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Abstract: In this paper we propose a novel approach to build a single shot regressor, called SFLNet, that directly
predicts a parameter set relating a sports field seen in an input frame to its metric model. This problem is challenging
due to the huge intra-class variance of sports fields and the large number of free parameters to be predicted. To address
these issues, we propose to train our regressor in combination with semantic segmentation in a multi-task learning
framework. We also introduce an additional module to exploit the spacial consistency of sports fields, which boosts
both regression and segmentation performances. SFLNet can be trained with a dataset that can be semi-automatically
built from human annotated point-to-point correspondences. To our knowledge, this work is the first attempt to solve
this sports field localization problem relying only on an end-to-end deep learning framework. Experiments on our new
dataset based on basketball games validate our approach over baseline methods.
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1. Introduction

Sports analytics have been extensively used to build compet-
itive teams, improve scouting, predict match outcomes, and en-
hance the fan experience [1], [2]. Among the techniques in sports
analytics, computer vision plays a key role both in the automatic
performance assessment of individual players and in the improve-
ment of team formations and strategies. The majority of com-
mercial systems such as STATS *1 and TRACAB *2 collect visual
data using static cameras with fixed intrinsic parameters, making
analysis simple but requiring costly installation. One way to re-
duce the cost is to leverage alternative resources such as broadcast
videos or consumer-generated media. However, it is challenging
to analyze such data because camera parameters may be varied
over time. To extract valuable statistics from these resources,
we need to estimate frame-by-frame correspondence between the
sports field seen by the camera and the metric model of the field.

In this work we tackle the automatic sports field localization
problem, on which algorithms estimate a set of parameters that
corresponds the sports field in a given frame to its metric model
without any manual intervention. Specifically, we here aim at
developing a single shot regressor that can directly predict the
parameter set from an input frame (cf., Fig. 1). Existing algo-
rithms [3], [4], [5] tailored to the same problem consist of several
steps and have a tradeoff between accuracy and efficiency. Single
shot regression has already been employed to solve related tasks
(e.g., camera pose estimation [6], [7], [8], [9], [10], [11]), but
these approaches are difficult to apply directly due to the differ-
ent problem settings. To this end, we propose a novel approach to
build a regressor based on a convolutional neural network (CNN),
called SFLNet, that can directly predict the correspondence pa-
rameter. To our knowledge, this is the first attempt in the litera-
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Fig. 1 Our single shot regressor, SFLNet, directly regresses a set of param-
eters that corresponds the metric model of a sports field (shown in
top right on the right image) to the court seen in an input frame. Best
viewed in color.

ture to solve the sports field localization problem relying only on
an end-to-end deep learning framework. The contributions of this
work can be summarized as follows:
( 1 ) We propose to build our parameter regressor in combination

with a semantic segmentation module and train the whole
model in an end-to-end multi-task learning framework. The
semantic segmentation module is responsible for layout es-
timation of the input frame, and its intermediate feature map
is used to regress correspondence parameters.

( 2 ) We introduce an additional module to exploit contextual in-
formation focusing on the properties of sports fields. This
module can exploit the spatial consistency of sports fields
with a very low extra computational cost, and can efficiently
boost both semantic segmentation and parameter regression
performances. We will validate this module in our ablation
studies.

( 3 ) We compile a novel dataset to evaluate sports field localiza-
tion methods. This dataset is built on a number of basketball
games held in different stadiums with various camera instal-
lations and moves. We use this dataset to demonstrate the

*1 https://www.stats.com/
*2 https://chyronhego.com/products/sports-tracking/

tracab-optical-tracking/
The preliminary version of this paper was published at Forum on Infor-
mation Technology 2019 (FIT 2019), held in September 2019. The paper
was recommended to be submitted to Journal of Information Processing
(JIP) by Program Committee Chair of FIT 2019.
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superiority of our approach over several baseline methods.

2. Related Works

Assuming the sports field is planar, the transformation between
its metric model and the field seen in an input frame can be de-
fined by a homography matrix H ∈ R3×3, which has 8 degrees
of freedom (DoF). One of the simplest ways to estimate this
homography is to first detect field markings (e.g., points, lines,
intersections) in the frame and then associate them with corre-
sponding markings in the model. Given these correspondences,
the homography can be easily estimated by the closed form Direct
Linear Transform (DLT) algorithm [13]. Unfortunately, this ap-
proach is difficult to perform fully automatically: Field marking
detection remains a non-trivial task because markings are usually
small, textureless, and sometimes cannot be seen in the frame.
Therefore, most existing sports field localization methods assume
manual intervention [10], [14], [15], [16], [17], [18], [19], [20],
[21], [22], which make them less applicable within a real-time
setting.

To our knowledge, relatively fewer works [3], [4], [5] focus on
fully automatic approaches. For instance, Homayounfar et al. [3]
formulate automatic sports field localization problem as a branch
and bound inference in a Markov random field where an energy
function is defined in terms of semantic cues such as the field
surface, lines, and circles obtained from a semantic segmentation
result. On the other hand, Sharma et al. [4] formulate the prob-
lem as a nearest neighbor search in a precomputed dictionary with
known homographies. Chen et al. [5] improve Sharma’s approach
by adopting case-specific assumptions (e.g., PTZ camera and its
position) to extend the dictionary and employing a GAN frame-
work for better feature extraction. All the above methods consist
of several steps and the whole pipelines cannot be optimized end-
to-end. More importantly, they all suffer from a tradeoff between
accuracy and efficiency: To improve accuracy, finer label spaces
or dictionaries must be provided, which makes online procedure
less efficient. This can be problematic especially when both ac-

Fig. 2 The architecture of SFLNet, which consists of (A) Semantic Segmentation Module, (B) Parameter
Regression Module and (C) Label Adjacency Prediction Module. SFLNet takes a single frame
as input, then generates a set of parameters p, a label mask B and a label adjacency prediction a.
The input of (B) is the output of the last convolutional layer in (A), and the input of (C) is the en-
coded feature produced by an encoding module [12] in (A). Notice that ⊗ represents channel-wise
multiplication. More details are described in Section 3. Best viewed in color.

curacy and efficiency are highly demanded.
One alternative way to bypass the above issue is to directly

predict a set of parameters in a single step. This approach
has been employed in the camera pose estimation problem,
which has been an active research topic in the computer vision
community. Specifically, recent camera pose estimation meth-
ods [6], [7], [8], [9], [10], [11] fine-tune pre-trained CNN (e.g.,
GoogLeNet [23], ResNet [24]) to directly regress pose parame-
ters from the input frame. Adopting these methods seems to be
a straightforward solution for sports field localization, but it has
two major issues that have not been considered. First, the appear-
ances of sports fields are different among courts/stadiums (cf.,
Fig. 6). This means one parameter set may correspond to multi-
ple appearances of courts, which is very different from the typical
camera pose estimation setting where one parameter set corre-
sponds to almost only one appearance. Second, parameters to be
predicted (i.e., homography) have higher DoF than pose param-
eters. This mainly comes from different camera settings: While
intrinsic parameters are fixed (or known) in camera pose estima-
tion, this does not hold in sports field localization due to different
camera installations or some camera work like zooming. Regres-
sors should deal with these issues, but they are not explicitly con-
sidered in existing camera pose estimation methods.

We develop our SFLNet based on these understandings. In the
next section, we will detail SFLNet with respect to its architecture
and training.

3. SFLNet

3.1 Architecture
Figure 2 shows the architecture of our proposed SFLNet. Once

a frame is fed into the network, SFLNet generates a parameter set
p, a segmentation mask B and a label adjacency prediction a,
where B and a are the by-products used in our model training.
SFLNet consists of (A) semantic segmentation module, (B) pa-
rameter regression module, and (C) label adjacency prediction
module, which will be described in the following.
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3.1.1 (A) Semantic Segmentation Module
The semantic segmentation module assigns one of the pre-

defined labels to every pixel in an input frame. This is helpful
for a regressor to understand the spatial layout of a sports court
under large intra-class variance. In our problem, we have several
choices for defining labels. One of the simplest cases is to divide
a frame into court, person, and background regions as shown in
Fig. 3 (a), which is a relatively easier setting for semantic seg-
mentation but only coarser information remains for the follow-
ing regression. On the contrary, we can also define more labels
like Fig. 3 (b)–(e) for finer layout representations, which provide
richer information for the regressor but pose more difficult prob-
lems for semantic segmentation. Note that we can use these label
definitions with almost the same annotation cost by following an
approach shown in Section 3.2. In this work we select the best la-
bel definition experimentally, as will be shown in our parameter
studies (cf., Section 4.4).

We build this segmentation module based on the state-of-the-
art semantic segmentation approaches [12], [25]. Specifically, we
use 50-layer ResNet [24] pretrained on ImageNet as a backbone
and build the Context Encoding module [12] on top of the last
convolutional layer right before the upsampling module to yield a
per-pixel prediction. The output feature of the Context Encoding
module is used as the input of the Label Adjacency Prediction
module detailed later. To obtain higher resolution feature maps
which preserve finer spatial information, we adopt Joint Pyramid
Upsampling module [25] to our backbone network, which can ap-
proximate standard dilated convolution [26], [27], [28] while sav-
ing computation and memory overhead.
3.1.2 (B) Parameter Regression Module

This module regresses parameters that correspond a court met-
ric model to the court seen in an input frame. In this work we
define the parameter set as a 8-dimentional vector, where each
value corresponds to a free parameter of a homography H ∈ R3×3.
Specifically, we relate a prediction p = [p1, p2, p3, p4, p5, p6,

p7, p8]T to a homography H as follows:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 + 1 p2 p3

p4 p5 + 1 p6

p7 p8, 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

Following Ref. [29], before computing the homography we nor-
malize coordinate systems of both the model and the frame.

We build this module as a tiny CNN on top of the last convo-

Fig. 3 We have several design choices about the label definition of a sports
field. Examples (a)–(e) are ground truth segmentation masks of the
top left image on different label definitions, where Nlabel is the num-
ber of labels used in each setting. Different colors represent different
labels in each case. Best viewed in color.

lutional layer of the semantic segmentation module, i.e., the in-
put of this module is the output of the last convolutional layer *3

in the semantic segmentation module as in Fig. 2. We set this
CNN architecture as C36-C48-C60-F8, where Ck denotes a
Convolution-BatchNorm-Relu-Maxpool block with k filters, Fk
denotes a fc layer with k neurons. Every convolution layer has
3 × 3 filters and the stride of each maxpooling layer is set as 2.

Notice that we may have a choice to define p as a parameter
set yielded via homography decomposition [10]: By introducing
the natural camera assumption [13], we can break up a homogra-
phy into a focal length, a rotation matrix and a translation vector,
which in total have smaller degrees of freedom (7-DoF) than the
homograpy itself. However, our preliminary experiments indicate
that simply predicting the decomposed parameters does not work
well for sports field localization. One reason is that errors are
amplified when homographies are recovered, resulting in totally
different results from ground truth. Therefore, in this work we
regress homographies almost directly, and leave the above issue
as a future work.
3.1.3 (C) Label Adjacency Prediction Module

In the standard training process of semantic segmentation, the
network is learned from isolated pixels and context (e.g., sizes,
spatial relations) is not explicitly considered. Here we intro-
duce Label Adjacency Prediction (LAP) module to regularize the
model training via exploiting contextual information lying in the
sport field localization problem. Specifically, LAP module pre-
dicts the adjacencies of label pairs in addition to their presence in
an input frame. Figure 4 shows a toy example, in which the labels
of this court are defined as in (a). When the court is shown like
(b) in a frame, the corresponding ground truth for the output of
LAP module is (c), in which each orthogonal element represents
the presence of the label (1 if the label exists and 0 otherwise)
and the others represent adjacencies of label pairs (1 if the row-
column pair is adjacent and 0 otherwise).

LAP module can be seen as an extension of Semantic Encod-
ing (SE) module [12] in the context of sports field localization.
We can say almost all sports fields are not deformed and spa-

Fig. 4 In this toy example, the label mask of a field metric model (a) is trans-
formed into a frame like (b). SE module of Zhang et al. [12] ideally
predicts only the presence of each label like (d). In addition to the
label presence, our proposed LAP module also predicts whether each
label pair is adjacent or not like (c). Best viewed in color.

*3 Hoping to alleviate the effect of non-court regions (e.g., background and
player), in our preliminary study we have tried to exclude the channels
that do not belong to the sports field from the output before feeding it
to the regression CNN. However this makes the results slightly worse,
which indicates our regressor learns to predict parameters from these
non-court areas. Therefore in this study we feed the output of the last
convolutional layer in the semantic segmentation module directly to the
parameter regression module.
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Fig. 5 Given a frame (b) and human annotated point-to-point correspondences to a field model (a), ground
truth label mask B∗ shown in (c) can be automatically generated by the approach described in Sec-
tion 3.2.1. In (a) and (b), the markings of the same color are a correspondence. Best viewed in
color.

tial relations between their parts (i.e., labels that belong to the
court) are always consistent. While SE module makes predic-
tions only for the presence of labels in the frame (cf., Fig. 4 (d)),
LAP module can also exploit this problem-specific spatial consis-
tency between labels, which makes LAP module a more efficient
regularizer during the model training. Notice that we make our
LAP module predict all the adjacencies of label pairs including
non-court labels (i.e., person and background). While players and
referees move on the court and adjacencies related to the person
label would be different between images, LAP module still helps
to recover spatial relations between labels and improve semantic
segmentation performance, as will be shown in Section 4.4.

Following Ref. [12], we implement LAP module as an addi-
tional fully connected layer with a sigmoid activation function,
which feeds an encoded feature produced by the context encoding
layer [12] as input (cf., Fig. 2). The output dimension depends on
the label definition, which can be computed by Nlabel(Nlabel+1)/2.
LAP module usually has higher computation cost than SE mod-
ule due to larger output dimensions, but the overall cost is still
very small.

3.2 Training
3.2.1 Training Data

To learn model weights of SFLNet Θ, we need to provide a
training data D = {(I,p∗,B∗, a∗)}, consisting of the quadruplets
of a frame I, a ground truth parameter set p∗, a label mask B∗

and a label adjacency indicator a∗. Unfortunately, fully manual
labeling of such a dataset is costly and cumbersome. So here we
propose a semi-automatic approach to obtain the training data D
from human annotated point-to-point correspondences. For each
frame I ∈ D and its point-to-point correspondences, we first ap-
ply DLT algorithm to estimate a homography H∗ that transforms
a court model into the court seen in the frame. This homography
can be used to project the label mask of the court model into the
frame. Since players and referees are usually on the sports fields,
we adopt a state-of-the-art person segmentation algorithm [30]
and overlay the segmentation result to the projected court labels
to obtain a label mask B∗. An example generated through the
above procedure is shown in Fig. 5. While segmentation results
of Ref. [30] are almost correct in our test case, if the person seg-
mentation clearly fails then we remove the frame from the dataset.
Yielding the parameter set p∗ from H∗ is straightforward and the
label adjacency indicator a∗ can easily be computed from B∗.

3.2.2 Loss Function
Given a training datasetD = {(I, p∗,B∗, a∗)}, model weights of

SFLNet are learned by minimizing the following loss function:

LD(Θ) =
|D|∑

i

τ(pi, p
∗
i ) + wφ

|D|∑

i

φ(Bi,B∗i ) + wψ

|D|∑

i

ψ(ai, a∗i ),

(2)

where on the right side the first term is a parameter loss, the sec-
ond term is a segmentation loss and the third term is a label ad-
jacency prediction loss. Following Ref. [12], we use a per-pixel
cross-entropy loss as φ and a binary cross-entropy as ψ. Since we
have several choices for defining the parameter loss τ, we exper-
imentally decide the best which is shown in Section 4.4.

A straightforward way of optimization for Eq. (2) is to mini-
mize all the loss components all at once. Alternatively, in this
work we use the following two-step approach that we found
works better than the above: We first train the semantic segmenta-
tion module and the label adjacent prediction module by consid-
ering the corresponding losses (i.e., first and second terms on the
right side of Eq. (2)), then optimize the whole model by minimiz-
ing the loss LD. Multi-step optimization is a common strategy
in the deep multi-task learning literature [30], [31]. Intuitively,
in our approach we first warm up modules related to semantic
segmentation in the first step, then optimize all the modules in-
cluding parameter regressor, which would ease the whole model
training.

4. Experimental Evaluation

4.1 Evaluation Protocols
As discussed in Section 3.1, SFLNet produces three outputs:

a parameter regression result p which will be transformed into a
homography, a segmentation prediction result B and a label adja-
cency prediction result a. While p is the main output for sports
field localization, in this section we will evaluate all of the above
with the following protocols tailored for each of them:
Parameter regression (p): For p, we evaluate how correctly it
can predict the court shown in an input frame. To do so, here
we compute an overlap between a predicted court and its metric
model in one coordinate system. Specifically, we first transform p
into a corresponding homography so as to generate a binary mask
which represents the predicted court region in a coordinate sys-
tem of the metric model. Corner points of the court are projected
to generate the mask, where their positions in the image coordi-
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Fig. 6 Example frames included in our dataset. Some frames have simi-
lar parameters but their appearances are different (first and second
column). Also some frames from the same game are captured with
different intrinsic parameters (third column).

nate system is computed using a ground truth homography. We
then compute the intersection-over-union (IoU) score between the
predicted court and the metric model, each of which is defined as
a binary mask. We use this IoU score as our metric, denoting it
as Jp.
Segmentation prediction (B): We use the IoU score between a
predicted segmentation B and a ground truth, which is a standard
metric for semantic segmentation. We denote the score as JB.
Label adjacency prediction (a): Since label adjacency (as
shown in Fig. 4 (c)) can be seen as binary label set, we can eval-
uate this output via computing the IoU between a and the ground
truth label adjacency. We denote the score as Ja.

4.2 Dataset
In this work we create a new dataset for evaluating sport field

localization methods using videos of basketball games. Basket-
ball is challenging for this task because the appearances of bas-
ketball courts are varied between stadiums, and different court re-
gions are occluded by players or referees moving over time (cf.,
Fig. 6). We collected the videos of 22 games from a Japanese
basketball league, each of which is held in a unique stadium. For
each video we sequentially sampled 50–60 frames *4, and manu-
ally annotated point-to-point correspondences to each frame. Ev-
ery frame size is 1,024 × 720. Points to be annotated are defined
as in Fig. 5 (a), and we specified the position only if it can be
seen within the frame. After discarding frames in which less than
4 points are annotated (i.e., DLT cannot be performed), we ob-
tained the whole dataset consisting of 1,232 frames. This dataset
can be used to automatically build the training data of SFLNet,
following the procedure detailed in Section 4.2.

Note that we believe this dataset cannot be used to learn se-
quential models because our frame sampling is not so dense (i.e.,
about one frame per second). We are planning to extend this
dataset for sequence learning, and leave it as a future work.

4.3 Implementation Details
We implemented our algorithms with PyTorch *5, using the

SGD optimizer with momentum of 0.9. The input frames are
scaled to 448 × 448 pixels, and normalized by pixel mean sub-

*4 We avoid sampling when the game is stopping in order not to sample
duplicate frames.

*5 https://pytorch.org/

Table 1 Ablation for different architectures. Notice that in all the settings
Nlabel is set to 27.

Segmentation? Context? JB Jp JB→a Ja

None - 0.855 - -
✓ None 0.489 0.892 0.643 -
✓ SE module [12] 0.504 0.909 0.712 -
✓ LAP module 0.521 0.924 0.779 0.818

traction and standard deviation division. In training we randomly
crop training frames keeping its aspect ratio, and recompute the
ground truth parameter p∗ accordingly. Flipping and rotation are
not performed since they degrade the performance. We use the
mini-batch size of 16 during the training, and apply the approach
of Ref. [28] to control the learning rate. We run 50 epochs on
both steps in training, and use the final model for evaluating test
data. Using a grid search, we set the hyperparameters wφ and wψ
in Eq. (2) as 1.0 and 0.2, respectively.

4.4 Ablation/Parameter Study
In this section we perform several ablation/parameter studies

with respect to (i) architecture designs, (ii) label definitions and
(iii) loss functions for parameter regression. In the following we
used all the frames in one game (denoted as #1) as test data and
all the remaining as training data.
4.4.1 Architecture Design

We first validate our architecture design of SFLNet, focusing
on the semantic segmentation module and the label adjacency
prediction module. To evaluate the semantic segmentation mod-
ule, we built an alternative model that replaced the CNN back-
bone of SFLNet to vanilla ResNet-50 and introduced a fc layer
with 2,048 neurons after its global average pooling layer followed
by ReLU and dropout with p = 0.5. This is followed by a fi-
nal fc layer that outputs a parameter set p. For label adjacency
prediction module, we considered the following two alternatives:
(1) simply removing the module from SFLNet, (2) replacing LAP
module to SE module [12]. Loss functions are modified accord-
ingly. Table 1 shows the results of all the settings. Comparing
the first row and others, we can see parameter regression (Jp)
is significantly improved by introducing the semantic segmen-
tation module. Also, rows 2–4 indicate semantic segmentation
(JB) performance is well correlated to parameter regression (Jp)
performance, and the best result is achieved when our LAP mod-
ule is employed. To further analyze the results, we transform
semantic segmentation results into label adjacency prediction re-
sults and compute IoU scores to ground truth, which is denoted as
JB→a. From Table 1 the best JB→a is achieved by the model with
our LAP module and its performance is reaching the one pro-
duced by LAP module itself (Ja). This indicates one reason for
higher segmentation performance using LAP module is that LAP
module more correctly regularizes label adjacencies than alterna-
tives, which can also be seen in qualitative results shown in Fig. 7.
From these facts we can say our SFLNet design is effective.
4.4.2 Label Definition

Here, we compare the performance of SFLNet on 5 different
label definitions shown in Fig. 3. Table 2 shows the results. No-
tice that in Table 2 semantic segmentation performance (JB) can-
not be directly compared between different label definitions: Its
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Fig. 8 Quantitative comparison between methods. #k represents the game id. Best viewed in color.

Fig. 7 Qualitative comparisons of semantic segmentation between SE mod-
ule [12] and our LAP module. LAP module can regularize the correct
adjacencies between labels, which produces better segmentation than
SE module (cf., areas surrounded by red dotted lines). Best viewed
in color.

Table 2 Comparison on different label definitions.

SE module [12] LAP module
Nlabel JB Jp JB Jp

(a)3 0.860 0.855 0.864 0.875
(b)4 0.737 0.861 0.743 0.868
(c)12 0.685 0.913 0.712 0.919
(d)19 0.347 0.854 0.398 0.898
(e)27 0.498 0.909 0.521 0.924

Table 3 Comparison on different loss functions.

loss Jp

L2 0.912
L1 0.924

SmoothL1 [31] 0.887

difficulty heavily depends on the number of labels and the shape
of them (e.g., thin lines). Basically, finer label definitions would
be more helpful for parameter regression, but their prediction is
more difficult for semantic segmentation. For Jp, the best perfor-
mance is achieved when Nlabel = 27 with LAP module, which is
difficult for semantic segmentation (i.e., JB is low). Interestingly,
when SE module [12] is used, Jp achieves the peak at Nlabel = 12,
which is relatively easier for semantic segmentation. One pos-
sible reason for this difference is that LAP module works better
than SE module on the challenging setting of Nlabel = 27, making
some positive effects to parameter regression. This result indi-
cates our LAP module can achieve better tradeoffs between pa-
rameter regression and semantic segmentation.
4.4.3 Loss Function for Parameter Regression

As discussed in Section 3.1, we have several choices for eval-
uating the parameter loss (i.e., τ in Eq. (2)). Here, we applied L1,
L2 and smoothed L1 [31] losses to SFLNet and evaluate the per-
formances. From the results shown in Table 3, we chose L1 loss

for our parameter loss and used it in the following experiments.

4.5 Comparison to Baselines
Based on the above ablation results, we compared our approach

to existing methods after tuning SFLNet to the best setting: We
used both semantic segmentation and label adjacency prediction
modules, and set Nlabel = 27 and τ as L1 norm. In the following
evaluations we used our dataset in 1-vs-all manner. Specifically,
we used all the frames from one game as a test set, and all the re-
maining as a training (or dictionary) set. Since to our knowledge
existing works do not make their codes public, we implemented
the following baselines for comparison:
• Baseline A This baseline extracts line parameters from se-

mantic segmentation results and estimates a homography
from line-to-line correspondences. We used segmentation
results of SFLNet (setting Nlabel = 27) to estimate line
parameters via the approach shown in Ref. [3] and used
RANSAC for robust parameter estimation.

• Baseline B This baseline retrieves a dictionary (i.e., training
data) based on a visual feature extracted from frames, and
returns a homography corresponding to the nearest neighbor
data. We used the intermediate feature map of SLFNet and
used L2 norm for computing a similarity. We experimentally
found that SFLNet feature works better than typical CNN
feature extractors like ResNet.

Figure 8 shows the results with respect to Jp. We can see that
in most games SFLNet achieves the best results. Compared to
baseline B, SFLNet achieves better results in all the cases. Qual-
itative results shown in Fig. 9 also indicate SFLNet can correctly
predict transformations between frames and the court model.
However, in some cases (i.e., #16, #19) SFLNet does not per-
form well, and especially in the case of #16 the result of SFLNet
is worse than baseline A. Some typical failure modes are shown
in Fig. 10. One possible reason is a limited generalization power
of our approach: Since in our dataset courts seen in frames like
Fig. 10 are rare, SFLNet might fail to predict correct parameters.
We may need to incorporate human supervision to address such
unseen data.

Lastly, average running times per frame of methods are listed
in Table 4. SFLNet is much faster than baselines and can be run
over 30 FPS. Based on these results, we can say that our CNN-
based single shot regressor is a reasonable choice with respect to
both accuracy and efficiency for sports field localization.
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Fig. 9 Qualitative results of SFLNet. Odd rows show the projection of the model to the frame, and even
rows show vice versa. #k represents the game id. Best viewed in color.

Fig. 10 Failure modes of SFLNet. #k represents the game id. Best viewed in color.

Table 4 Average running times per frame. We ran the algorithms on a stan-
dard desktop PC with a single GPU.

[ms] Baseline A Baseline B SFLNet
91.7 73.5 31.0

5. Conclusion

In this paper we proposed SFLNet, a CNN-based single shot
regressor that predicts a parameter set relating a sports field in an
input frame to its metric model. Experimental evaluations on our
new dataset based on basketball games demonstrated that SFLNet
can predict the parameter more precisely than baseline methods.

As a future work, we will evaluate our approach on different
sports such as soccer and hockey [3], [32]. We also plan to extend
SFLNet to sequential models, which can accept a video directly
and produce temporally smooth results.
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Editor’s Recommendation
This paper proposes a method of homography transformation

for a sports field appearing in video images taken by a camera
at an unknown position. Although the use of the end-to-end ar-
chitecture itself is a common approach, the overall quality of the
system has been proven to be high, and accurate localization for
the field can be achieved with few manual operations, utilizing
the general characteristics of the field. The original contributions,
such as the label estimation of adjacent regions, are also fully ver-
ified.
(Chairman of Program Committee of FIT2019, Kunio Kashino)
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