
IPSJ SIG Technical Report

The Implementation of Deutsch-Jozsa’s algorithm
on IBM Quantum by Bidirectional Computation

Hyungseok Chang1,a) Hidefumi Hiraishi1,b) Hiroshi Imai1,c)

Keywords: NISQ, Quantum Computation, Deutsch-Jozsa’s algorithm, Bidirectional computation

1. Introduction

The development of quantum computation has led to the

discovery of various quantum algorithms that outperform

existing classical ones. Deutsch and Jozsa found the first al-

gorithm which achieved quantum exponential speed-up [4].

Deutsche-Jozsa’s algorithm solve an artificial computational

problem to determine whether a given function is constant

or balanced. Then Shor showed that prime integer factoring

can be solved by quantum computation in polynomial time

[14]. Prime integer factoring cannot be solved in polynomial

time by classical computation unless P=NP, which is the

ground of modern cryptography. Furthermore, Grover pro-

posed a quadratic speed-up algorithm for database search

[6], which is applicable for a wide range of combinatorial

problems.

While there have been these fruitful theoretical results,

only limited experimental results have been obtained. This

is because it is still difficult to control quantum manipula-

tion, and thus to obtain correct computational results. To

overcome this completely, it is necessary to construct quan-

tum error correction [15]. However, to realize error correc-

tion, a large number of qubits are required, and it is consid-

ered to take a long time.

Under these circumstances, however, the development

of an imperfect form of quantum computer is underway:

a quantum device called Noisy Intermediate-Scale Quan-

tum(NISQ) devices. NISQ devices do not have quantum

error correction and it causes noise during the calculation

process, making it difficult to obtain correct results. On the

other hand, it can execute quantum algorithms in small size

and some research showed quantum supremacy using NISQ

devices [1], which is counteracted by Edwin et al. [13]. Thus,

it is possible to conduct experimental research while previ-
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ous research is limited in theoretical aspect. For this reason,

there is a lot of interest in how to use NISQ devices and ex-

pectation that if the execution can be done with reduced

noise, it can be used practically.

There are various research to implement more efficiently

enough to be able to execute on NISQ devices. Nam et

al. reduced T gates, which has relatively high error rate in

the implementation of the quantum Fourier Transform [11],

which is often used as a subroutine in quantum computing.

Amico et al. [9] implemented with classical quantum hybrid

style on IBM Quantum. They used semi-classical quantum

fourier transform [5] to divide circuits into a few parts reduc-

ing error caused by noise. This implementation succeeded

to factor 15 and 21, however failed to 35. Although it is not

realistic to execute on NISQ devices, there are some research

to implement Shor’s algorithm with less size circuit, such as

[2], [12].

Also, it is necessary to compile the circuit we want to ex-

ecute into the circuit real devices can execute because some

gates can only work when the target qubits are adjacent in

devices. Therefore, there are many research such as [8] to

propose compile method.

While these studies, we have focused on the reversibility

of quantum computation. This is the property that inputs

can be recovered by tracing backwards from output because

reversible computation has no loss of information. There-

fore, when we know the input and output of the circuit, it

is possible to determine whether an input and output are

in a correct input-output relationship executing partitioned

circuits that are smaller than the original circuit. In addi-

tion, since such a problem would be useful for deterministic

problems, we applied it to Deutsch-Joza’s algorithm. Since

Deutsch-Jozsa’s algorithm is the first quantum speed-up al-

gorithm, sometimes it is used as an benchmark for imple-

menting physical devices [7]. Meanwhile, Nagate et al. [10]

suggested possibility of application to quantum key distri-

bution. We also confirmed a slight improvement in perfor-

mance in experiments with real devices, IBM Quantum.
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2. Preliminaries

2.1 Deutsch-Jozsa’s Algorithm

This algorithm classified whether a given function f is

balanced function of constant function with probability one.

Constant function which always returns 0 or 1, or a balanced

function which returns 0 for the half inputs and returns 1 for

the latter half inputs. While classical needs to calculate f

exponential time to assuredly classify, this algorithm needs

only one time.

Assumed we have a given unitary operation Uf corre-

sponding f which operates Uf : |x, y⟩ → |x, y ⊕ f(x)⟩, the
quantum algorithm is described as follows.

Algorithm procedure

Inputs: (1) Given a unitary operator Uf . It is promised

that f(x) is either constant or balanced function.

Outputs:

{
0...0 (f is constant)

otherwise (f is balanced)

Procedure:

( 1 ) |0⟩⊗n |1⟩
( 2 ) → 1√

2n

∑2n−1
x=0 |x⟩

[
|0⟩−|1⟩√

2

]
( 3 ) →

∑
x(−1)f(x) |x⟩

[
|0⟩−|1⟩√

2

]
( 4 ) →

∑
z

∑
x

(−1)x·z+f(x)|z⟩√
2n

[
|0⟩−|1⟩√

2

]
( 5 ) → output; k

In procedure 1, we prepare n+1 qubits, and first n qubits

are initialized |0⟩ and last one qubit is initialized |1⟩. First

n qubit is called as function register and last one is called as

answer register. By procedure 2, applying Hadamard gates

we create the superposition of function register and nswer

register. Then, by procedure 3, applying Uf we obtain the

state where f(x) is on the phase of superposition. This is

caused by the fact that the answer register has positive and

negative phase. Lastly, in procedure 4, Hadamard transfor-

mation to function register change the state as above and

measure the function register. By the sum of (−1)x·z+f(x),

when f(x) is constant, the measured value is always all 0 n

bits.

2.2 IBM Quantum

IBM Quantum is the system of quantum devices devel-

oped by IBM. It is realized by supercoducting qubits and

the number of qubits of devices ranges from 1 to 65. Some

of these devices are open to the public via cloud service.

Since pairs of qubits to which 2-qubit gate can be applied

are limited for physical reason, quantum circuit needs to be

converted to an executable circuit so as to satisfy the phys-

ical restriction. This conversion adds SWAP gates to make

distant qubits adjacent in order to perform two qubit gates.

The circuit before conversion is sometimes called as a logical

circuit and the circuit after conversion is called as a physical

circuit.

A simulator is also provided by IBM Quantum. It can

solve circuits with up to 32 qubits and it enables us to con-

firm the correct output.

2.3 The reversibility of quantum computing

We introduce two elementary quantum circuits and see

how it proceeds reversible computation. Both circuits are

consisted of one Toffoli gate and two CNOT gates. The

second circuit is inverse version of the first circuit. We fig-

ured them in Figure 1 and 2. As an example of reversibility,

we will calculate circuits with an input. Given an input

|1⟩ |1⟩ |1⟩ to the first circuit. Then, the state changes as

follows

|1⟩ |1⟩ |1⟩ → |1⟩ |1⟩ |0⟩ First Toffoli gate

→ |1⟩ |1⟩ |1⟩ Second CNOT gate

→ |0⟩ |1⟩ |1⟩ Third CNOT gate

Thus, we obtain |0⟩ |1⟩ |1⟩ as output. Let us see, when we

give the second circuit to this state as input. It transforms

the state as

|0⟩ |1⟩ |1⟩ → |1⟩ |1⟩ |1⟩ First CNOT gate

→ |1⟩ |1⟩ |0⟩ Second CNOT gate

→ |1⟩ |1⟩ |1⟩ Third Toffoli gate.

We obtain |1⟩ |1⟩ |1⟩ as output, which is the input of the first

circuit. In this way, reversible circuit can obtain input from

output reversing itself.

|1⟩ •
|1⟩ • •
|1⟩ •

Fig. 1 A circuit with input |111⟩

|0⟩ •
|1⟩ • •
|1⟩ •

Fig. 2 A circuit with input |111⟩

3. Methods

3.1 Idea of bidirectional computation

Using the reversibility of quantum computing, we consid-

ered brand new way to calculate with less noise dividing the

circuit into two parts and to confirm the whether an output

of the gives circuit is correct for an input or not.

We assumed that we are given a circuit U which outputs

ψo for an input ψi. We first divide the circuit U into two

parts U1 and U2 satisfying U = U1U2 and execute the first

half with input ψi. Let the output of the first half be a1.

Then we run the circuit U†
2 , which is reversed U2 with ψo as

an input and We obtain a2. Here, considered reversibility,

a1 and a2 should be same. Strictly speaking, it is not the

measurement results but the states that should be same.
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To compare measurement values correctly, before measur-

ing them, we should return the basis of the state. In this

way, we can confirm the correspondence of output and input

reducing the size of the circuit executed at one time.

3.2 Bidirectional implementation of Deutsch-

Jozsa’s algorithm

Not only is the initial state of the Deutsch-Jozsa’s algo-

rithm circuit fixed, but the output of the circuit is always 0

when the given function is a constant function. Therefore,

comparing the outputs obtained by executing the divided

circuits, we can identify a given oracle is a constant func-

tion or a balanced function.

Deutsch-Jozsa’a algorithm can be written as Figure 3. We

divide this circuit two parts and the circuits are Figure 4 and

Figure 5 where Uf = Uf1
Uf2

. Note that both circuits have

an additional Hadamard gates. These are added to return

the basis of qubits before measurement. Also, since the bot-

tom qubit was not measured and ended as |−⟩ in the original

circuit, the bottom qubit of the latter half is prepared as the

same state.

H

Uf

H 

H H 

· · · · · · · · ·

H H 

X H

Fig. 3 The circuit of Deutsch-Jozsa’s algorithm

H

Uf1

H 

H H 

· · · · · · · · ·

H H 

X H

Fig. 4 First half of the divided circuit

H

U†
f2

H 

H H 

· · · · · · · · ·

H H 

X H

Fig. 5 Latter half of the divided circuit

4. Experiments

We conducted experiments with two oracle functions.

Firstly, we will describe the oracles detaily and show results.

4.1 Oracle

We use two functions as oracle. One is a balanced func-

tion and the other is a constant function. Both functions are

implemented by only CNOT gates and all qubits in function

register are connected to answer register so that there are

not unused qubits.

The implementation of balanced function is simple. All

qubits are connected to answer register once in order. Con-

stant function can be implemented by applying no gates.

However, circuits of this implementation is too simple, there-

fore we use more complex constant functions. We con-

nected all the qubits of function register of constant func-

tion to the answer register twice. The arrangement of

CNOT gates of constant function follows a certain rule for

avoiding too simple implementation. The order of apply-

ing CNOT gates follows an array in which the elements of

[1, n/2+1, 2, n/2+2, ..., n/2, n] and [n, n−1, ..., 1] are added

alternately. For example, when n = 4, the order list of qubit

which is chosen as a control qubit is [1, 4, 3, 3, 2, 2, 4, 1] as

Figure 7.

If we apply one CNOT gate that connects a qubit of func-

tion register and the answer register, exactly half of the out-

put will be inverted. Therefore, the first oracle is a balanced

function and the second oracle is constant because of the

fact that if CNOT gate was applied twice, the output will

be returned. The Figure 6 and Figure 7 are respectively the

balanced function and the constant function we used.

When we apply bidirectional computing to these circuit,

divide them at the center so that the numbers of CNOTS is

the same.

|0⟩ •
|0⟩ •
|0⟩ •
|0⟩ •
|−⟩

Fig. 6 Oracle1. This is a balanced function when the size of
function register is 4.

|0⟩ • •
|0⟩ • •
|0⟩ • •
|0⟩ • •
|−⟩

Fig. 7 Oracle2. This is a constant function when the size of func-
tion register is 4

4.2 Setting

Using the two oracles described above, we experimented

in various size circuit. Here, n means the number of

qubits which oracle function has. The device we used is

ibmq toronto, which have 27 qubits and the shots, which is

the number of circuit trials, was set to 8192.

Also, we set optimization lavel, which is a compile param-

eter to specify the defree of optimization to 0 to prevent the

compiler from changing the circuit of oracle function. Also,
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Fig. 8 The results of normal version with oracle 1

Fig. 9 The results of bidirectional version with oracle 1. The left figure is the result of the
first half and the right figure is of the latter half.

since we can choose the physical qubits to be used at com-

pile logical circuit, the logical qubit of the answer register

was placed in the physical qubit in the middle of the device.

This is because the qubit of answer register is applied CNOT

gates with a lot of other qubits. The logical qubits of the

function register was assigned to physical qubits as close as

possible from the physical qubit of answer register.

4.3 Results

The Figures 8, 9, 10, 11 show the result of each setting.

While the theoretical value to be measured was one, other

values were also measured because of noise. We selected 5

values in order of probability among the measured values for

each n and put their probability on Figure. The probability

of the value to be theoretically measured is coloured by yel-

low. In bidirectional computation case, we have to compare

outputs of both circuits to confirm whether both outputs

are same or not. To judge the identification correctly, ideal

values should be obtained. Here, we assume problems are

solved correctly when both circuits outputs theoretical val-

ues with the highest probability.

Figure 8, 9 show the result of normal Deutsch-Jozsa’s al-

gorithm with oracle 1 and the results of bidirectional version

of Deutsch-Jozsa’s algorithm with oracle 1. In the case of

normal version, when n = 6, the difference between the

second and first measurement probabilities was nearly dou-

bled, but when n ≥ 7, the difference became considerably

smaller and at n = 9, there were more other values were

measured. On the other hand, when bidirectional computa-

tion is applied, the most often measured values of the first

half circuit and the most measured values of the latter half

are equal even at n = 9 and n = 11. At n = 15, it is

confirmed that it was impossible to output correct answers

in both the first half circuit and the latter half circuit. Re-

garding n = 10, 12, 13, 14, either the first half or the latter

half always output the correct value but the other output

did not output the correct answer.

Next, the result of experiments with oracle 2 is shown on

Figure 10, 11. While CNOT gates of oracle 1 were in a sim-

ple arrangement, oracle 2 has twice the number of CNOT

gates and the order is a little more complicated. Therefore,

the experiments with oracle 2 was conducted with smaller

n because of higher error. The normal version circuit suc-

ceeded up to n = 4 and the probability became low from

n = 5. When n = 6, it was almost random probability

distribution. The version applied bidirectional computa-

tion succeeded when n = 5, but only one circuit obtained a

proper value at n = 6 and both circuits failed to measure

correct value when n = 7.

4.4 3-partition experiments

In this subsection, we will explain experiments increas-

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-2 No.19
2021/3/29



IPSJ SIG Technical Report

Fig. 10 The results of normal version with oracle 2

Fig. 11 The results of bidirectional version with oracle 2. The left figure is the result of
the first half and the right figure is of the latter half.

ing the number of dividing. We did not apply bidirectional

computing to dividing circuits in this time. Instead of bidi-

rectional computing, we recursively use outputs as input.

Concretely, when we divide an oracle into three parts, named

C1, C2, and C3. Firstly, we execute C1 circuit and obtain

output x1. Then, we execute C2 with x1 as input. Thus,

we give the outputs of the previous circuit as input. Due to

absence of information loss, we can execute Deutsch-Jozsa’s

algorithm as above.

We experimented with oracle 2 whose size is 5. While we

cannot obtain correct value in case of bidirectional comput-

ing about this circuit, Figure 12, 13 show correct values are

obtained with the highest probability in each circuit.

4.5 Dsicussion

Experimental results show that there are some improve-

ments in the size of the problem solved by applying bidi-

rectional computation. Since circuits are divided, it was

natural that the size of the problem to be solved would be

large, but there was difference about improvements in the

size. This was considered to be due to the allocation of

physical qubits. The circuit of oracle 2 has larger depth

than that of oracle 1 and its structure is also complicated.

Therefore, since our qubit allocation is fixed, when the cir-

cuit become more complex, the size of physical circuit would

tend to increase more. In order to overcome this problem, it

is necessary to optimize the allocation to minimize the size

of the pysical circuit. This optimization can be considered

as a future work.

Also, to find applicable problems is next work. In order

to apply bidirectional computation, it is necessary to know

outputs of circuits. Although problems with these charac-

teristics are limited, it can be possible to apply to decision

problem of prime number using Fermat’s little theorem. Fer-

mat’s little theorem is the theorem that ap−1 ≡ 1 (mod p)

holds where p is a prime and a is coprime integer with

p.df For a given number x, we prepare a circuit to calcu-

late ax−1 ≡ 1 (mod x). This means input x and output 1

are known. Therefore, it would be possible to apply bidirec-

tional computing.

Moreover, some quantum algorithms has multiple out-

puts. In this case, it is necessary to prepare superposition

state as an input of the latter half circuit. However, in such

a case, it would be difficult to apply bidirectional computing

because the gates for preparing output superposition states

might increase. Also, when middle states to compare are

superposition states, we have to compare probability distri-

bution. Because it would cost exponentially for the number

of qubits to compare probability distribution, so it should

be avoided. As an idea to avoid this, it might be useful to
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Fig. 12 Outputs of the first circuit. The correct output 1010 is obtained with probability
0.383

Fig. 13 The left figure is outputs of the second circuit and the right figure is outputs of
the third circuit. The correct output of the second circuit 11011 is obtained with
probability 0.405 and the correct output of the third circuit 00000 is obtained with
probability 0.309

compare the states without measurement such as by SWAP

test [3].

5. Conclusion

We proposed bidirectional computation that can divide

circuits by taking advantage of the reversibility of quantum

computing. Also, we applied bidirectional computation to

Deutsch-Jozsa’s algorithm and experimented on IBM Quan-

tum, one of NISQ devices. We experimentally confirmed

that bidirectional implementation was able to solve slightly

larger size of instances.
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