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Abstract—This research proposes a sensing system 

to collect bus crowdedness data by detecting 

passengers' getting off and on events in a bus via 

deep learning-driven image processing on video data 

of passengers. The system is designed to be deployed 

to and conduct real-time object recognition and 

object tracking on a bus. In our prototype system, 

object recognition is implemented based on yolov3 

with Darknet53, and object tracking is implemented 

by combining object recognition, Kalman Filter 

(LQE) and Hungarian Algorithm. The performance 

of the system is evaluated experimentally using 

driving recorder video data taken from a bus. 

Index Terms—Object Detection, Bus Sensing, 

Deep Learning, Smart Cities, Image Processing. 

Ⅰ.  INTRODUCTION 

  In 2020, COVID-19 pandemic has greatly affected 

people's lives over the whole world. Social distancing 

is widely considered as an important practice to 

slowing down the spread of the COVID-19 virus. 

While we can avoid human contact in many situations, 

it is hard to keep sufficient distance in crowded public 

transportation vehicles. Most public transport 

operators have put forward some common 

countermeasures [1], but there is still no effective 

way to avoid the problem of crowded public vehicles. 

Congestion means crowded buses, the crowding 

means closer social distance, which makes it more 

susceptible to infection virus. For a bus service, 

besides the major goal of carrying passengers around, 

providing a comfortable and safe travel experience 

for passengers is also an important business 

consideration. Bus comfortability contains many 

aspects, among which passenger density inside a bus 

is the most important one. The crowdedness can 

directly affect the comfortability of people in the bus 

[2]. There is increasing interest in crowdedness to 

reduce the risk of infection in the COVID-19 

environment. In a survey of the use of high-speed 

buses, "In order to prevent coronavirus infection," 

"because of the risk of infection in cramped vehicles," 

and other concerns about taking the bus gathered. 

Many people feel uneasy about being unable to avoid 

a "dense" environment for a long time. Figure 1 

summarizes the result of the survey of taking a bus 

and it is notable that there is a lot of concerns about 

bus environment [3]. 

 

 

Fig. 1. In the survey, the question "Why did you use the 
highway bus less often?" was asked. In the answers to the 
survey, there were many concerns about getting on the bus, 
such as "to prevent coronavirus infection" and "because 
there is a risk of infection in a small bus". It seems that 
many people are worried about the environment where 
"denseness" cannot be avoided. 

 

  From the current practical situation, it is a feasible 

method to obtain the crowdedness degree directly by 

measuring the number of people through the camera 

inside the bus and control the crowdedness with the 

data of passenger’s density. Traditional approaches to 

obtain passenger density rely on field investigation. 

There are two drawbacks. First, it involves expensive 

labor efforts. Nevertheless, field investigation is not 

scalable: it is difficult to maintain a record staff all 

day in every station. Second, it is hard to identify the 

whole trip of a single passenger. As a consequence, it 

is hard to estimate the effectiveness of the new 

schedule [4]. With the development of technology, 
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machine learning, and computer vision came out, 

methods of counting people by image processing 

have been continuously proposed [5,6,7,8]. In [5,6,7] 

the images were analyzed and processed directly to 

obtain the results. In [8], the machine learning 

method was used to calculate the number of people 

through the trained model.  

In the above research, it can be seen that relevant 

technologies have been relatively mature, but many 

methods have limitations on the camera angle and the 

special features acquired. We propose a method that 

can detect in real time the crowdedness of a bus and 

can be applied to all images and environments in a 

bus. On the one hand, it can make passengers feel 

more safely to choose the right time to get on the bus 

and know the degree of crowdedness. On the other 

hand, it can also tell the operating company to 

allocate the vehicle resources reasonably. In this 

study, we will discuss, experiment, and compare the 

realization methods of the crowdedness detection. 

The rest of paper is organized as follows. Section 

II will make a briefly review of related work. Section 

III will introduce the image processing algorithm. 

Section Ⅳ will show the experimental evaluation and 

conclude this paper in Section Ⅴ. 

II.  RELATED WORK 

A. Crowdedness Detection 

About the crowdedness detection, there has been 

much research realized it. In the implementation of 

the methods are different, mainly divided into image 

analysis [9] and sensors [10] to achieve. Tracklet and 

Mean-shift are used in [9] to track the special spot of 

people, so as to realize the number detection. It also 

has a good performance in the results. In the study of 

[10], the detection and counting were carried out 

through the LiDAR sensor. The position of the sensor 

was set like Figure 2, and the information obtained 

from the environment is only three coordinates within 

a fixed range, that was relatively single. We will also 

use image processing in this project, but it is a little 

different from [9]. We do this via object detection. 

(a) Device of front door    (b) Device of rear door 
Fig.2. Installation of measuring device [10] 

B. Object Detection Model 

Object recognition using Darknet network or 

Faster RCNN network combined with YOLO [11] is 

the most commonly used technique in point-to-point 

real-time target detection. The YOLO model is quite 

easy to use, has great performance, and has a good 

ecology. It is called an end-to-end object detection 

method in the sense that the deep neural network 

handles it from the beginning to the end. By making 

it end-to-end, you can benefit from optimization by 

deep neural network even when extracting a region 

with high objectness, and because the bottleneck of 

multi-stage configuration is eliminated, it is faster 

and higher. Nowadays, an accurate and fast detection 

method has become possible. It's also easy to see the 

results in the Figure 3. This is also why it becomes a 

popular implementation method.  

We will use the above-mentioned YOLO model as 

the basis of our target detection in this study. We will 

explain how we implement this in the next section. 

Fig. 3. Detection speed of YOLOv4 by 1080Ti [12] 

 

III.  IMAGE PROCESSING ALGORITHM 

In this section, we will introduce the workflow, 

algorithm, and the architecture of the system. 

A. Overview 

The purpose of this study is to make it safer for 

passengers to take the bus during the coronavirus. We 

will design a method to collect the image data from 

camera on the bus and then analyze the crowdedness 

of a bus. The algorithm of this project is consisted of 

detection, tracking, and counting. The data used in the 

experiment was taken from actual bus cameras. There 

are two cameras in the bus. One is positioned in the 

front to toward backwards, and the other is positioned 

in the center toward the back door. The camera setting 

position is shown in the Figure 4.  
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Fig.4. Camera Setup of a bus. The images of getting on 
the bus will be recorded by the camera marked in blue, 

and the images of getting off the bus will be recorded by 
the camera marked in red. 

After our analysis of the interior images, we think 

there are several key points to be solved. First of all, 

there should be a specific detection method for the 

detection. Secondly, the crowded bus should be 

considered in the detection, in which case only the 

head can be detected. Therefore, we currently plan to 

identify passengers by detecting their heads. We 

decide that by counting the number of passengers in 

front and back doors respectively, the number of 

passengers can be added or subtracted to infer the 

real-time number of people in the bus, so as to get the 

crowdedness. In this process, we also need to 

determine the statistical method. The above will be 

described in detail in the next sections. 

B. System Architecture 

This project consists of two cameras on the bus, a 

cellular module, and the image processing computer. 

With regard to the cameras, as described above and 

in Figure 4, after capturing data from the two cameras 

respectively, the images and videos are analyzed. At 

present, we are still using ordinary notebook GPU 

(NVIDIA RTX2060 Max-Q) for image processing 

and analysis. Our system uses the Linux system as the 

base operating system, the Python Script as the 

operating programs. Since the performance of the 

GPU is acceptable, the deep learning networks 

currently used are still relatively large now. After the 

deep learning network model is optimized, it will be 

loaded into edge computing platforms such as Jetson 

Nano. Therefore, the theoretical design should be to 

first capture the image and analyze it in the embedded 

computer installed in the car, and finally transmit the 

obtained data back through wireless communication. 

 

TABLE 1 
TABLE OF NOTATIONS OF DETECTION 

Notation Description 

𝜏𝑖𝑜𝑢 The IoU evaluation index of object detection. 
Measure the degree to which the prediction 
box overlaps with the true box. 

𝜏𝑠𝑐𝑜𝑟𝑒  The detection result score is used as detection 
threshold. 

 

C. Detection 

In the detection process, we use the DarkNet-53 

convolutional neural network with residual network. 

Each convolution part of DarkNet-53 uses the unique 

DarknetConv2D structure, the L2 regularization is 

performed during each convolution, and the Batch 

Normalization Standardization and Leaky ReLU are 

performed after convolution. Ordinary ReLU sets all 

negative values to zero, while Leaky ReLU assigns a 

non-zero slope to all negative values. It looks like as 

follows: 

𝑦𝑖 =  {

𝑥𝑖      (𝑥𝑖 ≥ 0)
 

𝑥𝑖

𝑎𝑖
      (𝑥𝑖 < 0)

          (1) 

 

In the feature utilization, yolo extracts multiple 

feature layers for target detection. A total of three 

feature layers are extracted. The three feature layers 

are located in different positions of DarkNet-53. 

After the corresponding convolution processing of 

the three feature layers, a part is used to output the 

prediction result corresponding to the feature layer, 

and the other part is used to perform deconvolution 

and combine with other feature layers. In this way, 

the prediction result could be obtained. 

In the object detection of this project, we need to 

detect the humans’ heads. Since there is currently no 

dataset specifically for head detection in vehicles, we 

use the dataset of the lecture classroom. We use the 

VOC dataset of heads in lecture [13] from South 

China University of Technology. We have trained the 

Part A of dataset on 1800 samples, evaluation on 200 

samples, with batch size 4 for freezing layers training 

and 2 for entire layers training. According to the 

mAP(Average Precision) test, we adjust parameters 

𝜏𝑖𝑜𝑢 and 𝜏𝑠𝑐𝑜𝑟𝑒 to get the best accuracy of this model. 

 

D. Tracking 

The multi object tracking algorithm is based on 

YOLO object detection algorithm and imported 

Kalman Filter and Hungarian Algorithm.  
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The Kalman filter is an efficient recursive filter 

that estimates the internal state of a linear dynamic 

system from a series of noisy measurements. It is 

used in a wide range of engineering and econometric 

applications from radar and computer vision to 

estimation of structural macroeconomic models [14]. 

The Kalman filter includes two stages: prediction and 

update. In the prediction stage, the filter uses the 

estimate of the previous state to make an estimate of 

the current state. In the update stage, the filter 

optimizes the predicted value obtained in the 

prediction state by using the observed value of the 

current state to obtain a more accurate new estimate. 

The calculation of Kalman filter is represented by 

the following variables: 

 
TABLE 2 

TABLE OF NOTATIONS OF KALMAN FILTER ALGORITHM 

Notation Description 

�̂�𝑘|𝑘  The posteriori state estimate at time 𝑘 given 
observations up to and including at time 𝑘; 

𝐏𝑘∣𝑘 The posteriori estimate covariance matrix (a 
measure of the estimated accuracy of the state 
estimate). 

𝐅𝑘 The state transition model which is applied to 

the previous state 𝐱𝑘−1. 

𝐁𝑘 The control-input model which is applied to 

the control vector 𝐮𝑘; 

 

Kalman Filter Algorithm [14]: 

Predict: 

Predicted state estimate: 

�̂�𝑘∣𝑘−1 = 𝐅𝑘�̂�𝑘−1|𝑘−1 + 𝐁𝑘𝐮𝑘 

Predicted estimate covariance: 

𝐏𝑘∣𝑘−1 = 𝐅𝑘𝐏𝑘−1∣𝑘−1𝐅𝑘
T + 𝐐𝑘 

Update: 

Innovation or measurement pre-fit residual: 

�̃�𝑘 = 𝐳𝑘 − 𝐇𝑘�̂�𝑘∣𝑘−1 

Innovation (or pre-fit residual) covariance: 

𝐒𝑘 = 𝐇𝑘𝐏𝑘∣𝑘−1𝐇𝑘
T + 𝐑𝑘 

Optimal Kalman gain: 

𝐊𝑘 = 𝐏𝑘∣𝑘−1𝐇𝑘
T𝐒𝑘

−1 

Updated (a posteriori) state estimate: 

�̂�𝑘∣𝑘 = �̂�𝑘∣𝑘−1 + 𝐊𝑘�̃�𝑘 

Updated (a posteriori) estimate covariance: 

𝐏𝑘∣𝑘 = (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘∣𝑘−1 

 

The calculation process of this project is as 

follows: the image passes through the detector to get 

the coordinate frame of the human’s head, then 

calculates the position of the center point  (𝑥0, 𝑦0) , 

inputs this (𝑥0, 𝑦0) to the tracker, which learns and 

updates, finally gives the prediction, and then repeats 

the executes to detect all the frames. The workflow of 

tracking is showed as Figure 5. 

Fig.5. The workflow and the architecture of object 
tracking. 

E. Counting 

After the people’s heads have been detected and 

tracked, we could get the center points and trackers 

of passengers’ heads. In the process of counting, we 

will get the coordinates of the previous frame and the 

next frame of each person's head. We set a line at the 

entrance to get on and get off as a criterion for getting 

on and getting off. At the door of getting on, (from 

the bus outside) when the head crossed the line, the 

count is increased by one, at the door of getting off 

(from the bus inside) when the head crossed the line, 

the count is reduced by one, so as to infer the real-

time number of people in the bus. 

Ⅳ.  EXPERIMENTAL EVALUATION 

A. Performance Evaluation 

  In this section, we will evaluate the real-time 

performance of detection and tracking. At present, we 

have run this algorithm on both ordinary laptop 

graphics card platform and Jetson Nano platform. 

The video data used in the evaluation experiment 

came from the videos of buses’ monitors from 

Kanagawa Chuo Kotsu Co., Ltd. The videos have a 

resolution of 640x480 and a frame rate of 7.52 frames 

per second. On the laptop graphics card platform, it 

can be detected completely in real time, and the frame 

rate can reach 15~20fps. In Jetson Nano platform, 

due to the limitations of memory size and hardware, 
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it can run at about 5fps, which can basically meet the 

minimum detection requirements. 

 
TABLE 3 

THE RATE OF FRAME PROCESSING 

Platform DarkNet-53 yolov3 DarkNet-53 tinyv3 

Laptop GPU 19.5 fps 31.2 fps 

Jetson Nano 3.2 fps 4.9 fps 

 

B. Model Training and Detection Evaluation 

  In this section, we explain the process of model 

training and the evaluation of the model's detection 

performance. In model training, we conduct training 

by importing data, and mainly pay attention to the 

change of loss value. In the first several epochs, we 

first froze the training of partial weights, and put 

more data into the network parameters of the later 

part of the training, so that both time and resource 

utilization could be greatly improved. In the process 

of model training, loss is as high as 6000 at the 

beginning and finally converges to about 86, and the 

modified data is not normalized. Overall, the loss 

curve shows a downward and convergent trend. The 

curve is showed as Figure 6. 

Fig.6. Curve of training evaluation. The figure shows the 

changes of loss and valuation loss during model training. 

 

After training with 1800 datasets, we use another 

200 datasets to test the average precision(AP) of this 

model and evaluate the detection performance of this 

model. We combined IoU and threshold to conduct 

mAP test. For the mAP evaluation method, there are 

the following evaluation parameters and specific 

methods. The 𝜏𝑖𝑜𝑢 is to measure the degree to which 

the prediction box overlaps with the true box. 

IoU(𝜏𝑖𝑜𝑢) =
𝑆∩

𝑆∪
       （2） 

𝑆∩  is the overlap region between the prediction 

box and the actual box, and 𝑆∪  is the total region 

occupied by the prediction box and the actual box. 

Then we evaluated the Precision and Recall of the 

model. Precision is the ratio of what the classifier 

considers to be positive classes to what the classifier 

considers to be positive classes. Recall is the 

proportion of the part that the classifier considers to 

be a positive class and is indeed a positive class to all 

the truly positive classes. We define them by the 

following abbreviations, and evaluate the AP based 

on approximated average precision [15]. 

TABLE 4 

TP True Positives 

TN True Negatives 

FP False Positives 

FN False Negatives 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
      𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    (3) 

             𝐴𝑃 = ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)𝛥𝑅𝑒𝑐𝑎𝑙𝑙(𝑘)          (4)

𝑁

𝑘=1

 

Finally, we evaluated the accuracy and stability of 

the model by testing the same data under multiple 

groups of participants. We initially started the test 

with 𝜏𝑖𝑜𝑢 = 0.3 and 𝜏𝑠𝑐𝑜𝑟𝑒 = 0.5. Then we fixed the 

value of 𝜏𝑖𝑜𝑢  and changed the threshold 𝜏𝑠𝑐𝑜𝑟𝑒  to 

detect the change of AP. At the same time, we also 

fixed the threshold, changed the 𝜏𝑖𝑜𝑢, and observed 

the change trend of AP, as shown in the following 

tables: 

 
TABLE 5 

AP OF DETECTION VS. 𝜏𝑠𝑐𝑜𝑟𝑒  WHERE 𝜏𝑖𝑜𝑢 = 0.3 

𝜏𝑠𝑐𝑜𝑟𝑒  0.10 0.20 0.30 0.40 0.50 0.60 

AP 61.04 60.33 59.61 58.86 57.90 56.53 

 
TABLE 6 

AP OF DETECTION VS. 𝜏𝑖𝑜𝑢 WHERE 𝜏𝑠𝑐𝑜𝑟𝑒  = 0.3 

𝜏𝑖𝑜𝑢 0.10 0.20 0.30 0.40 0.50 

AP 56.33 57.45 57.90 58.26 58.47 

 

From Table 5 and Table 6, we can see that different 

parameters have no great influence on the final 

detection accuracy. IoU has little influence on the 
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final detection threshold, while confidence has more 

influence on the threshold. For the crowded bus, in 

order to avoid the coincidence error of the detection 

box caused by too small IoU, and finally lead to the 

detection error, we choose the larger IoU at 𝜏𝑖𝑜𝑢 = 0.3. 

At the same time, we can see from the table that the 

lower the threshold is, the more effective the 

detection is. Moreover, since we use a special 

crossline counting method, if there is no detection for 

static objects, it can be ignored. Therefore, we choose 

a smaller confidence at 𝜏𝑠𝑐𝑜𝑟𝑒  = 0.1. 

 

C. Actual Operation Evaluation 

 The project has not yet been run directly on the 

actual bus, but we used historical video to simulate 

the actual test as Figure 7 below.  

Fig.7. Tests that simulate real bus interior conditions. 

 

In the actual simulation test, we define a tracking 

rate 𝑡𝑟 to evaluate. The tracking rate is the number 

of frames that are continuously tracked from the 

beginning of recognition to the end of recognition. 

We assume that all frames are 𝑡𝑎 and that the number 

of successfully tracked frames is 𝑡𝑠. As shown in the 

following equation. 

                                     𝑡𝑟 =
∑ 𝑡𝑠

∑ 𝑡𝑎  
                                (5) 

 
TABLE 7 

TRACKING RATE 𝑡𝑟 

Situation Getting On Getting Off 

𝑡𝑟 85.95% 90.54% 

 

In the detection, we found that because the camera 

of the back door was covered by the handles and 

railings of the bus, tracking loss often occurred. 

However, the camera at the front door do not have 

this problem, so the tracking rate is relatively high. 

So, we have to avoid that when we draw a decision 

line. In the video used for detection, a total of 10 

people get on the bus and 8 are detected in the end. 

There are 8 people getting off the bus and 9 are 

detected in the end. One of them fails the detection 

because he is wearing a hat. It can be seen from the 

experiment that the model and the method have 

certain detection ability. 

 

D. Future Work 

From the experiments we have written above, we 

can see that our accuracy is still to be improved, and 

we have not yet run it on edge computing devices, so 

we have three areas to work on in the future. On the 

first hand, we should continue to improve the 

precision and optimize the detection rate by changing 

the model structure or optimizing the neural network 

layers. The second aspect is to train more datasets and 

special data to improve the recall rate, such as 

passengers wearing hats and masks. The third aspect 

is to optimize the running speed of the model by 

pruning, pooling, distillation, and other methods to 

reduce the model size so that it could be run on edge 

computing devices at the real-time detection speed. 

Ⅴ.  CONCLUSION 

A method to detect the crowdedness of bus was 

proposed. We combined the CNN model, Kalman 

Filter, Hungarian Algorithm, and our unique counting 

method to realize it. The method currently has quite 

good accuracy, but we will continue to optimize it 

according to our expectations. At the same time, we 

think about whether to detect the behaviors of 

passengers in the bus other than only counting the 

number of people. We consider that whether more 

valuable information could come out. For example, 

detecting a person who is not in good physical 

conditions and a suspicious person, etc. Detecting 

things like left behind, even if they are not identified 

by humans. Then I think that this method could be 

applied to a wider range. 
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