
IPSJ SIG Technical Report

On Identifying Bug Patterns in Quantum Programs

Pengzhan Zhao†1,1,a) Jianjun Zhao†1,2,b) LeiMa†1,2,c)

Abstract: Bug patterns are erroneous code idioms or bad coding practices that have been proved fail time and time
again, usually caused by the misunderstanding of program language features, the use of erroneous design patterns, or
simple mistakes sharing common behaviours. This paper presents a taxonomy of bug patterns in the quantum pro-
gramming language Qiskit and discuss how the existing techniques can be applied to eliminate or prevent those bug
patterns. We take this research as the first step to provide an underlying basis for testing and debugging of quantum
programs.

Keywords: Quantum program debugging, quantum bug patterns, Qiskit

1. Introduction
In modern software development, software debugging and

testing are critical parts of an integrated software development
method. An appropriate method of bug finding can quickly help
developers locate and remove bugs. A software bug is regarded as
the abnormal program behaviors which deviate from its specifi-
cation [4], including poor performance when a threshold level of
performance is included as part of the specification. Bug patterns
are recurring relationships between potential bugs and explicit er-
rors in a program; they are common coding practices that share
similar symptoms and have been proven to fail time and time
again. Those bug patterns are raised from the misunderstand-
ing of language features, the misuse of positive design patterns,
or simple mistakes having common behaviors. Such bug patterns
are an essential complement to the traditional design patterns [7],
just as a good programmer needs to know design patterns which
can be applied in various context and improve the software qual-
ity, also to be a good software developer or problem-solver, the
knowledge of common causes of faults is a need in order to know
how to fix the software bugs.

In the previous research of bug patterns, most of the work fo-
cused on classical programming languages such as Java. Allen [4]
summarizes more than 14 categories of bug patterns in Java, and
the FindBugs research group identified more bug pattern clas-
sifications at the University of Maryland [10]. Farchi [6] also
presents some concurrent bug patterns and discusses how to de-
tect them.

Quantum programming is the process of designing and build-
ing executable quantum computer programs to achieve a particu-

1 Information Processing Society of Japan, Chiyoda, Tokyo 101–0062,
Japan

2 Kyushu University, Fukuoka, Japan
†1 Presently with Kyushu University
a) zhao.pengzhan.813@s.kyushu-u.ac.jp
b) zhao@ait.kyushu-u.ac.jp
c) malei@ait.kyushu-u.ac.jp

lar computing result and is drawing increasing attention recently.
A number of quantum programming approaches are available to
write quantum programs, for instance, Qiskit [20], Q# [22], Pro-
jectQ [23], Scaffold [1], and Quipper[8]. However, the current
research so far in quantum programming is focused on problem
analysis, language design, and implementation. Even though pro-
gram debugging and software testing are important, it has re-
ceived little attention in the quantum programming paradigm.
The new complexity introduced in quantum programming makes
it difficult to find the defects or bugs in the source code. Until
now, only a few approaches have been proposed for testing and
debugging quantum software [14, 15, 12, 9, 18, 19, 3, 24] and
none of the previous work was focused on the bug pattern iden-
tification in a quantum programming language. The testing and
debugging issues remain a big problem for quantum programs.

We may not know what types of bugs are unique or common
happened to quantum programs without a proper bug pattern clas-
sification, and this poses several restrictions on the research and
development of programs in the language:

• Developers do not know what kind of bugs are most likely
to happen in a program, and therefore do not know how to
prevent them. In other words, a programmer would lack a
piece of fundamental knowledge on how to write bug-free
code.

• Testers do not have sufficient knowledge of how to write ad-
equacy test cases that can effectively cover most common
potential errors. Only when having an idea of how the com-
mon bugs happened in programs can the tester set up criteria
for better addressing the specific bugs.

• Software maintenance staff do not know which features of
the language are more likely to result in the incorrect code;
so they cannot clearly view the current system when doing
the maintenance tasks.

The bug patterns may help to solve these problems. To iden-

© 2021 Information Processing Society of Japan 1

Vol.2021-QS-2 No.22
2021/3/29

IPSJ SIG Technical Report

tify such patterns in a quantum programming language explic-
itly, we can leverage many programmers’ experience to improve
their productivity in bug finding and eliminate the cost of soft-
ware maintenance. The bug pattern identification can also help
language designers or tool developers develop the corresponding
bug finding techniques or bug detectors, which could be applied
to locate bugs in the source code by program analysis.

Furthermore, the bug patterns provide a basis for further re-
search on debugging quantum programs. It provides insight into
the possible consequences of different bug types and summarizes
the common behaviors among similar ones. It can be used to rec-
ognize faults that have been already existed and prevent potential
bugs. The bug patterns taxonomy for quantum programming lan-
guages such as Qiskit could be seen as a starting point for creating
the general bug patterns for quantum programming languages.

This paper chooses the widely used quantum programming
language Qiskit as our target language and identifies the common
bug patterns. We also show the corresponding example for each
bug pattern to illustrate these patterns’ symptoms. To the best
of our knowledge, the work described in this paper is the first
attempt to identify the bug patterns existing in Qiskit programs
systematically.

The rest of the paper is organized as follows. Section 2 briefly
introduces the background knowledge of quantum programming
in Qiskit and the new error-prone features introduced by quantum
programs. Section 3 describes the identified bug patterns in Qiskit
in detail. Related work is discussed in section 4 and concluding
remarks are given in Section 5.

2. Background
We next briefly introduce the background information on pro-

gramming in Qiskit and the error-prone features in Qiskit pro-
grams.

2.1 Qiskit
Qiskit is a Python-based quantum programming language that

allows us to create algorithms for a quantum computer [13]. As
a Python package which provides tools for creating and manip-
ulating quantum programs and running them on prototype quan-
tum devices and simulators [2], Qiskit is one of the most widely
used open-source frameworks for quantum computing. It can use
the built-in modules for noise characterization and circuit opti-
mization, which is useful for research in reducing the effects of
noise. Qiskit also has its library of quantum algorithms for ma-
chine learning, optimization, and chemistry.

In Qiskit, an experiment is defined by a quantum object
data structure that contains configuration information and the
experiment sequences. The object can be used to get sta-
tus information and to retrieve results [17]. Figure 1 shows
a simple Qiskit program, which performs an example of
the entire workflow of a quantum program. The function
Aer.get backend(’qasm simulator’) returns a backend object
for the given backend name(qasm simulator). The backend class
is an interface to the simulator. And the actual name of Aer for
this class is AerProvider. After the experimental design is com-
pleted, run the instructions through execute method. The shots

simulator = Aer.get_backend(’qasm_simulator’)

qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
circuit = QuantumCircuit(qreg, creg)

circuit.h(0)
circuit.h(2)

circuit.cx(0, 1)

circuit.measure([0,1,2], [0,1,2])

job = execute(circuit, simulator, shots=1000)
result = job.result()
counts = result.get_counts(circuit)
print(counts)

Fig. 1 A simple quantum program in Qiskit

of the simulation which means the number of times the circuit
is run, was set to be 1000 while the default is 1024. When we
want to output the results of a measurement, the ”job” will have
a method job.result() to retrieve measurement results. Then,
we can access the counts via the method get counts(circuit)
which gives the aggregate outcomes of the experiment.

2.2 The Properties of Qubits
In the following, we use Qiskit as an example to explain the

characteristics of quantum bit (qubit) and the necessary execu-
tion process of a complete quantum program.

In quantum computing, the basic unit of information is the
qubit. As shown in Figure 1, qreg = QuantumRegister(3)
means assigning a quantum register of three qubits, and the value
of each qubit is |0〉 by default. So the initial value of these
three qubits is |000〉. Next, let the first and third qubits pass
through the H (Hadamard) gate. As shown by circuit.h(0) and
circuit.h(2). In this way, the unique property ”superposition”
of qubits is realized. It means each qubit can take on values of |0〉
and |1〉. There is also an ”entanglement” of qubit properties that
only multiple qubits can achieve. The code in the sample program
is circuit.cx(0,1). That is to say; the first qubit is entangled
with the second qubit through a CNOT (Controlled-NOT) gate
operation. We measure the first qubit, and its output is 0 for 50
percent probability and 1 for 50 percent probability. After that,
measuring the second qubit is 100 percent the same as the first
measurement result. Since the third qubit is not related to the first
two qubits, the measurement result of the last qubit is still taken
with 0 for 50 percent probability and 1 for 50 percent probabil-
ity. The measurement statement of qubits shown in Figure 1 is
circuit.measure([0,1,2], [0,1,2]). Measurement will lead
to the collapse of the quantum superposition state, which will
eventually be a classical state of measurement. There are many
kinds of quantum measurements, and the projection measurement
of a single qubit is used here. That is, each qubit is projected onto
a state space consisting of base vectors |0〉 or |1〉. In this program,
the final output is a three-bit array.

2.3 Error-Prone Features in Qiskit Programs
By focusing on the language features of Qiskit, we can classify

the bug patterns in Qiskit into the following four categories.

© 2021 Information Processing Society of Japan 2

Vol.2021-QS-2 No.22
2021/3/29

IPSJ SIG Technical Report

• Initialization: A quantum program is a series of operations
on qubits. The initial stage is to initialize the quantum reg-
isters to store the qubits that need to be manipulated. Then
the classical registers are initialized to store the values of
the measured qubits. This stage does not include setting
the quantum state, as the quantum state setting needs to be
implemented by a gate operation. Quantum registers and
classical registers do not have to be of the equal initial size.
When we use multiple classical bits to store the same qubit
measurements, we need to initialize as many classical bits as
possible. However, another case is that the initialized qubit
is larger than the classical bit. Since the programmer does
not intend to measure some qubits, it is assumed that there
is no need to initialize the classical bits equal to the qubits.
Nevertheless, this is also the reason why most programs go
wrong. So a hasty initialization can cause some problems
for subsequent programs.

• Gate Operation: The core of quantum computing is to op-
erate on qubits. Qiskit provides almost all the gates to im-
plement algorithms in quantum programs [21]. To achieve
the ”superposition” of qubits, it must pass through the H
(Hadamard) Gate. To achieve ”entanglement” in the case of
multiple qubits, it must pass through the CNOT (controlled-
NOT) gate. In quantum language, complex gate opera-
tions are decomposed into basic gates and gradually real-
ized. Controlled gates are parameterized by two qubits, and
double-controlled gates require three qubits. However, this
does not mean that the double-controlled gate operates on
three qubits at the same time. Many errors may occur when
inappropriately using gates that operate on the qubits multi-
ple times.

• Measurement: When we want to obtain the output, we
must perform a measurement operation on the target qubit.
The measured qubit is returned as the classical state’s value,
which no longer has superposition properties. So the qubit
that has been measured cannot be used as a control qubit to
entangle with other qubits. Although measurement is a sim-
ple operation, the program executing a measurement state-
ment is very complicated. It requires thousands of projection
measurements of the qubits. Finally, it outputs all its possi-
ble results. Moreover, the number of occurrences of the re-
sult is used to obtain the size of the probability of outputting
the correct value. Many errors start with the measurement
statement because programmers do not really understand the
effect of measurements on the state of qubits.

• Deallocation: It is crucial to reset and release the qubits
safely; otherwise, the auxiliary qubits in the entangled state
will affect the output. Deallocation is not considered to be
a specific operation due to the power of Qiskit. We do not
need to reset the qubits manually. However, In some back-
ends, not releasing all qubits can be problematic. In Qiskit,
not handling all the qubits in the entangled state can cause
problems in the program or output unsatisfactory values.

For better understanding, we propose these bug patterns in

qreg = QuantumRegister(3)
creg = ClassicalRegister(2)
circuit = QuantumCircuit(qreg, creg)

circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 2)

circuit.measure([0,1,2], [0,1,2])

Fig. 2 Unequal Classical bits and Qubits

terms of the quantum program execution order, which consists
of four stages (processes) that the program’s qubits go through,
and each stage interacts with the others.

3. Bug Patterns in Qiskit
We next introduce six bug patterns in Qiskit as examples.

When introducing each bug pattern, we also show an example
that contains this specific pattern. Since most bug patterns have
some representation variants and alternatives, we choose the one
that appears to be the most generally applicable. These bug pat-
terns are also summarized in Table 1.

3.1 Unequal Classical Bits and Qubits
In Qiskit, each classical bit in the classical register stores a

measured qubit value. Therefore, it is better to initialize quantum
registers of the same size as classical registers. Otherwise, the
bug pattern of ”Unequal Classical Bits and Qubits” may occur,
especially when the number of qubits in the quantum register is
greater than that of classical bits in the classical register. From
the point of view of program integrity, every used qubit should be
measured.

As shown in Figure 2, when we want to measure the third qubit,
we receive an error message CircuitError: ’Index out of range.’.
If we do not measure one of the qubits, then a qubit will not get
reset.

Another case is that the number of bits in the classic register is
larger than the qubit. Unless we encounter the need to use multi-
ple classical bits to store a qubit measurement, otherwise, this is
not a good habit. On the one hand, resources are wasted when the
program is actually developed, and on the other hand, outputting
all classic bits will cause very messy results. Therefore we do not
recommend this operation.

3.2 Custom Gates not Recognised
When defining a custom gate in a program, some programmers

will want to define a ”basic gate” that controls more than two
qubits directly; the bug pattern Custom gates not recognised by
Qiskit may occur. This pattern refers to a custom gate that does
not use the gate class provided by Qiskit correctly. Alternatively,
the gate is not recognized by Qiskit.

An example of an error code is shown in Figure 3, which is a
program that tends to define a three-qubit controlled gate. First
define a gate named my custom gate using the Gate method, and
control the number of qubits to three. When we call this gate, the
program will have an error. Because in basic gates, the custom
gate gt is not the same as other Qiskit-based gates.

This bug pattern is mainly caused by programmers who do not

© 2021 Information Processing Society of Japan 3

Vol.2021-QS-2 No.22
2021/3/29

IPSJ SIG Technical Report

qc = QuantumCircuit(3,3)

gt = Gate(’my_custom_gate’, 3, [])

qc.h(0)
qc.sdg(0)
qc.y(1)

qc.append(gt, [0,1,2])

qc.add_calibration(gt, [0,1,2], schedule)
qc = transpile(qc, backend,

basis_gates=[’u1’, ’u2’, ’cx’, gt])

qc.measure([0,1,2], [0,1,2])

Fig. 3 Custom gates not recognised by Qiskit

qc = QuantumCircuit(3,3)

qc.cx(0, 1, label=’Label’, ctrl_state=0)
qc.ccx(0, 1, 2, label=’Label’, ctrl_state=1)

Fig. 4 Parameter Misuse of Complex Gate Instructions

really understand quantum gates. Quantum gates can only control
a maximum of 2 qubits and are known as basic gates. The com-
pound gates we usually use, such as the double-controlled gate
CCX(Toffoli) [20], are not the gates that directly control three
qubits. Instead, multiple single-qubit gates and controlled gates
are combined, resulting in a dual controlled gate effect. The cor-
rect custom gate should be a composite gate combining the basic
gates provided by Qiskit and applied to the circuit.

3.3 Parameter Misuse of Complex Gate Instructions
In quantum Experience API error codes [20], there is an error

indicating that the instruction is not in the gate of the call. Since
many instances of such an error are found in practical Qiskit pro-
gramming, we summarized this problem as a bug pattern of ”Pa-
rameter Misuse of Complex Gate Instructions.”

As a simple example, consider the code snippet in the Fig-
ure 4, which calls the CX (Controlled-x) gate and the CCX (Tof-
foli) gate separately. There is no problem when running the
instruction qc.cx of the CX gate. But when executing the in-
struction qc.ccx of the CCX gate, the program will report an er-
ror of ccx() got an unexpected keyword argument ’label’.
This error is because the complex gates in Qiskit do not support
label or ctrl state as parameters as that for basic gates. This
bug pattern shows that if the programmer lacks some knowledge
about double-controlled gate or other complex gates and uses the
parameters from these gates as that for the basic gates, it probably
leads to this kind of bug.

3.4 Multiple/Repeated Measurement
Some simulator backends are unable to execute the circuit

when the measurement operation performed on the qubit is re-
peated too many times. Alternatively, when some methods, such
as c if, are called but do not give the correct result. This situation
may lead to the bug pattern of ”Multiple/Repeated Measurement.”

To show this bug pattern, consider the piece of code in Fig-
ure 5. This is a test used to measure quantum characteristics in
a computing backend simulator repeatedly. We use the Qiskit

def get_circuit(n):

qreg = QuantumRegister(1)
creg = ClassicalRegister(n)
mreg = QuantumRegister(1)
dreg = ClassicalRegister(1)

circ = QuantumCircuit(qreg, mreg, creg, dreg)

for i in range(n):
circ.measure(qreg[0], creg[i])

circ.x(mreg[0]).c_if(creg, 0)
circ.measure(mreg[0], dreg[0])

return circ

b_aer = BasicAer.get_backend(’qasm_simulator’)
aer = Aer.get_backend(’qasm_simulator’)

circ65 = get_circuit(65)

print("65clbits(Aer):", execute(circ65, aer).
result().get_counts())

print("65clbits(Basic_Aer):", execute(circ65, b_aer).
result().get_counts())

Fig. 5 Multiple/Repeated Measurement

”Aer” simulator backend and the Python-based quantum simula-
tor module ”BasicAer” to simulate the circuit qasm simulator.
The same qubit is used multiple times here. When we call
BasicAer, the system may report an error that the number of
qubits is greater than the maximum (24) for qasm simulator.
Not only that, the c if method we called did not get the de-
sired result on the “Aer” backend simulator, that is, the qubits
of the mreg register did not achieve flipping. While the code
circ.x(mreg[0]).c if(creg,0) did not achieve. And if n=63
in the classic register creg, the system will hang.

In summary, we do not recommend excessive measurement op-
erations on qubits. The measured qubit is placed in the first posi-
tion of the quantum register, and then the measurement is placed
in the second position. Such repeated operations are equivalent to
operating ”N” multiple qubits. As a result, it can make the system
extremely unstable.

3.5 Incorrect Operations after Measurement
When the measurement is completed, we cannot use the mea-

sured qubit for ”entanglement.” Otherwise, we will not get the
desired result. The result of the measurement can be treated as a
classical value that no longer has the properties that the qubit has.
If the measured value continues to be entangled with other qubits,
which is used to change the target qubit state, it will be the bug
pattern of ”Incorrect Operations after Measurement.”

Considering the code snippet in Figure 6 taken from GitHub
document [16], which realizes a quantum teleportation protocol.

In the code, the last qubit’s state should be changed ac-
cording to the first two bits’ measurement results. The wrong
instructions in the example are teleport.cx(tq[1],tq[2])
and teleport.cz (tq[0],tq[2]), which entangle the measured
qubit with the unmeasured qubit, and therefore affect the result
of the last qubit. This mistake is quite common, and many pro-
grammers inadvertently use measured qubits. In this program,

© 2021 Information Processing Society of Japan 4

Vol.2021-QS-2 No.22
2021/3/29

IPSJ SIG Technical Report

tq = QuantumRegister(3)
tc0 = ClassicalRegister(1)
tc1 = ClassicalRegister(1)
tc2 = ClassicalRegister(1)

teleport = QuantumCircuit(tq, tc0,tc1,tc2)
teleport.h(tq[1])
teleport.cx(tq[1], tq[2])

teleport.ry(np.pi/4,tq[0])

teleport.cx(tq[0], tq[1])
teleport.h(tq[0])
teleport.barrier()

teleport.measure(tq[0], tc0[0])
teleport.measure(tq[1], tc1[0])

teleport.cx(tq[1], tq[2])
teleport.cz(tq[0], tq[2])
teleport.measure(tq[2], tc2[0])

backend = Aer.get_backend(’qasm_simulator’)
job = execute(teleport, backend, shots=1, memory=True).

result()
result = job.get_memory()[0]
print(job.get_memory()[0])

Fig. 6 Incorrect Operations after Measurement

the correct code should be teleport.z(tq[2]).c if(tc0,1) as
well as teleport.x (tq[2]).c if(tc1,1).

Although these erroneous operations follow quantum measure-
ments, the reason for this lies in a poor understanding of the effect
of measurement operations on qubit states.

3.6 Unsafely Uncomputation
Qiskit is a compelling framework because it supports the auto-

matic management of qubits, i.e., there is no need to do the work
of unallocated qubits manually. However, this is also its down-
side, as different backends will have their own implementations,
which can lead to exceptions in different backends and the need to
manually unallocated qubits. Thus the bug pattern of ”Unsafely
Uncompntation” appears. For example, even in Qiskit, exiting
the program before measuring all qubits can lead to some back-
end simulators’ errors. The errors can be ”Qubit has not been
measured/uncomputed.”

3.7 A Catalog of Bug Patterns in Qiskit
Quantum programming introduces new quantum-aware bug

patterns that differ from existing classical bug patterns. These
quantum bug patterns should be identified, and a catalog for these
patterns should be presented. Due to space limitation, however,
we cannot explain more bug patterns in this paper; and in Table 1
we list the bug patterns in Qiskit we identified, including those
detail described in this section. To classify the bug patterns listed,
we summarize the description for each pattern by pattern name,
category, symptoms, causes, and cures & preventions. Note that
this is just a preliminary list of bug patterns in Qiskit, and more
bug patterns will be added to the list as we get some new progress.
In the current bug pattern catalog in Table 1, we classify these bug
patterns by initialization (1), gate operation (2), measurement (3),
and deallocation (4).

4. Related work
The previous research on bug patterns is mainly focused on

object-oriented programming languages such as Java. Allen [4]
summarizes more than 14 bug patterns categories in Java. Fol-
lowing Allen’s work, Hovemeyer and Pugh [10] present a novel
syntactic pattern matching approach to detecting the bug patterns
in Java and implemented a bug finding tool called FindBugs [5],
which uses various type of bug detectors to find bug patterns in
Java. The bug patterns reported by FindBugs, are more than 300
patterns, which cover bad practices, performance issue, correct-
ness, and multi-threaded correctness. Our work extends the bug
patterns research and identification to the quantum programming
languages using the Qiskit language as an example. The bug pat-
terns presented in this paper are different in nature from the exist-
ing bug patterns in classical programming languages in the sense
that they explicitly involve the quantum programming language
features such as superposition, entanglement, and no-cloning.

Huang and Martonosi [11, 12] study the bug types for spe-
cial quantum programs to support quantum software debugging.
Based on the experiences of implementing some quantum algo-
rithms, several types of bugs specific to quantum computing are
identified. The defense strategy for each bug type is also pro-
posed, which mainly uses some assertions to detect the bugs in
runtime. While Huang and Matonosi’s work targets quantum
software debugging, which mainly involves the runtime execu-
tion of the software, our work targets identifying the bug patterns
to support bug detection through static analysis, which considers
more efficient than dynamic analysis.

5. Concluding Remarks
This paper has identified some bug patterns in quantum pro-

gramming language Qiskit to provide both researchers and pro-
grammers a clear view of what kind of bugs may happen in quan-
tum programs and how to detect them. The study of bug patterns
mainly focuses on bug pattern symptoms, cause root, and cures
and preventions. These bug patterns are the first result of our re-
search and do not use every possible quantum related construct
or cover all characteristics of a quantum programming language.
New research should cover other remaining quantum-related con-
structs, as well as the interactions between them.

In future work, we would like to investigate more bug patterns
in real programs of Qiskit and other quantum programming lan-
guages. We would also like to develop a bug detecting tool based
on the identified bug patterns to support bug finding in Qiskit pro-
grams.

References
[1] Ali J Abhari, Arvin Faruque, Mohammad J Dousti, Lukas

Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang,
Seth Vanderwilt, John Black, and Fred Chong. Scaf-
fold: Quantum programming language. Technical report,
Department of Computer Science, Princeton University,
2012.

[2] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis

© 2021 Information Processing Society of Japan 5

Vol.2021-QS-2 No.22
2021/3/29

IPSJ SIG Technical Report

Table 1 A catalog of bug patterns in Qiskit

Bug Patterns Category Symptoms Causes Cures and Preventions
Unequal Classical Bits
and Qubits

1 Classical registers are not large
enough to store the measured qubits

The initialized classical bits are
smaller than the qubits used or to be
measured

Try to initialize quantum and classi-
cal registers of the same size

Custom gates not recog-
nised

2 The program is unable to customize
the gate function and will often re-
port errors

Creating gates that directly control
more than three qubits does not fol-
low the principle of two qubit entan-
glement

Try to use the gates provided by
Qiskit for the implementation of the
algorithm

Parameter Misuse of
Complex Gate Instruc-
tions

2 Instructions are not in the gate being
used

The wrong parameters are used in
some controlled gate methods (espe-
cially complex gates)

Correct understanding of a complex
gate like a dual control gate, using
the correct instruction

Multiple/Repeated Mea-
surement

3 Output error or program error when
measuring the same quantum bit
multiple times with a for loop

number of measurements repeated
several times

Reduction of meaningless measure-
ments.

Incorrect Operations af-
ter Measurement

3 Unable to get the desired post-
measurement result

Continued manipulation of the qubit
being measured, such as changing
its state or re-entangling with other
qubits

The measured result cannot be used
as a condition unless it is re-operated
and measured as the initial qubit af-
ter reset

Unsafely Uncomputation 4 The program reports an error or does
not achieve the desired result

Auxiliary qubits are not reset and re-
main entangled with the target qubit,
which can affect the results of the
target qubit measurement

Correctly reset or release all qubits
to ensure they are in their initial or
post-measurement states

Barkoutsos, Luciano Bello, Yael Ben-Haim, D Bucher,
FJ Cabrera-Hernández, J Carballo-Franquis, A Chen,
CF Chen, et al. Qiskit: An open-source framework for
quantum computing. Accessed on: Mar, 16, 2019.

[3] Shaukat Ali, Paolo Arcaini, Xinyi Wang, and Tao Yue. As-
sessing the effectiveness of input and output coverage cri-
teria for testing quantum programs. In Proceedings of the
IEEE International Conference on Software Testing, Veri-
fication and Validation (ICST 2021) (to appear), 2021.

[4] Eric Allen. Bug patterns in Java. APress LP, 2002.
[5] Nathaniel Ayewah and William Pugh. The google findbugs

fixit. In Proceedings of the 19th international symposium
on Software testing and analysis, pages 241–252, 2010.

[6] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug
patterns and how to test them. In Proceedings international
parallel and distributed processing symposium, pages 7–
pp. IEEE, 2003.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns Elements of reusable object-
oriented sofware. Addison Wesley, 1995.

[8] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross,
Peter Selinger, and Benoı̂t Valiron. Quipper: a scalable
quantum programming language. In Proceedings of the
34th ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 333–342, 2013.

[9] Shahin Honarvar, Mohammadreza Mousavi, and Ra-
jagopal Nagarajan. Property-based testing of quantum pro-
grams in q#. In First International Workshop on Quantum
Software Engineering (Q-SE 2020), 2020.

[10] David Hovemeyer and William Pugh. Finding bugs is easy.
Acm sigplan notices, 39(12):92–106, 2004.

[11] Yipeng Huang and Margaret Martonosi. Qdb: From quan-
tum algorithms towards correct quantum programs. arXiv
preprint arXiv:1811.05447, 2018.

[12] Yipeng Huang and Margaret Martonosi. Statistical asser-
tions for validating patterns and finding bugs in quantum
programs. In Proceedings of the 46th International Sym-

posium on Computer Architecture, pages 541–553, 2019.
[13] Daniel Koch, Laura Wessing, and Paul M Alsing. Intro-

duction to coding quantum algorithms: A tutorial series
using pyquil. arXiv preprint arXiv:1903.05195, 2019.

[14] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng
Ying, and Yuan Xie. Projection-based runtime assertions
for testing and debugging quantum programs. Proceedings
of the ACM on Programming Languages, 4(OOPSLA):1–
29, 2020.

[15] Ji Liu, Gregory T Byrd, and Huiyang Zhou. Quantum cir-
cuits for dynamic runtime assertions in quantum computa-
tion. In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 1017–1030, 2020.

[16] Manoel Marques. Qiskit community tutorials. Accessed
on: April, 2020, 2020.

[17] David C McKay, Thomas Alexander, Luciano Bello,
Michael J Biercuk, Lev Bishop, Jiayin Chen, Jerry M
Chow, Antonio D Córcoles, Daniel Egger, Stefan Filipp,
et al. Qiskit backend specifications for openqasm and
openpulse experiments. arXiv preprint arXiv:1809.03452,
2018.

[18] Andriy Miranskyy and Lei Zhang. On testing quantum
programs. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER), pages 57–60. IEEE, 2019.

[19] Andriy Miranskyy, Lei Zhang, and Javad Doliskani.
Is your quantum program bug-free? arXiv preprint
arXiv:2001.10870, 2020.

[20] IBM Research. Qiskit. Accessed on: April, 2020, 2017.
[21] IBM Research. Ibm quantum experience. Accessed on:

April, 2020, 2020.
[22] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah,

Christopher Granade, Bettina Heim, Vadym Kliuchnikov,
Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#:
Enabling scalable quantum computing and development
with a high-level dsl. In Proceedings of the Real World

© 2021 Information Processing Society of Japan 6

Vol.2021-QS-2 No.22
2021/3/29

IPSJ SIG Technical Report

Domain Specific Languages Workshop 2018, pages 1–10,
2018.

[23] ProjectQ Team. Projectq. Accessed on: April, 2020, 2017.
[24] Jiyuan Wang, Ming Gao, Yu Jiang, Jianguang Lou,

Yue Gao, Dongmei Zhang, and Jiaguang Sun. Quan-
fuzz: Fuzz testing of quantum program. arXiv preprint
arXiv:1810.10310, 2018.

© 2021 Information Processing Society of Japan 7

Vol.2021-QS-2 No.22
2021/3/29

