
Bus Crowdedness Sensing

Based on Deep Learning

Wenhao Huang, Akira Tsuge, Yin Chen, Tadashi Okoshi and Jin Nakazawa

 Keio University

 5322 Endo, Fujisawa, Kanagawa 252-0882, Japan

Abstract—This research proposes a sensing system

to collect bus crowdedness data by detecting

passengers' getting off and on events in a bus via

deep learning-driven image processing on video data

of passengers. The system is designed to be deployed

to and conduct real-time object recognition and

object tracking on a bus. In our prototype system,

object recognition is implemented based on yolov3

with Darknet53, and object tracking is implemented

by combining object recognition, Kalman Filter

(LQE) and Hungarian Algorithm. The performance

of the system is evaluated experimentally using

driving recorder video data taken from a bus.

Index Terms—Object Detection, Bus Sensing,

Deep Learning, Smart Cities, Image Processing.

Ⅰ. INTRODUCTION

 In 2020, COVID-19 pandemic has greatly affected

people's lives over the whole world. Social distancing

is widely considered as an important practice to

slowing down the spread of the COVID-19 virus.

While we can avoid human contact in many situations,

it is hard to keep sufficient distance in crowded public

transportation vehicles. Most public transport

operators have put forward some common

countermeasures [1], but there is still no effective

way to avoid the problem of crowded public vehicles.

Congestion means crowded buses, the crowding

means closer social distance, which makes it more

susceptible to infection virus. For a bus service,

besides the major goal of carrying passengers around,

providing a comfortable and safe travel experience

for passengers is also an important business

consideration. Bus comfortability contains many

aspects, among which passenger density inside a bus

is the most important one. The crowdedness can

directly affect the comfortability of people in the bus

[2]. There is increasing interest in crowdedness to

reduce the risk of infection in the COVID-19

environment. In a survey of the use of high-speed

buses, "In order to prevent coronavirus infection,"

"because of the risk of infection in cramped vehicles,"

and other concerns about taking the bus gathered.

Many people feel uneasy about being unable to avoid

a "dense" environment for a long time. Figure 1

summarizes the result of the survey of taking a bus

and it is notable that there is a lot of concerns about

bus environment [3].

Fig. 1. In the survey, the question "Why did you use the
highway bus less often?" was asked. In the answers to the
survey, there were many concerns about getting on the bus,
such as "to prevent coronavirus infection" and "because
there is a risk of infection in a small bus". It seems that
many people are worried about the environment where
"denseness" cannot be avoided.

 From the current practical situation, it is a feasible

method to obtain the crowdedness degree directly by

measuring the number of people through the camera

inside the bus and control the crowdedness with the

data of passenger’s density. Traditional approaches to

obtain passenger density rely on field investigation.

There are two drawbacks. First, it involves expensive

labor efforts. Nevertheless, field investigation is not

scalable: it is difficult to maintain a record staff all

day in every station. Second, it is hard to identify the

whole trip of a single passenger. As a consequence, it

is hard to estimate the effectiveness of the new

schedule [4]. With the development of technology,

IPSJ SIG Technical Report

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-MBL-98 No.1
Vol.2021-UBI-69 No.1

2021/3/1

machine learning, and computer vision came out,

methods of counting people by image processing

have been continuously proposed [5,6,7,8]. In [5,6,7]

the images were analyzed and processed directly to

obtain the results. In [8], the machine learning

method was used to calculate the number of people

through the trained model.

In the above research, it can be seen that relevant

technologies have been relatively mature, but many

methods have limitations on the camera angle and the

special features acquired. We propose a method that

can detect in real time the crowdedness of a bus and

can be applied to all images and environments in a

bus. On the one hand, it can make passengers feel

more safely to choose the right time to get on the bus

and know the degree of crowdedness. On the other

hand, it can also tell the operating company to

allocate the vehicle resources reasonably. In this

study, we will discuss, experiment, and compare the

realization methods of the crowdedness detection.

The rest of paper is organized as follows. Section

II will make a briefly review of related work. Section

III will introduce the image processing algorithm.

Section Ⅳ will show the experimental evaluation and

conclude this paper in Section Ⅴ.

II. RELATED WORK

A. Crowdedness Detection

About the crowdedness detection, there has been

much research realized it. In the implementation of

the methods are different, mainly divided into image

analysis [9] and sensors [10] to achieve. Tracklet and

Mean-shift are used in [9] to track the special spot of

people, so as to realize the number detection. It also

has a good performance in the results. In the study of

[10], the detection and counting were carried out

through the LiDAR sensor. The position of the sensor

was set like Figure 2, and the information obtained

from the environment is only three coordinates within

a fixed range, that was relatively single. We will also

use image processing in this project, but it is a little

different from [9]. We do this via object detection.

(a) Device of front door (b) Device of rear door
Fig.2. Installation of measuring device [10]

B. Object Detection Model

Object recognition using Darknet network or

Faster RCNN network combined with YOLO [11] is

the most commonly used technique in point-to-point

real-time target detection. The YOLO model is quite

easy to use, has great performance, and has a good

ecology. It is called an end-to-end object detection

method in the sense that the deep neural network

handles it from the beginning to the end. By making

it end-to-end, you can benefit from optimization by

deep neural network even when extracting a region

with high objectness, and because the bottleneck of

multi-stage configuration is eliminated, it is faster

and higher. Nowadays, an accurate and fast detection

method has become possible. It's also easy to see the

results in the Figure 3. This is also why it becomes a

popular implementation method.

We will use the above-mentioned YOLO model as

the basis of our target detection in this study. We will

explain how we implement this in the next section.

Fig. 3. Detection speed of YOLOv4 by 1080Ti [12]

III. IMAGE PROCESSING ALGORITHM

In this section, we will introduce the workflow,

algorithm, and the architecture of the system.

A. Overview

The purpose of this study is to make it safer for

passengers to take the bus during the coronavirus. We

will design a method to collect the image data from

camera on the bus and then analyze the crowdedness

of a bus. The algorithm of this project is consisted of

detection, tracking, and counting. The data used in the

experiment was taken from actual bus cameras. There

are two cameras in the bus. One is positioned in the

front to toward backwards, and the other is positioned

in the center toward the back door. The camera setting

position is shown in the Figure 4.

IPSJ SIG Technical Report

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-MBL-98 No.1
Vol.2021-UBI-69 No.1

2021/3/1

Fig.4. Camera Setup of a bus. The images of getting on
the bus will be recorded by the camera marked in blue,

and the images of getting off the bus will be recorded by
the camera marked in red.

After our analysis of the interior images, we think

there are several key points to be solved. First of all,

there should be a specific detection method for the

detection. Secondly, the crowded bus should be

considered in the detection, in which case only the

head can be detected. Therefore, we currently plan to

identify passengers by detecting their heads. We

decide that by counting the number of passengers in

front and back doors respectively, the number of

passengers can be added or subtracted to infer the

real-time number of people in the bus, so as to get the

crowdedness. In this process, we also need to

determine the statistical method. The above will be

described in detail in the next sections.

B. System Architecture

This project consists of two cameras on the bus, a

cellular module, and the image processing computer.

With regard to the cameras, as described above and

in Figure 4, after capturing data from the two cameras

respectively, the images and videos are analyzed. At

present, we are still using ordinary notebook GPU

(NVIDIA RTX2060 Max-Q) for image processing

and analysis. Our system uses the Linux system as the

base operating system, the Python Script as the

operating programs. Since the performance of the

GPU is acceptable, the deep learning networks

currently used are still relatively large now. After the

deep learning network model is optimized, it will be

loaded into edge computing platforms such as Jetson

Nano. Therefore, the theoretical design should be to

first capture the image and analyze it in the embedded

computer installed in the car, and finally transmit the

obtained data back through wireless communication.

TABLE 1
TABLE OF NOTATIONS OF DETECTION

Notation Description

𝜏𝑖𝑜𝑢 The IoU evaluation index of object detection.
Measure the degree to which the prediction
box overlaps with the true box.

𝜏𝑠𝑐𝑜𝑟𝑒 The detection result score is used as detection
threshold.

C. Detection

In the detection process, we use the DarkNet-53

convolutional neural network with residual network.

Each convolution part of DarkNet-53 uses the unique

DarknetConv2D structure, the L2 regularization is

performed during each convolution, and the Batch

Normalization Standardization and Leaky ReLU are

performed after convolution. Ordinary ReLU sets all

negative values to zero, while Leaky ReLU assigns a

non-zero slope to all negative values. It looks like as

follows:

𝑦𝑖 = {

𝑥𝑖 (𝑥𝑖 ≥ 0)

𝑥𝑖

𝑎𝑖
 (𝑥𝑖 < 0)

 (1)

In the feature utilization, yolo extracts multiple

feature layers for target detection. A total of three

feature layers are extracted. The three feature layers

are located in different positions of DarkNet-53.

After the corresponding convolution processing of

the three feature layers, a part is used to output the

prediction result corresponding to the feature layer,

and the other part is used to perform deconvolution

and combine with other feature layers. In this way,

the prediction result could be obtained.

In the object detection of this project, we need to

detect the humans’ heads. Since there is currently no

dataset specifically for head detection in vehicles, we

use the dataset of the lecture classroom. We use the

VOC dataset of heads in lecture [13] from South

China University of Technology. We have trained the

Part A of dataset on 1800 samples, evaluation on 200

samples, with batch size 4 for freezing layers training

and 2 for entire layers training. According to the

mAP(Average Precision) test, we adjust parameters

𝜏𝑖𝑜𝑢 and 𝜏𝑠𝑐𝑜𝑟𝑒 to get the best accuracy of this model.

D. Tracking

The multi object tracking algorithm is based on

YOLO object detection algorithm and imported

Kalman Filter and Hungarian Algorithm.

IPSJ SIG Technical Report

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-MBL-98 No.1
Vol.2021-UBI-69 No.1

2021/3/1

The Kalman filter is an efficient recursive filter

that estimates the internal state of a linear dynamic

system from a series of noisy measurements. It is

used in a wide range of engineering and econometric

applications from radar and computer vision to

estimation of structural macroeconomic models [14].

The Kalman filter includes two stages: prediction and

update. In the prediction stage, the filter uses the

estimate of the previous state to make an estimate of

the current state. In the update stage, the filter

optimizes the predicted value obtained in the

prediction state by using the observed value of the

current state to obtain a more accurate new estimate.

The calculation of Kalman filter is represented by

the following variables:

TABLE 2

TABLE OF NOTATIONS OF KALMAN FILTER ALGORITHM

Notation Description

�̂�𝑘|𝑘 The posteriori state estimate at time 𝑘 given
observations up to and including at time 𝑘;

𝐏𝑘∣𝑘 The posteriori estimate covariance matrix (a
measure of the estimated accuracy of the state
estimate).

𝐅𝑘 The state transition model which is applied to

the previous state 𝐱𝑘−1.

𝐁𝑘 The control-input model which is applied to

the control vector 𝐮𝑘;

Kalman Filter Algorithm [14]:

Predict:

Predicted state estimate:

�̂�𝑘∣𝑘−1 = 𝐅𝑘�̂�𝑘−1|𝑘−1 + 𝐁𝑘𝐮𝑘

Predicted estimate covariance:

𝐏𝑘∣𝑘−1 = 𝐅𝑘𝐏𝑘−1∣𝑘−1𝐅𝑘
T + 𝐐𝑘

Update:

Innovation or measurement pre-fit residual:

�̃�𝑘 = 𝐳𝑘 − 𝐇𝑘�̂�𝑘∣𝑘−1

Innovation (or pre-fit residual) covariance:

𝐒𝑘 = 𝐇𝑘𝐏𝑘∣𝑘−1𝐇𝑘
T + 𝐑𝑘

Optimal Kalman gain:

𝐊𝑘 = 𝐏𝑘∣𝑘−1𝐇𝑘
T𝐒𝑘

−1

Updated (a posteriori) state estimate:

�̂�𝑘∣𝑘 = �̂�𝑘∣𝑘−1 + 𝐊𝑘�̃�𝑘

Updated (a posteriori) estimate covariance:

𝐏𝑘∣𝑘 = (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘∣𝑘−1

The calculation process of this project is as

follows: the image passes through the detector to get

the coordinate frame of the human’s head, then

calculates the position of the center point (𝑥0, 𝑦0) ,

inputs this (𝑥0, 𝑦0) to the tracker, which learns and

updates, finally gives the prediction, and then repeats

the executes to detect all the frames. The workflow of

tracking is showed as Figure 5.

Fig.5. The workflow and the architecture of object
tracking.

E. Counting

After the people’s heads have been detected and

tracked, we could get the center points and trackers

of passengers’ heads. In the process of counting, we

will get the coordinates of the previous frame and the

next frame of each person's head. We set a line at the

entrance to get on and get off as a criterion for getting

on and getting off. At the door of getting on, (from

the bus outside) when the head crossed the line, the

count is increased by one, at the door of getting off

(from the bus inside) when the head crossed the line,

the count is reduced by one, so as to infer the real-

time number of people in the bus.

Ⅳ. EXPERIMENTAL EVALUATION

A. Performance Evaluation

 In this section, we will evaluate the real-time

performance of detection and tracking. At present, we

have run this algorithm on both ordinary laptop

graphics card platform and Jetson Nano platform.

The video data used in the evaluation experiment

came from the videos of buses’ monitors from

Kanagawa Chuo Kotsu Co., Ltd. The videos have a

resolution of 640x480 and a frame rate of 7.52 frames

per second. On the laptop graphics card platform, it

can be detected completely in real time, and the frame

rate can reach 15~20fps. In Jetson Nano platform,

due to the limitations of memory size and hardware,

……Tracker KF……

……Detector……

Frame

Frame

Frame

Detect
Result

Detect
Result

Detect
Result

Tracker
Update

Tracker
Update

Tracker
Update

Tracker
Predict

Tracker
Predict

Tracker
Predict

Tracker
Initial

IPSJ SIG Technical Report

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-MBL-98 No.1
Vol.2021-UBI-69 No.1

2021/3/1

it can run at about 5fps, which can basically meet the

minimum detection requirements.

TABLE 3

THE RATE OF FRAME PROCESSING

Platform DarkNet-53 yolov3 DarkNet-53 tinyv3

Laptop GPU 19.5 fps 31.2 fps

Jetson Nano 3.2 fps 4.9 fps

B. Model Training and Detection Evaluation

 In this section, we explain the process of model

training and the evaluation of the model's detection

performance. In model training, we conduct training

by importing data, and mainly pay attention to the

change of loss value. In the first several epochs, we

first froze the training of partial weights, and put

more data into the network parameters of the later

part of the training, so that both time and resource

utilization could be greatly improved. In the process

of model training, loss is as high as 6000 at the

beginning and finally converges to about 86, and the

modified data is not normalized. Overall, the loss

curve shows a downward and convergent trend. The

curve is showed as Figure 6.

Fig.6. Curve of training evaluation. The figure shows the

changes of loss and valuation loss during model training.

After training with 1800 datasets, we use another

200 datasets to test the average precision(AP) of this

model and evaluate the detection performance of this

model. We combined IoU and threshold to conduct

mAP test. For the mAP evaluation method, there are

the following evaluation parameters and specific

methods. The 𝜏𝑖𝑜𝑢 is to measure the degree to which

the prediction box overlaps with the true box.

IoU(𝜏𝑖𝑜𝑢) =
𝑆∩

𝑆∪
 （2）

𝑆∩ is the overlap region between the prediction

box and the actual box, and 𝑆∪ is the total region

occupied by the prediction box and the actual box.

Then we evaluated the Precision and Recall of the

model. Precision is the ratio of what the classifier

considers to be positive classes to what the classifier

considers to be positive classes. Recall is the

proportion of the part that the classifier considers to

be a positive class and is indeed a positive class to all

the truly positive classes. We define them by the

following abbreviations, and evaluate the AP based

on approximated average precision [15].

TABLE 4

TP True Positives

TN True Negatives

FP False Positives

FN False Negatives

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

 𝐴𝑃 = ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑘)𝛥𝑅𝑒𝑐𝑎𝑙𝑙(𝑘) (4)

𝑁

𝑘=1

Finally, we evaluated the accuracy and stability of

the model by testing the same data under multiple

groups of participants. We initially started the test

with 𝜏𝑖𝑜𝑢 = 0.3 and 𝜏𝑠𝑐𝑜𝑟𝑒 = 0.5. Then we fixed the

value of 𝜏𝑖𝑜𝑢 and changed the threshold 𝜏𝑠𝑐𝑜𝑟𝑒 to

detect the change of AP. At the same time, we also

fixed the threshold, changed the 𝜏𝑖𝑜𝑢, and observed

the change trend of AP, as shown in the following

tables:

TABLE 5

AP OF DETECTION VS. 𝜏𝑠𝑐𝑜𝑟𝑒 WHERE 𝜏𝑖𝑜𝑢 = 0.3

𝜏𝑠𝑐𝑜𝑟𝑒 0.10 0.20 0.30 0.40 0.50 0.60

AP 61.04 60.33 59.61 58.86 57.90 56.53

TABLE 6

AP OF DETECTION VS. 𝜏𝑖𝑜𝑢 WHERE 𝜏𝑠𝑐𝑜𝑟𝑒 = 0.3

𝜏𝑖𝑜𝑢 0.10 0.20 0.30 0.40 0.50

AP 56.33 57.45 57.90 58.26 58.47

From Table 5 and Table 6, we can see that different

parameters have no great influence on the final

detection accuracy. IoU has little influence on the

127.8372
86.6599

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

lo
ss

epoch

Training Evaluation epoch / loss / val_loss

loss val_loss

IPSJ SIG Technical Report

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-MBL-98 No.1
Vol.2021-UBI-69 No.1

2021/3/1

final detection threshold, while confidence has more

influence on the threshold. For the crowded bus, in

order to avoid the coincidence error of the detection

box caused by too small IoU, and finally lead to the

detection error, we choose the larger IoU at 𝜏𝑖𝑜𝑢 = 0.3.

At the same time, we can see from the table that the

lower the threshold is, the more effective the

detection is. Moreover, since we use a special

crossline counting method, if there is no detection for

static objects, it can be ignored. Therefore, we choose

a smaller confidence at 𝜏𝑠𝑐𝑜𝑟𝑒 = 0.1.

C. Actual Operation Evaluation

 The project has not yet been run directly on the

actual bus, but we used historical video to simulate

the actual test as Figure 7 below.

Fig.7. Tests that simulate real bus interior conditions.

In the actual simulation test, we define a tracking

rate 𝑡𝑟 to evaluate. The tracking rate is the number

of frames that are continuously tracked from the

beginning of recognition to the end of recognition.

We assume that all frames are 𝑡𝑎 and that the number

of successfully tracked frames is 𝑡𝑠. As shown in the

following equation.

 𝑡𝑟 =
∑ 𝑡𝑠

∑ 𝑡𝑎
 (5)

TABLE 7

TRACKING RATE 𝑡𝑟

Situation Getting On Getting Off

𝑡𝑟 85.95% 90.54%

In the detection, we found that because the camera

of the back door was covered by the handles and

railings of the bus, tracking loss often occurred.

However, the camera at the front door do not have

this problem, so the tracking rate is relatively high.

So, we have to avoid that when we draw a decision

line. In the video used for detection, a total of 10

people get on the bus and 8 are detected in the end.

There are 8 people getting off the bus and 9 are

detected in the end. One of them fails the detection

because he is wearing a hat. It can be seen from the

experiment that the model and the method have

certain detection ability.

D. Future Work

From the experiments we have written above, we

can see that our accuracy is still to be improved, and

we have not yet run it on edge computing devices, so

we have three areas to work on in the future. On the

first hand, we should continue to improve the

precision and optimize the detection rate by changing

the model structure or optimizing the neural network

layers. The second aspect is to train more datasets and

special data to improve the recall rate, such as

passengers wearing hats and masks. The third aspect

is to optimize the running speed of the model by

pruning, pooling, distillation, and other methods to

reduce the model size so that it could be run on edge

computing devices at the real-time detection speed.

Ⅴ. CONCLUSION

A method to detect the crowdedness of bus was

proposed. We combined the CNN model, Kalman

Filter, Hungarian Algorithm, and our unique counting

method to realize it. The method currently has quite

good accuracy, but we will continue to optimize it

according to our expectations. At the same time, we

think about whether to detect the behaviors of

passengers in the bus other than only counting the

number of people. We consider that whether more

valuable information could come out. For example,

detecting a person who is not in good physical

conditions and a suspicious person, etc. Detecting

things like left behind, even if they are not identified

by humans. Then I think that this method could be

applied to a wider range.

ACKNOWLEDGMENT

Thanks for support of Kanagawa Chuo Kotsu Co.,

Ltd. in the actual route bus demonstration experiment

and the video data for the experimental analysis. This

research and development work was supported by

the MIC/SCOPE #191506001.

IPSJ SIG Technical Report

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-MBL-98 No.1
Vol.2021-UBI-69 No.1

2021/3/1

REFERENCE

[1] Kanagawa Chuo Kotsu Co., Ltd., “COVID-19

Coronavirus Infection Prevention Strategies,”

https://www.kanachu.co.jp/dia/news/detail?tbl=4&tid=70

(In Japanese, last viewed on Jan.5th, 2021)

[2] J.-K. Kim, B. Lee, and S. Oh, “Passenger choice models

for analysis of impacts of real-time bus information on

crowdedness,” Transportation Research Record: Journal

of the Transportation Research Board, vol. 2112, no. 1, pp.

119–126, 2009.

[3] Rakuten Travel, “Awareness survey on highway buses,”

https://travel.rakuten.co.jp/mytrip/trend/bus-investigation/

(In Japanese, last viewed on Jan.5th, 2021)

[4] J. Zhang et al., “Analyzing passenger density for public

bus: Inference of crowdedness and evaluation of

scheduling choices,” in Proc. IEEE 17th Int. Conf. ITSC,

2014, pp. 2015–2022.

[5] Yang, T.; Zhang, Y.; Shao, D.; Li, Y. Clustering method

for counting passengers getting in a bus with single

camera. Opt. Eng. 2010, 49.

[6] Chen, J.; Wen, Q.; Zhuo, C.; Mete, M. Automatic head

detection for passenger flow analysis in bus surveillance

videos. In Proceedings of the IEEE International

Conference on Vehicular Electronics and Safety,

Dongguan, China, 28–30 October 2013.

[7] Mukherjee, S.; Saha, B.; Jamal, I.; Leclerc, R.; Ray, N. A

novel framework for automatic passenger counting. In

Proceedings of the IEEE International Conference on

Image Processing, Brussels, Belgium, 11–14 September

2011.

[8] Liu, G.; Yin, Z.; Jia, Y.; Xie, Y. Passenger flow estimation

based on convolutional neural network in public

transportation system. Knowl. Base Syst. 2017, 123, 102–

115.

[9] Kenichi Y.; Daisuke M.; Naoto A.; M.; Tomoichi M.;

Makoto N.; Congestion degree visualization technology

using a monitor camera inside a station. Information

Processing Society of Japan Digital Practice Vol.8 No.2,

Apr. 2017

[10] Yuma Y.; Satoshi H.; Hirozumi Y.; Teruo H.; Development

of Bus Passenger Counter Using LiDAR Sensors.

Information Processing Society of Japan Digital Practice

60(3), 934-944, 2019

[11] Joseph Redmon and Ali Farhadi. YOLOv3: An

incremental improvement. arXiv:1804.02767, 2018.

[12] Pjreddie, “darknet,” https://github.com/pjreddie/darknet

(last viewed on Jan.8th, 2021)

[13] HCIILAB, “SCUT-HEAD-Dataset-Release,”
https://github.com/HCIILAB/SCUT-HEAD-Dataset-

Release(last viewed on Jan.10th, 2021)

[14] Wikipedia, “Kalman Filter,”

https://en.wikipedia.org/wiki/Kalman_filter (last viewed

on Jan.10th, 2021)

[15] Wikipedia, “Precision and recall,”

https://en.wikipedia.org/wiki/Precision_and_recall(last

viewed on Jan.15th, 2021)

IPSJ SIG Technical Report

7ⓒ 2021 Information Processing Society of Japan

Vol.2021-MBL-98 No.1
Vol.2021-UBI-69 No.1

2021/3/1

