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Abstract: In this paper, we propose a replay attack detection (RAD) method that uses spatial and spectral features of a
stereo signal. To distinguish genuine and replayed utterance, we focus on non-speech segments, in which a human does
not emit sound, but a loudspeaker for replay attack might emit some recorded noise or its electromagnetic noise. The
generalized cross-correlation (GCC) based spatial features capture this difference. To improve the robustness against
the variety of recording environments, we combine the spatial features with spectral features. In particular, we fuse the
output scores of GCC-based and spectral feature-based methods. In experiments, we confirm the effectiveness of the
combination of spatial and spectral features.
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1. Introduction

Recently, biometric authentication systems have become pop-
ular for use in various areas such as banking protection and im-
migration control [1], [2], [3]. Automatic speaker verification
(ASV), which uses voice as a biometric template, is one such
technique. With voice templates, ASV systems can easily be
linked with voice interface systems. However, it has been re-
ported that spoofing attacks (e.g., replay and speech synthesis)
have become a serious problem for ASV systems [4]. As a means
of considering countermeasures for spoofing attacks, ASV Spoof-
ing and Countermeasures (ASVspoof) challenges were held in
2015 [5], 2017 [6], and 2019 [7]. Through these challenges, many
countermeasures using various acoustic features have been pro-
posed [8], [9], [10].

The ASVspoof challenges assume two types of spoofing at-
tacks. One is a physical access (PA) attack, and the other is a
logical access (LA) attack. A block diagram of the PA attack is
shown in Fig. 1. Since the ASVspoof database was recorded by
using single-channel microphones, almost all proposed counter-
measures assume a single-channel situation. Meanwhile, since
recording with multi-channel microphones has become easy, re-
play attack detection (RAD) systems assuming multi-channel
recording have also been proposed [11], [12], [13]. In Ref. [13],
we use generalized cross-correlation (GCC) [14] of stereo signals
for RAD. GCC-based systems focus on non-speech segments, in
which no sound is emitted from humans, but loudspeakers tend
to generate some noise and non-perceptual signals, and these sig-
nals can be easily captured in non-speech segments. GCC-based
methods have achieved high performances in some primitive ex-
periments. However, this performance needs to improve as the
methods are situation-dependent. The GCC of stereo signals is
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Fig. 1 Block diagram of replay attack detection and ASV systems.

regarded as a spatial feature, and it captures different character-
istics compared with spectral features. To utilize the different
aspects of these two features, we fuse the output scores of the
GCC-based and spectral feature-based methods [15]. Addition-
ally, a convolutional neural network (CNN)-based RAD system
that was submitted to ASVspoof 2019 was compared and dis-
cussed with systems using the proposed method. In an experi-
ment, one of the systems achieved a relative error reduction of
72.5% compared with a single-GCC-based method and a relative
error reduction of 96.6% compared with the single-spectral-based
system.

The remainder of this paper is organized as follows. Related
work on using cross-correlation methods is detailed in Section 2.
Section 3 introduces spectral feature-based systems proposed in
ASVspoof, and Section 4 provides the proposed score-fusion
method that uses cross-correlation and spectral features. Sec-
tion 5 describes the experimental setup and the results of detec-
tion tests. Finally, Section 6 concludes this paper.

2. GCC-based RAD Method

2.1 Characteristics of Loudspeakers in Non-speech Seg-
ments

Suppose that we record a speech by two microphones a and b.
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For a genuine speaker, the recorded signals can be represented in
the time-frequency domain:

Ma(t, f ) = Ha(t, f )S (t, f ) + Na(t, f ), (1)

Mb(t, f ) = Hb(t, f )S (t, f ) + Nb(t, f ), (2)

where Ma(t, f ) and Mb(t, f ) are signals observed at each micro-
phone, and S (t, f ) is the sound source. Ha(t, f ) and Hb(t, f ) are
transfer functions from a speaker to each microphone. Na(t, f )
and Nb(t, f ) are background noises. In non-speech segments, the
source signal S (t, f ) is equal to 0. Thus, the signals observed in
non-speech segments include only background noise:

Ma(t, f ) = Na(t, f ), (3)

Mb(t, f ) = Nb(t, f ). (4)

In this case, they are not highly correlated because background
noise is usually diffuse or the direction is not fixed. In compari-
son, the replay attack case is different. Let

Mp(t, f ) = Hp( f )S (t, f ) + Np(t, f ) (5)

be a speech signal recorded by a microphone, p, for a replay at-
tack. When this recorded signal is played by a loudspeaker, the
signals observed by the two microphones are written as

Ma(t, f ) = H′a( f )(Mp(t, f ) + Ns(t, f )) + Na(t, f ), (6)

Mb(t, f ) = H′b( f )(Mp(t, f ) + Ns(t, f )) + Nb(t, f ), (7)

where H′a( f ) and H′b( f ) are transfer functions, and Ns(t, f ) repre-
sents electromagnetic noise generated by the loudspeaker. In non-
speech segments, S (t, f ) = 0 yields Mp(t, f ) = Np(t, f ). Then,
Eqs. (8) and (9) can be rewritten as

Ma(t, f ) = H′a( f )(Np(t, f ) + Ns(t, f )) + Na(t, f ), (8)

Mb(t, f ) = H′b( f )(Np(t, f ) + Ns(t, f )) + Nb(t, f ). (9)

The equations mean that the recorded noise Np(t, f ) and the elec-
tromagnetic noise Ns(t, f ) are still emitted even in non-speech
segments. Then, the noise in non-speech segments can be local-
ized, and GCC values become high. These characteristics help to
distinguish spoofing attacks from genuine utterances. Let r1(t, f )
and r2(t, f ) be zero-mean signals captured by two microphones.
Then, the GCC between them can be calculated as below.

φg(τ; t) =
1
L

∑

f

r∗1(t, f )r2(t, f )

|r∗1(t, f )r2(t, f )|e
j2π f τ/L, (10)

where t = [1, . . . ,T ] and f are the frame and the frequency in-
dex, respectively. τ is the time difference, and L is the frame
length. In a genuine-speaker case, the maximum GCC is low in
non-speech segments because no sound is emitted from a gen-
uine speaker [16]. In the case of a loudspeaker, since recorded
or electromagnetic noises from loudspeakers can be emitted, the
maximum GCC becomes high even in non-speech segments. Fig-
ure 2 illustrates an example of calculating GCC from a genuine
utterance and spoofed one.

Figures 2 (a) and (b) show the waveforms of a genuine utter-
ance and a replayed one and the trajectories of the maximum
GCC for each frame, respectively. The red boxes in Fig. 2 (b)

Fig. 2 GCC examples in genuine and replay attack cases.

denote non-speech segments. According to these trajectories, the
maximum GCCs were low for the genuine utterance, and those
of the replayed utterance were high in the non-speech segments.
Figure 2 (c) shows the GCC of one frame in both a speech seg-
ment and non-speech one for the genuine and the replayed utter-
ances. The red dots denote the maximum GCC in each frame.
In the speech segments, the peak of both utterances had a high
value. In the non-speech segments, the peak of the genuine ut-
terance was low, whereas the peak of the replayed utterance was
high. From this investigation, recorded background and electro-
magnetic noises could be an effective factor in spoofing counter-
measures.

2.2 Spoofing Detection Using Maximum GCC in Non-
speech Segments

The GCC-based method [13] focuses on the trajectories of the
maximum GCC (max-GCC) in non-speech segments for spoofing
detection. The max-GCC for each frame is defined as

φmax(t) = max
τ
φg(τ; t). (11)

As shown in Fig. 2 (b), there were two types of non-speech seg-
ments; “short pauses” appeared during a speaking period, and
“silent segments” appeared both before the start of speaking and
after the end. Therefore, two scores are defined for calculating
the detection score with the maximum GCC. One focuses on
the minimum value from among the maximum GCCs for short
pauses, which is called “GCC(min).” The other focuses on the
average value of the maximum GCCs for silent segments, called
“GCC(avg).” These definitions are expressed as:

GCC(min): Φmin = min
ts≤t≤te

φmax(t), (12)

GCC(avg): Φave =
1
K

∑

Ts≤t<ts ,te<t≤Te

φmax(t), (13)

where ts and te are the start and end points of an utterance, respec-
tively, and K is the total number of frames in segment t. Param-
eters Ts and Te represent the start and end points for calculating
GCC(avg), respectively. The value of these parameters can be set
arbitrarily under the constraints 1 < Ts < ts, te < Te < T , where
the parameter T represents the end point of an utterance. In this
paper, these methods were treated as the GCC-based methods.
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3. Spectral Feature-based RAD Methods

3.1 ASVspoof 2019 Results
For the ASVspoof 2019 PA scenario, 50 systems were submit-

ted [19]. Many countermeasures used DNNs such as the CNN,
light-CNN (LCNN), and residual network (ResNet) as backend
systems [20], [21], [22], [23], [24], [25], [26]. For input features,
spectrogram and phase information [22], [27], linear frequency
cepstral coefficients (LFCC) [18], constant Q cepstral coefficients
(CQCC) [17], Mel-frequency cepstral coefficients (MFCC), in-
verted MFCC (IMFCC) [28], and rectangular filter cepstral co-
efficients (RFCC) [29] were adopted. According to the results,
the systems that obtained the lowest EERs used several kinds of
DNNs for frontend or backend systems and adopted an ensem-
ble of classifiers. As this paper mentioned, the ASVspoof 2019
database is composed only of single channel signals. And, almost
all systems submitted to ASVspoof challenges used spectral fea-
tures only.

3.2 Benchmark System for ASVspoof 2019
The ASVspoof 2019 challenge provided two benchmark sys-

tems that use a Gaussian mixture model (GMM)-based classi-
fier. The GMM of each system is trained with spectral features,
CQCC [17] and LFCC [18], respectively. In the past ASVspoof
challenges, many countermeasures used CQCC and LFCC as ef-
fective spectral features. Thus, they were adopted as benchmark
systems. The features are extracted from input speech signals,
and a log-likelihood ratio (LLR) is calculated by using the GMMs
as below.

LLR = log p(X |H0) − log p(X |H1), (14)

where X = x1, x2, . . . , xn is a speech utterance, and n is a number
of frames. H0 is a null hypothesis, and H1 is an alternative hy-
pothesis, and they correspond to whether X is genuine speech or
spoof speech. p represents conditional probabilities whether X

is H0 or H1. Since the LLR is calculated per frame, the average
of the LLR for an utterance is referred to as “LLR.” In this paper,
the reverse sign of LLR is used as a detection score.

3.3 CNN-GRU for RAD Method
A lot of countermeasures using DNN have been proposed for

ASVspoof 2019 [19]. One of these countermeasures used high-
resolution spectrograms as input features, and CNN and gated
recurrent unit (GRU) were used as a classifier, and this counter-
measure was named CNN-GRU [20]. The DNN architecture of
CNN-GRU is composed of convolutional layers, pooling layers,
ResNet layers, and a GRU layer. For spectrograms that are used
as input features, magnitude, phase spectrogram, power spectral
density (PSD) are extracted. In the result of ASVspoof 2019, the
EER of the CNN-GRU system obtained 2.45% that ranked 10th
of all systems. The authors of CNN-GRU provided a GitHub
URL about the single system that uses a high-resolution magni-
tude spectrogram as an input feature, and ResNet is used as a
classifier. The EER of this ResNet system was 4.79% under the
conditions of the ASVspoof 2019 PA scenario. In this paper, this
single ResNet system was used as one of the spectral feature-

Fig. 3 Flow of the proposed method.

based methods. In this system, the value calculated from the last
node was directly used for a detection score which is referred to
as “CS.” The training manner is the same as what they proposed
in Ref. [20].

4. Score Fusion System

4.1 Motivation
It has been reported that GCC-based methods achieved high

performances, especially in quiet situations [13]. However, this
performance is situation-dependent. Thus, robustness must be
improved for obtaining a stable performance. GCC-based meth-
ods focus on spatial characteristics in non-speech segments.
Through the ASVspoof challenges, many approaches based on
various kinds of acoustic features have been reported [8], [9],
[10]. Since these spectral features are extracted from spectral
characteristics, characteristics different from those of GCC-based
methods can be utilized. Thus, it is expected that fusing the scores
of spatial and spectral feature-based systems can enable the sys-
tems to compensate for each other, improving robustness.

4.2 Procedure
The procedure of the proposed score-fusion system is illus-

trated in Fig. 3. First, an input utterance is separated into speech
and non-speech segments by voice activity detection (VAD).
From all non-speech segments of the input utterance, the GCC
scores Φmin and Φavg are calculated by Eqs. (12), (13). By using
all frames of speech segments in an input utterance, the LLR and
CS were calculated under the manner of Sections 3.2 and 3.3, re-
spectively. Each score from the non-speech or speech segment is
normalized by using z-score normalization:

z =
I − μ
σ
, (15)

where z is the normalized score, I is the input score, and μ and σ
are the mean and the standard deviation of scores in training data.
Finally, the added scores are used as a detection score. We show
an example of the detection score S with GCC(min) and the LLR
of CQCC:

S =
Φmin − μΦmin

σΦmin

+
LLRCQ − μLLRCQ

σLLRCQ

, (16)

where μΦmin and μLLRCQ are the averages of Φmin and LLRCQ, re-
spectively. Also, σΦmin and σLLRCQ are the standard deviations.

5. Experiments

To evaluate the performance of the score-fusion system, exper-
iments on replay attack detection were carried out.

5.1 Database
Figure 4 illustrates the testing flow of the experiments in both
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Fig. 4 Testing flow and recording process.

genuine and spoof cases. There were two types of recording:
spoof and test. Although many recording situations could be con-
sidered, “Quiet” and “Noisy” were assumed for our experiments.
“Quiet” means there was no extra background noise such as an
air conditioner in a common space. “Noisy” represents the pres-
ence of a stationary sound, such as an air conditioner running on
low, and a non-stationary sound, such as a TV program playing
at a moderate volume. To construct databases of stereo signals
for replay attack detection, all situations based on the above as-
sumptions were performed. Additionally, several kinds of micro-
phones and loudspeakers were prepared. To analyze each aspect
of the situations, two databases were used.

The first database (DB1) was used for the comprehensive anal-
ysis of various situations in terms of the recording processes. For
DB1, two types of microphones were used for spoof recording:
AKG P170 (AKG) and TAMAGO-03 (TMG). The AKG is a
condenser microphone and has strong directivity. The TMG has
omnidirectional microphones with weak directivity to allow flex-
ibility in terms of the speaker’s position. For the TMG, two of the
eight microphone channels were used, whereas two AKGs were
installed in parallel and facing in the same direction. For replay
attacks, four different types of loudspeaker were used, Elecom
LBT-SPP300 (Elecom), Apple iPhone 6s (iPhone), Sony SRS-
ZR7 (Sony-S), and Creative Inspire 2.0 1300 (CI). The Sony-S is
300-mm wide, 86-mm deep, and 93-mm high. It generates a non-
perceptual electromagnetic noise in silent segments of replayed
attacks. The CI is comprised of two separate stereo loudspeak-
ers. Each speaker is 99-mm wide, 131-mm deep, and 221-mm
high. The Elecom is a portable loudspeaker and tends to gener-
ate an electromagnetic noise when in use. The iPhone features
no distinctive electromagnetic noise but produces a slightly more
muffled sound than the original sound. For all the data in DB1,
the TMG was also used for the testing part.

For the second database (DB2), we assume that spoof record-
ing was carried out secretly. Therefore, only noisy recordings
for spoofing were prepared. For DB2, two types of microphones
were used for spoof recording, a Sony C-357 (Sony-C, a con-
denser microphone) and the TMG. Two Sony-Cs were installed
in parallel and facing the same direction. For replay attacks, four
different types of loudspeakers were used: the Elecom, Sanwa
Supply MM-SPL8UBK (SNW), JBL Professional Control 2P
(JBL), and Huawei P20 Lite (Huawei). The SNW is a small loud-
speaker powered by USB. The JBL is a desktop loudspeaker. It is
159-mm wide, 143-mm deep, and 235-mm high. The Huawei is
a smartphone and has the same features as the iPhone. The TMG

or the Sony-C was used for the detection test for DB2.
To analyze the effects on the combination of the environments,

four situations were carried out:
(N-Q) Noisy-Quiet: Spoof and test recordings carried out in

noisy and quiet environments, respectively.
(N-N) Noisy-Noisy: Both recordings carried out in a noisy en-

vironment.
(Q-Q) Quiet-Quiet: Both recordings carried out in a quiet en-

vironment.
(Q-N) Quiet-Noisy: Spoof and test recordings carried out in

quiet and noisy environments, respectively.
For DB1, all four situations were carried out. The average signal-
to-noise ratio (SNR) of DB1 was set to about 18 dB. For DB2,
only N-Q and N-N were carried out. The average SNR of DB2
was set to about 14 dB. Comparing these situations with the
ASVspoof 2019 settings, the room size for DB1 and DB2 was
5–10 square meters, which corresponded to ASVspoof 2019 EN-
VIRONMENT ID S = b. The Talker-to-ASV distance for DB1
was 10–50 cm, which corresponded to ENVIRONMENT ID D s
= a, and that for DB2 was 50–100 cm, which corresponded to
ENVIRONMENT ID D s = b. The Attacker-to-ASV distance
was about 10 cm for DB1 and DB2, which corresponded to AT-
TACK ID D a = A.

DB1 consisted of 40 genuine speech samples uttered by two
male and two female speakers and 640 spoofing attack samples
obtained by replaying the genuine speech samples. DB2 con-
sisted of 150 genuine speech samples uttered by three male and
two female speakers and 2,400 spoofing attack samples obtained
by replaying the genuine speech samples. For DB1, all speech
samples were sampled at 16 kHz. For DB2, different recording
conditions were used for each microphone for spoof recording.
The samples recorded by TMG were sampled at 16 kHz, and
those recorded by Sony-C were sampled at 48 kHz.

The ASVspoof 2019 database for the PA scenario contained
three parts; training, development and test. From this database,
only training data was used for training the ResNet system. The
training set included 48,600 spoof utterances and 5,400 genuine
utterances.

5.2 Comparison Methods
As a benchmark system, we used two GMM-based systems

with CQCC and LFCC as spectral features, respectively. For
the training of the benchmark systems, we used the same man-
ner as defined in ASVspoof 2019 for 16-kHz sampled conditions
and the parameter of the systems was simply tripled for 48-kHz
sampled conditions. To train each GMM, we used 900 genuine
utterances and 900 replayed utterances from the Voice Liveness
Detection (VLD) database [11]. In Ref. [11], the proposed VLD
method required stereo signals for a detecting genuine speech
from a replayed one. All utterances in the VLD database were
recorded through two AKGs, and the spoof utterances were re-
played by a Bose 111AD loudspeaker. The mean and standard de-
viation scores for z-score normalization were calculated with the
VLD database. In all experiments using the GCC-based methods,
hand-labeled data was used for the start point ts and the end point
te of each utterance. For GCC(avg), the average time was 0.5
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Table 1 System performance in terms of EER for DB1 and DB2 (TMG: 16 kHz, Sony-C: 48 kHz).

DB1 DB2
Testing microphone TMG TMG Sony-C

Situation N-Q N-N Q-Q Q-N N-Q N-N N-Q N-N
Single system Score

GCC(min) [13] Φmin 2.73 6.07 4.09 7.27 9.80 20.56 3.79 15.61
GCC(avg) [13] Φavg 4.32 6.00 4.20 7.39 4.88 7.86 1.25 5.51

CQCC [17] LLRCQ 37.12 35.24 39.70 33.00 39.27 40.30 20.51 13.93
LFCC [18] LLRLF 39.68 38.74 39.75 37.45 43.50 43.39 10.67 7.87
ResNet [18] Classification Score 48.75 47.40 44.62 42.70 46.40 48.32 17.12 20.76

Fusion system
GC(min)-CQ Φmin + LLRCQ 5.00 4.74 7.61 6.67 11.83 23.56 3.29 10.04
GC(min)-LF Φmin + LLRLF 4.09 3.89 5.91 5.50 15.81 24.64 2.33 5.98
GC(min)-RN Φmin + CS 10.50 10.48 10.65 14.40 25.03 35.96 3.33 10.33
GC(avg)-CQ Φavg + LLRCQ 11.55 8.40 5.42 7.88 7.70 13.54 0.98 4.22
GC(avg)-LF Φavg + LLRCQ 12.09 8.20 2.73 7.00 7.42 15.18 0.30 2.56
GC(avg)-RN Φavg + CS 11.22 9.55 9.00 12.20 17.56 28.05 0.89 4.13

GC(min)-GC(avg) Φmin + Φavg 2.29 2.86 2.86 4.33 5.00 10.06 1.41 7.00
CQ-LF LLRCQ + LLRLF 37.66 35.55 39.24 35.85 41.08 42.68 13.33 9.12
CQ-RN LLRCQ + CS 41.52 36.17 38.46 33.63 46.81 46.90 8.76 8.73
LF-RN LLRLF + CS 47.11 43.17 39.50 38.80 46.22 46.83 6.35 5.33

GC(min)-CQ-LF Φmin + LLRCQ + LLRLF 10.00 8.51 11.18 9.79 15.78 29.42 3.62 5.56
GC(avg)-CQ-LF Φavg + LLRCQ + LLRLF 13.77 12.67 8.57 10.52 10.56 19.43 1.26 3.24

GC(min)-GC(avg)-CQ Φmin + Φavg + LLRCQ 3.64 1.67 3.24 3.33 6.29 12.58 0.15 5.79
GC(min)-GC(avg)-LF Φmin + Φavg + LLRLF 2.22 1.67 1.82 2.22 7.37 13.99 0.00 2.53
GC(min)-GC(avg)-RN Φmin + Φavg + CS 4.69 4.41 4.50 5.36 14.00 25.11 0.89 5.25

GC(min)-GC(avg)-CQ-LF
Φmin + Φavg 4.09 2.78 4.71 3.75 9.40 15.91 0.15 3.35

+ LLRCQ + LLRLF

GC(min)-GC(avg)-CQ-LF-RN
Φmin + Φavg 3.82 3.41 5.83 4.48 13.31 23.31 0.15 2.15

+ LLRCQ + LLRLF + CS

GC: GCC, CQ: CQCC, LF: LFCC, RN: ResNet

seconds from Ts to ts and te to Te. For the GCC-based methods,
the frame length was set to 256 points for 16-kHz sampled sig-
nals and 1,024 points for 48-kHz sampled signals. For the score-
fusion systems, all combinations of the GCC-based methods and
the spectral feature-based methods were compared as shown in
Table 1. The equal error rate (EER) was used for an evaluation
measurement.

Since the GCC-based methods require stereo signals, the score-
fusion systems cannot be evaluated with the ASVspoof database.
Instead of adopting the ASVspoof 2019 database for the sys-
tems, the ResNet system was used with the evaluation data of
this experiment. The authors of Ref. [20] provided the soft-
ware for a single ResNet system on GitHub. For training the
ResNet system, the ASVspoof 2019 database was used. Since
the ASVspoof 2019 database was sampled at 16 kHz, the data
recorded by SONY-C was downsampled from 48 kHz to 16 kHz
only for the ResNet system.

5.3 Results
Table 1 shows the EERs of each spoofing detection system for

DB1 and DB2. First, the results of DB1 are discussed. Com-
paring situation N-Q with N-N or Q-Q with Q-N, it can be seen
that the EERs of the GCC-based single systems were higher in
the noisy recording for testing than those in the quiet recording.
While most of the single GCC-based systems obtained low EERs,
the EERs of CQCC, LFCC and ResNet were comprehensively
high. One reason was the mismatches between the training data
and the test one. The domain of ASVspoof 2019 fairly differs
from our databases (DB1 and DB2). Although the VLD database
was recorded with stereo signals, the recording conditions and
the other details were not same from DB1 and DB2. As consider-

ing tendency between situations, opposite to the GCC-based sys-
tems, the performances of CQCC, LFCC, and ResNet in the noisy
recording for testing were better than those in the quiet testing
recording. For example, comparing situation N-Q with N-N or Q-
Q with Q-N, it can be seen that the EERs of the machine learning-
based systems in the situations N-Q and Q-Q were higher than
those in the situation N-N and Q-N. In the case of the score fu-
sion with two systems, the combination of two GCC-based meth-
ods GC(min)-GC(avg) achieved lower EERs than those of two-
system combinations for all situations. The system stability in-
creased when using both scores of the GCC-based systems. In the
case of the score fusion with three systems, GC(min)-GC(avg)-
LF achieved the lowest EERs for all situations. In comparison,
the score fusion with four systems could not improve the perfor-
mance more than GC(min)-GC(avg)-LF. This indicates that the
characteristics extracted by CQCC were not suitable for combi-
nation with the spatial features, but LFCC was suitable for this.

Next, the results with DB2 in Table 1 are discussed. In the
case of using TAMAGO for test recording, all score-fusion sys-
tems had lower performances than the single GCC(avg). For the
TAMAGO recording, the SNRs of almost all test utterances were
lower than the average SNR. In Ref. [13], it was also discussed
that a test recording requires a sufficient enough SNR in order
for GCC-based methods to perform well. This means that when
SNRs are low, it is difficult to detect spoofing attacks as well as
CQCC and LFCC-based methods and ResNet system. In con-
trast, in the case of using Sony-C for test recording, fusion sys-
tems GC(min)-GC(avg)-LF yielded the lowest EERs compared
with the single GC(avg) the same as in the results with DB1. In
this case, the SNRs were almost the same as those of DB1. From
these results, if the quality of the testing microphone is high and
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Fig. 5 DET curves of each single system and combination system in the
N-Q situation with Sony-C in DB2.

Table 2 System performance in terms of EER with Sony-C for DB2 down-
sampled to 16 kHz.

Testing microphone: SONY-C 16 kHz only 16 kHz and 48 kHz
Situation N-Q N-N N-Q N-N

Single system
GC(min) [13] 1.28 10.76 1.28 10.76
GC(avg) [13] 1.21 4.91 1.21 10.76

CQ [17] 44.67 45.84 20.51 13.93
LF [18] 41.74 43.43 10.67 7.87
RN [20] 17.12 20.76 17.12 20.76

Fusion system
GC(min)-CQ 3.11 18.02 0.72 7.72
GC(min)-LF 3.25 18.04 0.48 4.74
GC(min)-RN 1.33 8.89 1.33 8.89
GC(avg)-CQ 2.44 6.56 0.80 3.14
GC(avg)-LF 3.03 5.20 0.36 1.33
GC(avg)-RN 0.92 4.29 0.92 4.29

GC(min)-GC(avg) 0.15 6.03 0.15 6.03
CQ-LF 41.98 45.14 13.33 9.12
CQ-RN 23.42 23.81 8.76 8.73
LF-RN 22.95 20.94 6.35 5.33

GC(min)-CQ-LF 8.72 23.18 1.20 5.07
GC(avg)-CQ-LF 4.49 9.23 0.00 2.13

GC(min)-GC(avg)-CQ 0.71 7.00 0.00 2.48
GC(min)-GC(avg)-LF 0.91 6.18 0.00 1.33
GC(min)-GC(avg)-RN 0.00 4.22 0.00 4.22

GC(min)-GC(avg)-CQ-LF 1.14 7.75 0.00 1.89
GC(min)-GC(avg)-CQ-LF-RN 0.44 5.44 0.00 1.13

a situation in which a suitable SNR can be arranged, the score-
fusion system could perform well without situation dependence.
Since conditions are prepared by developers who want to pro-
tect systems from replay attacks, the systems using the proposed
method can be regarded as a realistic technique. Figure 5 shows
DET curves of each single system and a combination system in
the N-Q situation with Sony-C in DB2. In the case of the combi-
nation methods, the weakness of the single systems was relaxed
with the score fusion. These results show the fusion systems were
effectively performed.

From our primitive experiments, the performance of the GCC-
based methods depended on sampling frequencies. To analyze
the effects of the sampling frequency on the score fusion sys-
tems, DB2 using SONY-C as test microphone was downsampled
from 48 kHz to 16 kHz. Table 2 shows the EERs of each spoof-
ing detection system for downsampled DB2. From the results

of the rows “16 kHz only” in Table 2, the EERs of single GCC-
based methods were lower in downsampled DB2 than in origi-
nal DB2. However, the EERs of CQCC and LFCC were dras-
tically increased in downsampled DB2. Due to the influence of
single performances, the EERs of fusion systems which included
CQCC or LFCC, such as GC(min)-CQ-LF and GC(avg)-CQ-LF,
gained as well. On the other hand, the EERs of the fusion sys-
tems which included the GCC-based methods mainly, such as
GC(min)-GC(avg), GC(min)-GC(avg)-CQ, GC(min)-GC(avg)-
LF and GC(min)-GC(avg)-RN, reduced compared with those in
original DB2. From these results, the spectral feature-based sys-
tems were adequate to use a higher sampling rate. Therefore,
we performed some experiments under the adequate conditions
for each system. The columns “16 kHz and 48 kHz” in Table 2
mean that the GCC-based methods and ResNet performed with
downsampled DB2 at 16 kHz, and CQCC and LFCC were car-
ried out with original DB2 sampled at 48 kHz. The results of
“16 kHz and 48 kHz” show the fusion systems in the adequate
conditions can improve the performances compared with those in
rows “16 kHz only.” Especially, the fusion system with all meth-
ods GC(min)-GC(avg)-CQ-LF-RN achieved the lowest EERs in
both situations. And, “GC(min)-GC(avg)-LF” was the second
best in both situations.

Considering the results of the Tables 1 and 2, the fusion sys-
tem GC(min)-GC(avg)-LF performed the best in all situations.
Thus, the proposed method using spatial and spectral feature, es-
pecially LFCC, outperformed the conventional systems and ob-
tained a stable performance under several real situations.

6. Conclusion

We proposed a spatial and spectral feature-based RAD method.
In previous work, as spatial-based methods, we proposed GCC-
based RAD methods. While GCC-based methods have been re-
ported to perform well under primitive experiments, the meth-
ods still suffer from situation dependency. Since spectral features
extract different characteristics compared with GCC-based meth-
ods, it is expected that fusing the output scores of spatial and
spectral feature-based methods can enable the methods to com-
pensate for each other and improve robustness. From the exper-
imental results, it was confirmed that the systems using the pro-
posed method achieved the lowest EERs in almost all situations.

In future work, the proposed methods will also be combined
with other spoofing countermeasures. Additionally, we will con-
sider to use more complicated models such as a DNN-based mod-
eling approach for the GCC-based method, and evaluation tests
will be performed under a large amount of data.
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