcu-
lated fromW andH−t.

The transition probability distribution and the emission proba-
bility distribution are calculated on the basis of their prior distri-
butions. For the transition probability distribution, this paper uses
a prior hierarchical Pitman-Yor [28]. P(ht |lt,Θlw) is given as:

P(ht |lt,Θlw) = P(ht |lt,H),

=
c(ht, lt) − d|lt |s(ht, lt)

θ|lt | + c(lt)

+
θ + d|lt |s(lt)
θ|lt | + c(lt)

P(ht |π(lt),H), (6)

where π(lt) is the shortened context obtained by removing the ear-
liest word from lt. c(ht, lt) and c(lt) are counts calculated from a
latent word assignmentH . s(ht, lt) and s(lt) are calculated from a
seating arrangement defined by the Chinese restaurant franchise
representation of the Pitman-Yor process [28]. d|lt | and θ|lt | are
discount and strength parameters of the Pitman-Yor process, re-
spectively. Moreover, a Dirichlet prior is used for the emission
probability distribution [29]. P(wt |ht,Θlw) is given as:

P(wt |ht,Θlw) = P(wt |ht,W,H),

=
c(wt, ht) + αP(wt)

c(ht) + α
, (7)

where P(wt) is the maximum likelihood estimation value of un-
igram probability in the training data set W. c(wt, ht) and c(ht)
are counts calculated fromW and latent word assignment H . A
hyper parameter α can be optimized via a validation data set.

3. Hierarchical Latent Words Language Mod-
els

This section details hierarchical latent words language models
(h-LWLMs). First, we describe the definition of h-LWLMs. Next,

Fig. 2 Model structure of h-LWLMs.

we present a training method of h-LWLMs. In addition, we show
two methods, n-gram approximation and Viterbi approximation,
for implementing the h-LSLMs into ASR since it is impractical
to directly apply the h-LWLM to ASR.

3.1 Definition
The h-LWLMs have multiple latent word spaces in a hierar-

chical structure. Thus, the definition assumes that there is a la-
tent word behind a latent word. The h-LWLMs can be regarded
as a generalized form of the standard LWLMs. Thus, standard
LWLMs correspond to h-LWLM with only one layer. As well
as the standard LWLMs, the latent words in all layers are repre-
sented as a specific word that is selected from the entire vocabu-
lary. A graphic representation of h-LWLM is shown in Fig. 2. In
this figure, relationships between latent words were modeled by
3-gram modeling. Gray circles denote observed words and white
circles denote latent words.

In a generative process of the h-LWLM, a latent word in the
highest layer h(D)

t is first generated depending on its context la-
tent words l(D)

t = {h(D)
t−n+1, ..., h

(D)
t−1} where n is an n-gram order.

Next, a latent word in a lower layer h(d−1)
t is recursively generated

depending on the latent word in the upper layer h(d−1)
t . Finally,

an observed word wt is generated depending on the latent word in
the lowest layer h(1)

t . The generative process is formulated as:

h(D)
t ∼ P(h(D)

t |l(D)
t ,Θhlw), (8)

h(d−1)
t ∼ P(h(d−1)

t |h(d)
t ,Θhlw), (9)

h(1)
t ∼ P(h(1)

t |h(2)
t ,Θhlw), (10)

wt ∼ P(wt |h(1)
t ,Θhlw), (11)

where Θhlw is a model parameter of h-LWLM and D is the num-
ber of layers. P(h(D)

t |l(D)
t ,Θhlw) represents the transition proba-

bility that is expressed by the n-gram structure for latent words
in the highest layer. P(h(d)

t |h(d+1)
t ,Θhlw), P(h(1)

t |h(2)
t ,Θhlw) and

P(wt |h(1)
t ,Θhlw) represent the emission probabilities that respec-

tively model the dependency between latent words in two layers
and the dependency between the observed word and the latent
word in the lowest layer.

In the Bayesian h-LWLMs, the generative probability for ob-
served words w = {w1, · · · , wT } is defined as:
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Fig. 3 Layer-wise inference procedure of h-LWLMs.

P(w) =
∫ ∑

h(1)

· · ·
∑
h(D)

P(w|h(1),Θhlw)

· · · P(h(D−1)|h(D),Θhlw)P(h(D)|Θhlw)P(Θhlw)dΘhlw, (12)

where h(d) = {h(d)
1 , · · · , h(d)

T } denotes a latent word sequence in the
d-th layer. P(w) can be formulated as:

P(w) =
∫ T∏

t=1

∑
h(1)

t

· · ·
∑
h(D)

t

∑
l(D)
t

P(wt |h(1)
t ,Θhlw)

· · · P(h(D−1)
t |h(D)

t ,Θhlw)P(h(D)
t |l(D)

t ,Θhlw)P(Θhlw)dΘhlw,

(13)

As the integral with respect toΘhlw is analytically intractable, we
approximate the generative probability as:

P(w) =
1
M

M∑
m=1

T∏
t=1

∑
h(1)

t

· · ·
∑
h(D)

t

∑
l(D)
t

P(wt |h(1)
t ,Θ

m
hlw)

· · · P(h(D−1)
t |h(D)

t ,Θ
m
hlw)P(h(D)

t |l(D)
t ,Θ

m
hlw), (14)

where M is the number of instances of point estimated parame-
ters for approximating the Bayesian h-LWLMs. Θm

hlw
indicates

the m-th point estimated parameter.
The proposed h-LWLMs are modeled so that every word in a

vocabulary can be more or less a latent word, which is proba-
bilistically determined from the relationship between the latent
word’s neighboring contexts and latent words in the lower layers.
This prompts the h-LWLMs to give a higher probability to more
generalized words in the upper layers. Therefore, the hierarchi-
cal structure can take into account the process of abstracting the
function and meaning of words.

3.2 Training
H-LWLMs are constructed from a training data set W =

{w1, · · · , wT } using a layer-wise inference procedure. Figure 3
shows an image representation of the procedure that increases
along with a greater number of layers.

In the procedure, LWLM structure is recursively accumulated
by estimating a latent word sequence in an upper layer from a
latent word sequence in the lower layer. Thus, latent word as-
signments of each layer H (1,···,D) = {H (1), · · · ,H (D)} behind W
are inferred where H (d) = {h(d)

1 , · · · , h(d)
T } is a latent word as-

signment in the d-th latent word space. In fact, multiple latent
word assignments {H (1,···,D)

1 , · · · ,H (1,···,D)
M } have to be inferred for

the Bayesian inference. Once latent word assignments of each
layer H (1,···,D) are defined, P(h(D)

t |l(D)
t ,Θhlw), P(h(d)

t |h(d+1)
t ,Θhlw),

and P(wt |h(1)
t ,Θhlw) can be calculated. The detailed procedure to

Algorithm 1 Inference procedure for h-LWLM.
Input: Training data setW,

number of instances M, number of layers D

Output: H (1,···,D)
1 , · · · ,H (1,···,D)

M

1: for m = 1 to M do

2: H (0) =W
3: for d = 1 to D do

4: H (d) ∼ P(H (d) |H (d−1))

5: end for

6: H (1,···,D)
m = H (1), · · · ,H (D)

7: end for

8: return H (1,···,D)
1 , · · · ,H (1,···,D)

M

sample latent word assignments {H (1,···,D)
1 , · · · ,H (1,···,D)

M } is shown
in Algorithm 1.

Line 4 in Algorithm 1 denotes the key procedure for estimat-
ing a latent word sequence in an upper layer from a latent word
sequence in the lower layer. For the inference of H (d) from
H (d−1), Gibbs sampling is suitable [30], [31], [32]. Gibbs sam-
pling picks a new value for h(d)

t according to its probability dis-
tribution, which is estimated from both H (d)

−t and H (d−1). H (d)
−t

represents all latent words in the d-th layer except for h(d)
t . The

probability distribution is given by:

P(h(d)
t |H (d)

−t ,H (d−1))

∝ P(h(d−1)
t |h(d)

t ,Θhlw)
t+n−1∏

j=t

P(h(d)
j |l(d)

j ,Θhlw). (15)

where P(h(d)
t |l(d)

t ,Θhlw) and P(h(d−1)
t |h(d)

t ,Θhlw) can be calculated
fromH (d−1) andH (d)

−t .
For the inference, the prior distribution is necessary for each

probability distribution. Besides standard LWLMs, a hierarchical
Pitman-Yor prior [28] is used for each transition probability and
a Dirichlet prior [29] is used for each emission probability. The
transition probability distribution P(h(d)

t |l(d)
t ,Θhlw) is given as:

P(h(d)
t |l(d)

t ,Θhlw) = P(h(d)
t |l(d)

t ,H (d))

=
c(h(d)

t , l
(d)
t ) − d|l(d)

t |s(h(d)
t , l

(d)
t )

θ|l(d)
t | + c(l(d)

t )

+
θ|l(d)

t | + d|l(d)
t |s(l(d)

t )

θ|l(d)
t | + c(l(d)

t )
P(h(d)

t |π(l(d)
t ),H (d)),

(16)

where π(l(d)
t ) is the shortened context obtained by removing the

earliest word from l(d)
t . c(h(d)

t , l
(d)
t ) and c(l(d)

t ) are counts cal-
culated from a latent word assignment H (d). s(h(d)

t , l
(d)
t ) and

s(l(d)
t ) are calculated from a seating arrangement defined by the
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Fig. 4 Random sampling based on h-LWLM.

Chinese restaurant franchise representation of the Pitman-Yor
process [28]. d|l(d)

t | and θ|l(d)
t | are discount and strength parameters

of the Pitman-Yor process, respectively.
In addition, the emission probability distributions

P(h(d−1)
t |h(d)

t ,Θhlw) and P(wt |h(1)
t ,Θhlw) are given as:

P(h(d−1)
t |h(d)

t ,Θhlw) = P(h(d−1)
t |h(d)

t ,H (d−1),H (d))

=
c(h(d−1)

t , h(d)
t ) + αP(h(d−1)

t )

c(h(d)
t ) + α

, (17)

P(wt |h(1)
t ,Θhlw) = P(wt |h(1)

t ,W,H (1))

=
c(wt, h

(1)
t ) + αP(wt)

c(h(1)
t ) + α

, (18)

where P(wt) is the maximum likelihood estimation value of uni-
gram probability inW, and P(h(d−1)

t ) is the maximum likelihood
estimation value of unigram probability in H (d). c(wt, h

(1)
t ) and

c(h(1)
t ) are counts calculated fromW and latent word assignment

H (1). α is a hyper parameter of the Dirichlet prior.
In the inference procedure, we have to compute the probabil-

ity distributions against all possible latent words. In practice, the
computation cost is not expensive since each term can be calcu-
lated using count look-up tables.

3.3 N-gram Approximation
One implementation method is the n-gram approximation that

converts h-LWLMs into the back-off n-gram structure. A basic
concept is to construct smoothed n-gram LM that can generate
similar words to those generated from h-LWLM. Thus, the ap-
proximated h-LWLM P(w|Θhlwng) has the following properties:

whlw ∼ P(w|Θ1
hlw, · · · ,ΘM

hlw), (19)

whlwng ∼ P(w|Θhlwng), (20)

whlw � whlwng, (21)

where whlw is an observed word sequence generated from the h-
LWLM, and whlwng is an observed word sequence generated from
the approximated h-LWLM with back-off n-gram structure. The
approximated LWLM can be constructed from words generated
from the h-LWLM.

Since h-LWLM is a generative model, it can generate latent
words and observed words based on random sampling. Figure 4
shows a random sampling procedure based on h-LWLM. As
shown in the figure, an instance index mt ∈ {1, · · · ,M} for model
parameters, latent words for each layer {h(D)

t , · · · , h(D)
t } ∈ V, and

an observed word wt ∈ V are recursively generated. The random

Algorithm 2 Random sampling based on h-LWLM.

Input: Model parameters Θ1
hlw
, · · · ,ΘM

hlw
,

number of sampled words T

Output: Sampled data w

1: l(D)
1 = <s>

2: for t = 1 to N do

3: mt ∼ P(mt) = 1
M

4: ht ∼ P(h(D)
t |l(D)

t ,Θ
mt

hlw
)

5: for d = D − 1 to 1 do

6: h(d)
t ∼ P(h(d)

t |h(d+1)
t ,Θmt

hlw
)

7: end for

8: wt ∼ P(wt |h(1)
t ,Θ

mt

hlw
)

9: end for

10: return w = w1, · · · , wT

sampling is based on Algorithm 2.
In line 1 of Algorithm 2, l(D)

1 is initialized as a sentence head
symbol <s>. Through iterations of lines 3–8 in Algorithm 2, a
large number of word sequences can be obtained. With T itera-
tions, T latent words, and T observed words are generated. The
N observed words are used only for back-off n-gram model esti-
mation.

3.4 Viterbi Approximation
The other implementation method is a Viterbi approximation.

It is known that the Viterbi algorithm is a formal technique to
compute the joint probability of an observed word sequence and
its optimal latent variable sequence. However, there are innu-
merable combinations of the recognition hypothesis and its latent
word assignment in LWLMs. Therefore, this paper implements
the Viterbi approximation as a two-pass process using Gibbs sam-
pling as well as our previous work [19]. The Viterbi approxima-
tion of h-LWLMs uses the joint probability of a word sequence
w = {w1, · · · , wT } and its optimal latent word assignment in each
layer h̄(1,···,D) = {h̄(1), · · · , h̄(D)} where h̄(d) = {h̄(d)

1 , · · · , h̄(d)
T }. The

joint probability, i.e., a Viterbi probability, is defined as:

P(w, h̄(1), · · · , h̄(D)) =
1
M

M∑
m=1

P(w|h̄(1),Θm
hlw)

P(h̄(d)|Θm
hlw)

D∏
d=2

P(h̄(d−1)|h̄(d),Θm
hlw). (22)

In order to calculate the Viterbi probability, the optimal latent
word assignment h̄(1,···,D) has to be estimated. The optimal latent
word assignment in each layer is recursively estimated by:

h̄(1) = arg max
h(1)

P(h(1)|w)

= arg max
h(1)

1
M

M∑
m=1

P(w|h(1),Θm
hlw)P(h(1)|Θm

hlw) (23)

h̄(d) = arg max
h(d)

P(h(d)|h̄(d−1))

= arg max
h(d)

1
M

M∑
m=1

P(h̄(d−1)|h(d),Θm
hlw)P(h(d)|Θm

hlw) (24)

Gibbs sampling can be utilized for the estimation. A conditional
probability distribution of the possible values for latent word h(d)

t

is defined as:
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P(h(d)
t |h̄(d−1), h(d)

−t )

∝
M∑

m=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩P(h̄(d−1)
t |h(d)

t ,Θ
m
hlw)

t+n−1∏
j=t

P(h(d)
j |l(d)

j ,Θ
m
hlw)

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (25)

where h(d)
−t is a latent word assignment in d-th layer except for

h(d)
t . A conditional probability distribution of the possible values

for latent word h(1)
t is defined as

P(h(1)
t |w, h(1)

−t )

∝
M∑

m=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩P(wt |h(1)
t ,Θ

m
hlw)

t+n−1∏
j=t

P(h(1)
j |l(1)

j ,Θ
m
hlw)

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (26)

Note that the Viterbi perplexity degrades because the number
of layers increases due to the number of latent word assignment.

4. Experiment 1: Perplexity Evaluation

4.1 Datasets
The first experiments used the Penn Treebank corpus in

Ref. [33]. Sections 0–20 were used as a training data set (Train),
sections 21 and 22 were used as a validation data set (Valid), and
sections 23 and 24 were used as a test data set (Test A). This
selection matches those of many previous works. In addition, a
human-human discussion text data set (Test B) was prepared for
evaluations in a domain different from the training data set. Each
vocabulary was limited to 10K words and there were no out-of-
vocabulary words. Table 1 shows details.

4.2 Setups
In this evaluation, the following LMs were prepared.
• MKN5: A word-based 5-gram LM with modified Kneser-Ney

smoothing constructed from the training data set [4].
• HPY5: A word-based 5-gram hierarchical Pitman-Yor LM

(HPYLM) constructed from the training data set. For the
training, 200 iterations were used for burn-in, and 10 in-
stances were collected [6].

• RNN: A word-based recurrent neural network LM
(RNNLM) [10]. The hidden layer size was set to 200
by referring to a preliminary experiment.

• LR-NA: A word-based 5-gram HPYLM constructed from
data generated on the basis of latent words RNNLM
(LWRNNLM) constructed from the training data set [23],
[24]. LWRNNLM is generative models that combine
RNNLM and LWLM. The models have a soft class struc-
ture based on a latent word space as does LWLM and the
latent word space is modeled using an RNNLM. The hidden
unit size was set to 400. The generated data size was one
billion words. We applied entropy-based pruning to n-gram
entries to match the computation complexity of HPY5 [34].

• HLW-NA: A word-based 5-gram HPYLM constructed from
data generated on the basis of 5-gram h-LWLM (HLW) con-
structed from training data set. HLW with 1 layer represents a
standard LWLM, and HLWwith 2–5 layers represents the pro-
posed h-LWLM. For their training, 500 iterations were used
for burn-in and 10 samples were collected. The generated
data size was set to one billion words. We applied entropy
based pruning to n-gram entries to match the computation

Table 1 Data sets for perplexity evaluation.

Domain Number of words
Train Penn Treebank 929,589
Valid Penn Treebank 70,390
Test A Penn Treebank 78,669
Test B Human-Human Discussion 50,507

Table 2 PPL results of Viterbi approximation on each data set.

Number of layers Valid Test A Test B
MKN5 - 148.0 141.2 238.6
HPY5 - 145.1 139.3 232.7
RNN - 134.4 128.9 212.9
LR-NA - 148.6 140.6 212.4
HLW-NA 1 138.7 131.7 205.5
HLW-NA 2 140.8 132.9 202.3
HLW-NA 3 142.5 134.8 200.2
HLW-NA 4 144.2 136.6 199.7
HLW-NA 5 145.4 137.2 199.6
HLW-VA 1 148.4 142.9 224.7
HLW-VA 2 182.1 175.9 266.7
HLW-VA 3 182.1 175.9 266.7
HLW-VA 4 182.1 175.9 266.7
HLW-VA 5 207.6 198.5 298.5

complexity of HPY5 [34].
• HLW-VA: Viterbi approximation of HLW. To calculate the

Viterbi probability, 100 samples of latent words assignments
were obtained using Gibbs sampling.

In addition, several mixed models constructed by linearly inter-
polating the above LMs were employed. Hyper parameters and
the interpolation weights were optimized using a validation data
set.

4.3 Results
Table 2 shows perplexity (PPL) results of HLW-NA and HLW-VA

when the number of layers was varied.
First, the results of HLW-NA were investigated. In the validation

data set and the test data set A, HLW-NA with 1 layer was superior
to that with 3 or 5 layers. On the other hand, in the test data set
B, HLW-NA with 5 layers outperformed that with 1 layer. Also,
HLW-NA with 5 layers was superior to MKN5, HPY5. Furthermore,
HLW-NA outperformed LR-NA, which is n-gram approximation of
conventional extended modeling of LWLM. The results indicate
the hierarchical latent word space is effective for taking into ac-
count unseen words although the PPL deteriorates slightly in the
in-domain tasks.

Next, the results of HLW-VA were investigated. PPL perfor-
mance for each test data set was deteriorated as the number of
layers increased. This is because the PPL was calculated using
the Viterbi probability which is the joint probability of observed
word sequence and latent word sequences in each layer.

5. Experiment 2: ASR Evaluation

5.1 Datasets
The second experiment used the Corpus of Spontaneous

Japanese (CSJ) [35]. The CSJ was divided into a training data
set (Train), a small validation data set (Valid), and a test data set
(Test A). For evaluation in out-of-domain environments, a con-
tact center dialog task (Test B) and a voice mail task (Test C) were
prepared. The vocabulary size of the training data set was 83,536.
For each data set, the number of words and out-of-vocabulary
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Table 3 Data sets for ASR evaluation.

Domain Number of words OOV rate (%)
Train Lecture 7,317,392 -
Valid Lecture 28,046 0.72
Test A Lecture 27,907 0.51
Test B Contact center 24,665 3.66
Test C Voice mail 21,044 4.41

(OOV) rate are detailed in Table 3.

5.2 Setups
For ASR evaluation, an acoustic model based on hidden

Markov models with deep neural networks (DNN-HMM) was
prepared [36]. The DNN-HMM had 8 hidden layers with 2,048
nodes. The speech recognizer was a weighted finite state trans-
ducer (WFST) decoder [37], [38].

In this evaluation, the following LMs were constructed.
• MKN3: A word-based 3-gram LM with modified Kneser-Ney

smoothing constructed from training data set [4].
• HPY3: A word-based 3-gram HPYLM constructed from the

training data set [6]. For the training, 200 iterations were
used for burn-in, and 10 samples were collected.

• RNN: A class-based RNNLM with 500 hidden nodes and 500
classes [10].

• LR-NA: A word-based 3-gram HPYLM constructed from
data generated on the basis of class-based LWRNNLM con-
structed from the training data set [23], [24]. Its latent word
space was modeled by an RNN structure. The hidden unit
size was set to 500 and the class size was set to 500. We
generated 1,000 M words for the n-gram approximation.

• HLW-NA: A word-based 3-gram HPYLM constructed from
data generated on the basis of 3-gram h-LWLM (HLW) con-
structed from training data set. HLW with 1 layer represents
a standard LWLM, and HLW with 2–5 layers represents the
proposed h-LWLM. For their training, 500 iterations were
used for burn-in and 10 samples were collected.

• HLW-VA: Viterbi approximation of HLW. To calculate the
Viterbi probability, 100 samples of latent words assignments
were obtained using Gibbs sampling.

In addition, several mixed models constructed from the above
LMs by linear interpolation were examined. The mixture weights
were optimized using the validation set and the EM algorithm.
Other hyper parameters were also optimized using the valida-
tion set. MKN3, HPY3, LR-NA and HLW-NA were converted into
the WFST to perform one-pass decoding. RNN and HLW-VA can
be used for a rescoring. For the rescoring, 1000-best lists were
generated in the decoding pass.

5.3 Results
For the n-gram approximation of each h-LWLM, the generated

data size is related to the performance of an approximation. Re-
lationships between the generated data size and perplexity (PPL)
reduction were investigated for the validation set and each test
set. The results are shown in Figs. 5, 6, 7, where the horizontal
axis is in log-scale. In the figures, HLW-NA with 1 layer means a
standard LWLM, and HLW-NA with 3 or 5 layers means the pro-
posed h-LWLM. The results show that the PPL of each model

Fig. 5 PPL reduction results of n-gram approximation on Test A.

Fig. 6 PPL reduction results of n-gram approximation on Test B.

Fig. 7 PPL reduction results of n-gram approximation on Test C.

was reduced as the generated data increased in both the valida-
tion set and test sets. In in-domain task, i.e., test A, HLW-NA with
1 layer was superior to that with 3 or 5 layers. On the other hand,
in out-of-domain tasks, i.e., test B and C, HLW-NA with 5 layers
displayed the best performance. This confirms that h-LWLMs are
effective for improving performance in out-of-domain tasks.

In addition, Table 5 shows PPL results and speech recogni-
tion results in terms of word error rate (WER) for each condition.
While HPY3+RNN was implemented by 2-pass decoding based on
n-best rescoring, LW-NA and LR-NA can be directly used by con-
verting it into WFST. Therefore, LW-NA and LR-NA outperformed
HPY3+RNN in terms of WER. In in-domain tasks, PPL was not
improved by the hierarchical structure in HLW-NA. HLW-NA is
comparable to MKN3 and HPY3, and inferior to RNN in terms of
PPL. On the other hand, in out-of-domain tasks, PPL improved
with an increase in the number of layers in HLW-NA. Additionally,
HPY3+HLW-NA outperformed HPY3+LR-NA in both in-domain and
out-of-domain tasks. This indicates that hierarchically-structured
modeling is an effective way to improve ASR performance com-
pared with large-context modeling, i.e., RNN structure. HLW-NA
with 5 layers was superior to 1 layer in terms of PPL and WER.
In terms of WER, statistically significant performance improve-
ments (p < 0.01) were achieved by HLW-NA with 5 layers com-
pared to MKN3, HPY3, HPY3+RNN and HLW-NA with 1 layer in each
out-of-domain task. In terms of HLW-VA, the results show PPL
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Table 4 PPL results and WER results [%].

Number Valid Test A Test B Test C
of layers (In-domain) (In-domain) (Out-of-domain) (Out-of-domain)

PPL WER PPL WER PPL WER PPL WER
MKN3 - 81.38 19.98 69.36 24.79 167.61 38.67 189.93 32.00
HPY3 - 79.32 19.74 67.50 24.67 158.13 38.29 175.63 31.69
RNN - 69.49 - 60.78 - 145.05 - 158.57 -
HPY3+RNN - 64.01 18.53 55.84 23.45 122.52 37.45 142.62 30.89
LR-NA - 90.17 19.89 75.17 25.30 140.72 36.64 145.09 29.75
HPY3+LR-NA - 72.86 18.65 62.05 23.58 134.65 35.99 141.23 28.74
HLW-NA 1 79.57 19.61 66.93 24.54 141.34 36.93 147.87 30.42
HLW-NA 3 80.42 19.77 68.15 24.68 137.25 37.56 142.52 29.62
HLW-NA 5 80.92 19.86 68.33 24.75 137.10 36.49 141.56 29.57
HLW-VA 1 86.84 - 74.50 - 142.49 - 133.97 -
HLW-VA 3 96.21 - 83.58 - 160.59 - 149.45 -
HLW-VA 5 101.84 - 88.22 - 169.90 - 159.49 -
HPY3+HLW-NA 1 72.86 18.65 62.05 23.58 134.65 35.99 141.23 28.74
HPY3+HLW-NA 3 73.16 18.68 62.71 23.51 130.63 35.67 137.54 28.37
HPY3+HLW-NA 5 73.31 18.63 62.67 23.45 130.32 35.57 136.83 28.32
HPY3+HLW-NA+HLW-VA 1 65.72 18.32 56.05 23.30 102.21 35.65 100.36 28.47
HPY3+HLW-NA+HLW-VA 3 66.05 18.36 57.26 23.36 97.85 35.40 98.38 28.04
HPY3+HLW-NA+HLW-VA 5 67.63 18.24 57.80 23.21 95.28 35.33 97.44 27.96

Table 5 Number of n-gram entries of HLW-NA.

Number of layers Data size # of 2-gram # of 3-gram
HPY3 - 7.3M 951,124 2,675,189
HLW-NA 1 10M 1,605,191 4,369,301

1 100M 8,176,468 30,451,404
1 1,000M 38,837,590 197,267,846

HLW-NA 3 10M 1,656,948 4,465,860
3 100M 8,541,809 31,470,719
3 1,000M 40,857,199 206,245,905

HLW-NA 5 10M 1,675,970 4,497,688
5 100M 8,668,745 31,825,523
5 1,000M 41,585,099 209,402,061

Table 6 Examples of Japanese transcriptions for reference text and ASR hypotheses.

Number of layers Transcriptions WER (%)

Reference - 川崎の川崎支店だと思うんですけども -
HPY3 - 川崎の川崎市展だと思うんですけども 20.0
HPY3+HLW-NA+HLW-VA 1 川崎の川崎市展だと思うんですけども 20.0
HPY3+HLW-NA+HLW-VA 5 川崎の川崎支店だと思うんですけども 0.0

performance for each test data set deteriorated as the number of
layers increased.

This is because the PPL was calculated using the Viterbi prob-
ability. Among the n-gram language modeling, HPY3+HLW-NA
with 5 layers showed the lowest WER. The best results were
attained by HPY3+HLW-NA+HLW-VA with 5 layers although the
WER differences between HPY3+HLW-NA+HLW-VA with 5 layers
and HPY3+HLW-NA+HLW-VA with 1 layer were not statistically
significant (p > 0.05) in each out-of-domain task. These re-
sults show that h-LWLM with multiple layers offers robust per-
formance not possible with other LMs although its performance
in the in-domain tasks was not improved. The results also con-
firm that combining the n-gram approximation and the Viterbi ap-
proximation is effective for improving ASR performance of both
in-domain tasks and out-of-domain tasks.

The properties of each of the approximated LWLMs were in-
vestigated. Table 5 shows the number of 2- and 3-gram entries in
each model; the generated data sizes of each model were set to
10M, 100M and 1,000M. The results show that random sam-
pling based on h-LWLM with multiple layers can generate a
greater variety of linguistic phenomena than the standard LWLM.
This shows that, unlike non-hierarchical LWLM, h-LWLM can

generate unseen words. This also indicates that the “abstraction
process” is acheived by introducing a hierarchically structured
latent word space. In addition, Table 6 demonstrates examples
of Japanese transcriptions for reference text and ASR hypothe-
ses. While ASR errors were caused by HPY3 and HPY3+HLW-NA
with 1 latent layer, our proposed method could generate reference
transcriptions. In fact, the ASR errors were homonyms for refer-
ence words that were not included in the training data set. Thus,
the results indicate that our proposed method is robust against
words that do not appear in the training data set, i.e., out-of-
domain tasks.

6. Conclusions

This paper presents the h-LWLM for improving automatic
speech recognition (ASR) performance in out-of-domain tasks.
The h-LWLM has a hierarchical latent word space and can flex-
ibly handle linguistic phenomena not present in the training data
set. The hierarchical structure enables us to increase the ro-
bustness to out-of-domain tasks. Experiments showed that h-
LWLM offers improved robustness for out-of-domain tasks. An
n-gram approximation of h-LWLM is also superior to standard
LWLM in terms of PPL and WER. Furthermore, the proposed
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approach is significantly superior to the smoothed n-gram LMs
or the RNNLMs in out-of-domain tasks.

A future direction is to develop LMs that perform well in
both in-domain and out-of-domain tasks. To this end, we will
combine recent neural modeling including long short-term mem-
ory LMs [12], [13] and transformer LMs [14] with hierarchically-
structured latent variable modeling.
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