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Abstract: Exascale computers consume huge amounts of power and their variation over time makes system energy
management important. Because of time lag in cooling-units operation, predictive control is desirable for effective
power control. In this work, we report a state-of-the-art power prediction model. Conventional methods with topic
model use the power of past job as a prediction based on the similarity of job information. The prediction, however,
fails, if there is no correct data before. To resolve this, we developed a recurrent neural network model with variable
network size, which detects features of power shape from its power history and enables precise prediction during job
execution. By integrating these models into a single algorithm, the optimal model is automatically adopted for predic-
tion according to the job status. We demonstrated high-precision prediction with an average relative error of 5.7% in
K computer as compared to that of 20.1% by the conventional method.
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1. Introduction

Recent supercomputers consume much higher levels of power
as their computing performance increases. The K computer,
which was ranked the number one supercomputer on the TOP500
list in 2011, consumes 12.6 MW of power with performance of
10-PFlops. As of June 2020, the Fugaku computer, which was
ranked the number one supercomputer on the TOP500 list, con-
sumes 28.3 MW of power with performance of 415P-Flops [1],
so the power consumption of the system is a critical limiter for
the exascale computer systems [2]. Therefore, there are increas-
ingly strong demands for lower-power computer hardware [3] and
evolving energy management.

Power capping is an attractive method of energy management
that controls total system power below a desired threshold. Pre-
vious research has put much effort into power capping by power-
aware scheduling, which dynamically controls job scheduling us-
ing the predicted job power [4], [5]. Power for the queued jobs
submitted into the scheduler is predicted utilizing available in-
formation, such as the job scripts. Most research leverages the
fact that jobs with similar scripts will also have similarity in
power. Although power capping with queued-job power predic-
tion sometimes shows good performance, there are still big is-
sues. One issue is that the accuracy of the queued-job power
prediction decreases if there is no relationship between the job
scripts and the power. Another issue is that the aggressive power
capping decreases system utilization.

Recently, predictive control of cooling units has been studied
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Fig. 1 Our proposed HPC system with predictive power control.

to reduce total system energy in data centers [6], [7], [8]. Gener-
ally, cooling units are operated with enough cooling capacity for
the maximum power of the system. This leads to overcooling of
the cooling units in cases of low system utilization. Here, the time
constant of the cooling-units stabilization after set points change
is much longer than that of the changes in power. Predictive con-
trol can make each cooling unit operate efficiently in advance of
the power fluctuations. Hence, a precise power prediction is nec-
essary to achieve predictive power control. Unlike with conven-
tional data centers, HPC power experiences MW-range changes,
which makes highly precise power prediction difficult. A key
challenge for predictive power control of HPC is the highly pre-
cise time-series prediction of total system power.

Figure 1 shows our conceptual HPC system based on predic-
tive power control. User jobs are submitted and scheduled in a
queue. Then, the queued jobs are executed in order and the sys-
tem power increases. A prediction system predicts the future total
system power. Cooling units are frequently controlled in advance
with adjustments to the predicted system power variation. The
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power of the cooling units is almost proportional to the cooling
capacity, so the power of the cooling unit can be reduced com-
pared with the conventional static operation shown in Fig. 1.

We then briefly discuss the prediction period and the prediction
accuracy for achieving efficient predictive power control. The
targeted prediction period is dependent on time constants of the
cooling units. The heat transfer processes in cooling units are
prolonged (mostly within 30 minutes) compared to the IT load
fluctuations [7], [8], [9]. Therefore, optimal cooling unit control
considering heat transfer process can be realized by predicting
system power up to 30 minutes in the future and controlling the
cooling units based on it.

The targeted prediction accuracy relies on the power utiliza-
tion of the HPC system. Typical HPC system utilization is below
100%. Moreover, job power per node is strongly dependent on
each user’s application, so the instantaneous power utilization of
the systems is below 50% of the maximum system power capac-
ity [10]. As the power prediction accuracy becomes worse, the
power reduction with predictive control degrades due to ensur-
ing a margin. The relative error of conventional power prediction
based on job information is 21.1% (Section 3.2.1). The relative
error of this work is 5.7% (Section 5). By reducing the cool-
ing unit control margin, the cooling-units power can be reduced.
For example, it applies predictive control to an environment with
3 MW of cooling units. The cooling unit requires about 1 MW
of power to cool the power fluctuations of the computer. The
relative error is 21.1% and 5.7%, control margins of 0.21 MW
and 0.057 MW are required respectively. Therefore, it is possible
to reduce 0.16 MW (5.3% of cooling-units power) by improving
prediction accuracy.

In this paper, we propose a highly precise power prediction
system, combining a queued-job prediction model and a run-job
prediction model.

The rest of the paper is presented as follows: Section 2 pro-
vides analysis results about the ratio of queued jobs and run jobs
in a real HPC system to reveal the importance of run-job predic-
tion. Section 3 provides the data used in the experiment. Sec-
tion 4 provides the proposed models. Section 4.1 shows our
queued job prediction model based on a topic model, leveraging
job entries extracted from the job scripts. Section 4.2 describes
the run-job prediction model using job entries and power history
of the job. We developed an integrated prediction model with two
different characteristics of Machine Learning models. Section 5
reveals evaluation results of the combined power prediction sys-
tem with queued and run jobs. We demonstrate total job power
with a 5.7% prediction error by using 3 months of K computer
operating logs. Related works are discussed in Section 6. Finally,
we summarize this research in Section 7.

2. Analysis of Jobs

Generally, total system power is the sum of queued-job power
and run-job power. Figure 2 illustrates an example of job states
at a certain time. At current time, 100% of the total system power
consists of run jobs (Job2, Job3, Job6, Job7 and Job8). Job9 and
Job10 are still queued jobs at current time, but will move to run
states during the prediction period. At the current time, we need

Fig. 2 An example of job states for power prediction.

to account for both the run jobs and the queued jobs for the power
prediction.

Most of past research in HPC power prediction focused on the
queued-job prediction because the purpose of the research was
on power-aware scheduling or power capping (See Related Work
section for details). Conventionally, the queued jobs are pre-
scheduled based on the predicted power before they start running.
As the run-job power ratio, however, is high, as we describe later
in this section, it is important to predict them to achieve more ac-
curate power-aware scheduling. Additionally, the cooling units
can be controlled after the job has shifted to run states in the case
of predictive power control. Therefore, the run-job power predic-
tion is important for large-scale HPC sites.

This research describes an effective power prediction model of
queued jobs and run jobs. The optimum power prediction model
is different depending on the available input information, such as
the job scripts and the power history. Job scripts that include user-
specific textual information such as number of required nodes,
user ID, job name and so on are available for the queued job. The
run job can leverage the actual power history consumed by the
job, in addition to the job script. We developed different types of
models for queued and run jobs in order to achieve highly precise
prediction as follows.
• Queued-job prediction model: predicting power of each job

by utilizing job scripts when the job is in the queue state,
will be described in Section 3.1.

• Run-job prediction model: predicting power of each job by
utilizing job scripts and additional power history when the
job is in the run state, will be described in Section 3.2.

Then, we statistically analyzed job states for power prediction
by using K computer logs. Figure 3 shows the power ratio of
queued jobs and run jobs in the total job power from July to
September in 2017. The horizontal axis indicates the future time
to predict. The power-ratio evaluation was conducted every 30
minutes and average power ratio during each period was plotted
on Fig. 3. When the time to predict is equal to 0, 100% of job
power is run jobs. As the time to predict becomes longer, the
power ratio of the queued jobs increases. Here, 30-minute future
prediction is one of our targets for the predictive power control
of the cooling units, as discussed in Section 1. From Fig. 3, 87%
of jobs are still in run state in the 30-minute future. This indi-
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Fig. 3 Power ratio of queued jobs and run jobs depending on the prediction
horizon.

cates that run-job prediction is a significant part, especially for
30-minute future prediction.

In fact, the power ratio of queued and run is dependent on
the average execution time of jobs. A longer average execution
time means a larger percentage of run job in the total job. In
our analysis using the K computer, the average execution time
is 210 minutes. For other large-scale HPC sites, according to
Refs. [11], [12], [13] average execution times were about 30 min-
utes, 110 minutes and 360 minutes respectively. This indicates
that a relatively high run-job-power ratio can also be estimated.

3. Experiment Data

The experiment data is the operational information of the K
computer. The K computer is a distributed memory supercom-
puter system consisting of 82,944 compute nodes and 5,184 I/O
nodes [14]. In this paper, the power was obtained and calcu-
lated by using the monitored temperature of the CPU and inlet
air flow, as shown in Ref. [15]. The CPU monitoring temperature
and intake flow measurement interval is 5 minutes. Therefore,
the power value calculated based on this is also a value every 5
minutes. And, each computer node’s electric power fluctuation is
predicted. The maximum power fluctuation for one node is 58W.
In this paper, We call this the power per node. The power value
of each node and the job information executed on that node were
combined to obtain experimental data. Figure 6 shows the types
of job information used in the experiment. The predict period is
from July to September 2017, which has the largest power fluctu-
ations of the year and is difficult to predict.

4. Power Prediction System

In this chapter, we describe the conventional power prediction
methods using the topic model (TPC, PROB, CTPC), which use
job information, and then discuss the proposed time-series power
predicting technology (VRNN).

Figure 4 is a diagram of our proposed power prediction sys-
tem. We developed a queued-job power prediction model (see
Section 4.1), which includes a topic model (TPC) and a proba-
bilistic model (PROB). The queued-job prediction model predicts
the entire job power by using a job script as the prediction input.

We also developed a run-job power prediction model (see Sec-
tion 4.2). The run-job prediction model predicts future job power
by using the past job-power history and the TPC output as the

Fig. 4 A block diagram of our proposed power prediction system for HPC.

prediction input. The run-job prediction model consists of two
core prediction models, a power-correlated topic model (CTPC,
see Section 4.2.1) and a variable RNN model (VRNN, see Sec-
tion 4.2.2). The CTPC re-selects the prediction from 10 candi-
dates of the TPC by comparing them with actual power history.
The prediction, however will fail if there are no successful jobs in
10 candidates.

The VRNN can predict the power from a wide range of past
job, but requires relatively long history to get an accurate predic-
tion. During early execution time of the job, the CTPC, which
mainly utilizes outputs of the TPC, shows higher precision. Dur-
ing late execution time of the job, the VRNN that was trained by
a huge amount of power histories shows better performance. We
developed an integrated run-job prediction model (INTEG, see
Section 4.2.3), which dynamically selects one of the two models.

4.1 Queued-job Prediction Model
In this section, we describe the prediction method for queued

jobs using the topic model [16]. The topic model is a widely used
natural language processing method [17]. The information ob-
tained from the queued job is only the submitted script. It is re-
ported that jobs with similar job entries have similar power [18].
Power prediction techniques that choose the most similar job
from past jobs by machine learning using the job entries in the
submitted scripts have been proposed [19]. This approach re-
quires manual weight tuning for each entry, in order to make more
effective entries contribute more to prediction. Weights, however,
could be different for each site.

We developed a two-step scheme using the topic model and the
probabilistic model, which set proper weight for each entry auto-
matically and enables high accuracy (Fig. 5). The topic model is
trained from the past job entries extracted from the job scripts. In
the prediction phase, it selects 10 candidates from past jobs based
on their similarity to the target’s job entries. The probabilistic
model identifies the most similar job out of 10 candidates and
uses its power as a prediction. Also, the execution time of most
similar jobs is used as the prediction result of the execution time.
The power for each node is predicted, and the power for each job
is predicted by multiplying the predicted result by the number of
nodes. This identification is based on the weights, which indicate
probabilities of success. The weights are trained by the combi-
nation of the entries and power of past jobs. The weight training
for each entry is determined by the following procedure. Job X
and job Y are the past jobs identified by the topic model. Weights
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Fig. 5 A queued-job power prediction model with topic model and proba-
bilistic model.

Fig. 6 Weight results on the K computer using the probabilistic model.

can be calculated from many X and Y pairs using the following
algorithm.

i. Compare each entry between job X and job Y in training
datasets and determine whether it matches or not.

ii. Compare time-series power between job X and job Y by us-
ing the Dynamic Time Warping (DTW) method, and score
the probability of success based on their similarity.

iii. Based on the results of I and II, the probabilistic model cal-
culates weight for each entry.

Figure 6 shows calculated weights of entries on the K com-
puter. Six out of eight job entries used were relevant for power
prediction accuracy.

Here, the probabilistic model succeeded in extracting more ef-
fective entries. For example, although both “Number of request
node (No.2)” and “Queue (No.6)” represent the size of the job,

Table 1 Precision comparison using relative error of total job power.

No.2 should contribute more as it has more detailed information.
Because of the probabilistic model, we confirmed that No.2 gets
a higher weight than No.6.

10 candidates selected by the topic model are re-ranked, based
on the probability of success calculated by the probabilistic
model. Then, the first-ranked time-series power is selected as
a prediction for the target job.

We evaluated the time-series power predictions of all jobs from
July to September of 2017 on the K computer. Training was con-
ducted using the past 3 months of data with a 15-minute interval.
The reason for training every 15 minutes is that the queued-job
prediction model predicts the power waveform by selecting a job
that is similar to the past submitted script. It is desirable to up-
date the model at as short an interval as possible, because jobs
executed at a close time to the current job often have similar fea-
tures to those of the current jobs [10]. We evaluated the interval
dependency of the relative error. When the interval is changed to
15, 30, and 60 minutes, the relative error of September 2017 is
20.1%, 20.8%, and 22.4%.

Table 1 shows the relative error of total job power prediction
using only the topic model and using the two-step model. The
two-step scheme is more accurate by 3.1% compared to the one-
step, topic-model-only scheme. We achieved an average relative
error of 18%. The configured weight adaptation contributes to an
improvement in prediction accuracy.

4.2 Run-job Prediction Model
In this chapter, we propose the run-job prediction model. Sec-

tion 4.2.1 describes the improved Topic model. We discuss
VRNN in Section 4.2.2. We describe a model in which these
are integrated.
4.2.1 Power-correlated Topic Model (CTPC)

We developed a run-job-power-prediction model called a
power-correlated topic (CTPC) model, which utilizes the topic
model in the queued-job prediction model (Fig. 4). The 10 can-
didates from the topic model are input into the CTPC instead of
the probabilistic model, after the job is executed. The CTPC res-
elects the most matched one as the prediction result from the 10
candidates by comparing the actual power histories of the jobs
and the predicted power. This reselection algorithm runs dynam-
ically every 5 minutes (time step of the job power monitored). In
this way, some of the jobs that failed in the queued-job prediction
model change to successes.

The reselection algorithm of the CTPC is shown in Algo-
rithm 1. Here, actual job power is acquired every 5 minutes.
Time step i is the current time step from the start. P(X)0 is the
predicted power of the candidate X at the start time. P(X) i is the
predicted power of job X at time step i. X is a number from 1 to
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Fig. 7 Prediction comparison between the two-step queued-job prediction
(TPC+PROB) and the power-correlated run-job prediction (CTPC).

10 which indicates the 10 candidates from the topic model. PAi

shows actual monitored job power of the executed job at time step
i.

We compare the power histories between the prediction candi-
dates and the actual job, by going back from the current point.
This maximum backwards step is set to 6 steps (meaning 30 min-
utes) for light calculation overhead. Simple averages (SA) of the
difference between the actual power and the candidates were used
for the evaluation function. This evaluation is executed dynami-
cally every 5 minutes. When the actual job has a power history
of over 6 steps, the SA of 6 points from current to 30 minutes be-
fore is calculated for all 10 candidates. When the actual job has
a power history of less than 6 points, the SA of all time history is
utilized for the evaluation. Then, the job that has the minimum SA

is selected as the prediction result. This means that a candidate
with the closest power history to the target job is selected.

We compared the queue-job prediction (TPC+PROB) in the
previous section and the run-job prediction (CTPC) using the
same datasets. Success rates of the prediction were compared for
each job by using all jobs in the K computer from July to Septem-
ber in 2017. Figure 7 shows the average success/failure rate. The
success rate was evaluated using the criteria of both power and
elapse time, as shown in Fig. 7. The CTPC model conducts the
prediction dynamically every 5 minutes. We plotted the predic-
tion of each job at a timing of 30 minutes from the start. The suc-

Fig. 8 The percentage of success for any job up to each candidate.

cess rate is improved by 3.8% by adopting the power-correlated
TPC compared with our best-case queued-job prediction.

On the other hand, nearly 40% of jobs are still failed using the
CTPC. We analyzed the cause of the failures. The CTPC selects
one from only 10 candidates, and the prediction will fail if there
are no successful jobs in these 10 candidates. Figure 8 shows
the percentage of success for any job up to each candidate. Up to
20th candidate, 30% of jobs are not successful.

E.g., the success rate of the 5th coordinate shows the percent-
age of jobs that have been successfully predicted for at least one
job from 1st to 5th. We found out that there is no improvement
in accuracy when increasing the number of the candidates. In or-
der to further improve the prediction accuracy, a prediction model
that can select the success power from a wide range of candidates
is required.
4.2.2 Variable RNN Model (VRNN)

In this section, we propose another approach of the run-job-
prediction model, leveraging a deep neural network. Today, deep
learning technology achieves great success, especially in im-
age classification fields [20]. Recurrent neural networks (RNN),
which are able to learn the relationships between time series, have
been studied for national language translation [21] and speech
recognition [22]. Recently, the evolving RNN model is starting
to be developed for forecasting of time series data [23], [24]. One
of the great benefits of neural networks is that the networks can
extract features from a huge dataset and cluster the datasets or
find the similarities in the dataset. However, the main purpose of
the research focuses on trend analysis of themselves using a long
history of time-series data. On the other hand, the job power pre-
diction for HPC is a different situation. The time series of jobs do
not have yearly trends in themselves but they have similar trends
in past jobs. The problem we should solve can be converted to the
following question: “How do we identify the most similar pattern
from the hundreds of thousands of patterns?”

Here, we proposed a run-job-prediction model leveraging the
RNN model. First of all, we analyzed time-series data of jobs
in the K computer because a certain number of similar patterns
should exist in the past datasets for the RNN model. K-means
clustering [25] was executed using the nearly 200,000 jobs from
April to December in 2017. The maximum elapse time limit is
3 days and these time step of the jobs was 864, with 5-minutes
each step. So, the K-means of 864 dimensions can cluster the job
pattern based on the similarity of the job’s power. Figure 9 (a)
shows the clustering accuracy depending on the number of clus-
ters using the elbow method [26]. The vertical axis indicates the
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Fig. 9 (a) Elbow graph of K-means clustering depending on the clustering
number. (b) Examples of power profiles in some clusters.

Fig. 10 Conceptual diagram of VRNN power prediction model.

sum of squared error for all time points. The all job power shape
can be clustered into 400 to 800 clusters. Figure 9 (b) shows 4
examples of the clustered power shape in the case of 800 clus-
ters. Each power profile can be successfully separated into 800
clusters. This means that an average of 250 similar power profiles
exists in the datasets, which can be used for training of the neural
network.

From Figs. 9 (a) and (b), we also observed a wide variety of
power profiles in the datasets. This variation makes time-series
prediction difficult. The neural networks need to identify the fu-
ture job pattern from messy power profiles as shown in Fig. 9 (a).
To solve this problem, we proposed a variable size RNN-based
power prediction model (VRNN). Figure 10 shows a conceptual
diagram of the VRNN. The VRNN learn from the power profiles
of past jobs. We designed it so that each neuron connected with
the recurrent network accepts each timing of the job-power histo-
ries, that is, the first node accepts the power history of all job-start
times. Each power history from the job start is input in parallel to
the recurrent nodes to learn relationships between the time series
from start to a certain time. The size of the network is extended
to accept the entire power profiles of the job as the job executes,
in order to extract the features from the power profiles. In the left
picture in Fig. 10, few power histories are available for job pre-

diction, so it is relatively difficult to identify the power profiles
well. The network size grows depending on the available power
histories in the right picture of Fig. 10, which results in better ac-
curacy for power prediction. We will show the evaluation result
in Fig. 10 later.

Algorithm 2 shows the training algorithm of the VRNN. First,
datasets are created for the following training. Here, P(X)i is
the power data of job X at time step i. In our algorithm, power
histories of each job are reconstructed for training the many sub-
models. For the sub-model of 5 minutes, P(X)0 is used for train-
ing input and {P(X)1, P(X)2, P(X)3, P(X)4, P(X)5, P(X)6} are
used for training output as correct answer data. The jobs that al-
ready finish during the input period are eliminated from the train-
ing dataset because prediction of the finished jobs is not needed.
The creation of the sub-models at 10 minutes and 20 minutes
are executed in the same way. For the sub-model of 30 minutes,
{P(X)0, P(X)1, P(X)2, P(X)3, P(X)4, P(X)5} are used for training
input and {P(X)6, P(X)7, P(X)8, P(X)9, P(X)10, P(X)11} are used
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Fig. 11 Prediction comparison by the different sub-RNN model.

for training output as correct answer data. After that, the sub-
models are created every 30 minutes. The size of the network in
the sub-model gets larger depending on the size of the input data,
which leads to better prediction accuracy.

Next, we explain the prediction procedure as shown in Algo-
rithm 3. The prediction was executed for each job at 5, 10, 20
and 30 minutes, and every 30 minutes after that. We designed
a sub-RNN model that can predict 30 minutes in the future (6
time steps) from the current power histories. Based on the avail-
able power history of the job, the optimally trained sub-model is
loaded for the prediction. Each sub model was trained using the
time histories of 5 minutes (meaning using just a single power
history), 10 minutes, 20 minutes, 30 minutes, and every 30 min-
utes thereafter (60, 90 minutes, etc.). In the case of 10, 20 and 30
minutes, there are previous prediction results. The previous re-
sults are overwritten by the new results because the model trained
from a longer job pattern shows better accuracy.

In order to confirm the usefulness of the VRNN model, we
did an experiment using the prediction testbed shown in Fig. 11.
24,991 jobs in April 2017 in the K computer were used for train-
ing, and all jobs from July to September 2017 were predicted.
The power for each node is predicted, and the power for each
job is predicted by multiplying the predicted result by the num-
ber of nodes. Also, only one node’s power is used for one job
in training. Prediction period was fixed to 30 minutes and input
power histories were changed from 5 to 180 minutes. Depending
on the input power history, different sub-RNN models are utilized
for the prediction. The root mean square errors percentage (RM-
SEP), which is normalized RMSE, is shown using the following
equation.

RMSEP =
1

Pmax

1
m

m∑
x=1

√√
1
n

n∑
i=1

(
A(x)i − P(x)i

)
“A(x)i” is the actual power of job “x” at time step “i”. “P(x)I”

Fig. 12 An integrated run-job prediction model consists of the CTPC and
the VRNN.

is the predicted power of job “x” at time step “i”. “Pmax” is 58,
which is maximum power by watt per node. “m” is number of
total jobs. The RMSEP indicates normalized RMSE of predic-
tion and actual power, averaged by all the jobs. The horizontal
axis is power history from the start of the job. The RMSEP im-
proves drastically from 0 to 90 minutes. This result indicates that
the longer sub-RNN model with the longer input data shows bet-
ter accuracy. The RMSEP becomes almost stable from 90 to 180
minutes. This implies that over 90 minutes of power history from
the start is enough to obtain good prediction accuracy. We con-
firmed the benefit of the VRNN, which changes the model size
depending on the input power.
4.2.3 Integrated Run-job Prediction Model

In this section, we propose an integrated run-job prediction
model (INTEG) that includes the CTPC shown in Section 4.2.1
and the VRNN shown in Section 4.2.2. Here, each model has
different features. The VRNN model can predict the job power
accurately by learning the huge power patterns. Nevertheless,
the weak point of the VRNN model is prediction in short avail-
able job time steps. On the other hand, the CTPC basically uses
a topic model output that generates a relatively good prediction
result using the job entries, even in the case of a short power his-
tory. Therefore, we developed the INTEG, which can support
each model’s weak points.

Figure 12 shows the conceptual diagram of the run-job predic-
tion model, the CTPC, the VRNN and the INTEG. The prediction
results of the VRNN that learned from a huge amount of power
data from past jobs are compared with the prediction results of the
CTPC. The INTEG choices the better prediction results by using
a similar algorithm to Algorithm 1. Each job can dynamically
leverage the best prediction model every 5 minutes.

We compared the prediction of each run-job model, i.e., the
CTPC and the VRNN model. Figure 13 shows prediction re-
sults of 6 different-shape jobs for comparison. The left side of
the figure (job A, B, and C) are examples of a job in which the
prediction results of the CTPC are better in terms of prediction
accuracy than that of the VRNN. The CTPC accurately predicts
the power change points if there is a power waveform similar to
the prediction target in 10 candidates. The right side of the fig-
ure (Job D, E, F) are examples of a job in which the prediction
results of the VRNN are better in prediction accuracy than that of
the CTPC. When the CTPC fails in the case of no success data in
10 candidates, the VRNN model predicts highly accurate results.
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Fig. 13 Examples of prediction for 6 different job. Actual data, the VRNN
model and the CTPC are shown in comparison.

Fig. 14 Prediction error comparison of the CTPC model, the VRNN model
and the integrated model.

The VRNN does not fail completely because of the wide learning
from the past huge datasets.

Figure 14 shows a comparison of prediction accuracy depend-
ing on the available job time steps. All jobs executed from July
to September 2017 on the K computer were predicted by each
model. The training interval of each model is in Table 3. The
CTPC, the VRNN and the INTEG were compared with the aver-
age relative prediction error. The relative errors in each time step
for all jobs were calculated. The horizontal axis shows job time
step from the job’s start time for the predicted jobs. A large value
of the time step means large available power histories for the pre-
diction. The vertical axis shows the average relative errors at the
prediction timing for all jobs. The error was evaluated up to 30
minutes in the future at each time step, and then averaged for all
the jobs.

Interestingly, the prediction-time-step dependencies of each
model are quite different. The relative prediction error of the
VRNN decreases as the prediction time step increases. This is be-
cause the VRNN can extract features from the long power steps,
as described in previous section. On the other hand, the relative

prediction error of the CTPC very slightly increases as the pre-
diction time step increases. The prediction-time-step dependency
is lower than that of the VRNN model. Before 15 minutes, the
prediction error of the CTPC changes rapidly. This is because the
reselection of the prediction is based on the few actual time points
in this period as shown in Algorithm 1. Nevertheless, the relative
error is lower than that of the VRNN. After 30 minutes, the re-
selection of the CTPC was always done by using the previous
30-minutes power data. The prediction error of the CTPC grad-
ually increases at a constant rate during this horizon. And in this
horizon, the VRNN model is significantly lower than the CTPC.
Here, this gradual increase is also observed for the VRNN in the
period after 120 minutes. We hypothesize that this is because
there are few training datasets (only long jobs) in this period, and
the model needs to extract an answer from a small amount of
training data. Detailed analysis will be done in our future work.

The INTEG achieves the selection of the optimum model for
each job on each job time step. In Fig. 14, the result of the INTEG
is lower than the simple combination of both results (the CTPC
and the VRNN). The prediction error from the integration model
shows less than 6% relative error after 15 minutes and becomes
very stable after 30 minutes. Also, even at the start time of jobs,
the INTEG shows the lowest relative error at below 8%. In the
INTEG, the selection of the CTPC and the VRNN is dynamically
conducted at each prediction timing every 5 minutes. The rela-
tive error curve of the INTEG is very smooth in Fig. 14. Deter-
mining which model to adapt dynamically may cause the model
to change suddenly, so the relative error will not be smooth. By
adapting Algorithm 1 so that the selection is judged using the av-
erage value of the past 30-minutes power time steps, the INTEG
relative error becomes very smooth.

Here, we summarize the run-job prediction model. Soon after
the job start, the CTPC is frequently selected by the INTEG as the
prediction model. The VRNN, which cannot identify the power
shape from a small number of power time steps, shows inaccurate
predictions during this period. After 30 minutes from the start,
the VRNN model is frequently selected as the prediction model
instead of the CTPC. However, the CTPC is infrequently selected
in this period. This is because the VRNN is a kind of regressive
model that sometimes generates a slight error. We estimate that
this is caused by the noise in the training datasets. On the other
hand, the CTPC is a reselection algorithm of the 10 candidates,
which is basically the past power shapes. The prediction results
sometimes completely coincide with the actual data because the
same user sometimes executes exactly identical jobs in the HPC
field.

5. Evaluation

This chapter shows the evaluation of our developed prediction
model using the K computer’s total job power. Table 2 shows
the computer environment used for training and prediction. We
used the Nvidia GPU P100 for the training of the VRNN only.
The training of the queued-job prediction (TPC+PROB) and the
CTPC were done by the CPU.

Table 3 shows the training conditions, which consist of train-
ing data, training interval, and training time. We demonstrated
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Table 2 Machine specification used for this prediction.

Table 3 Training condition.

Fig. 15 Prediction results of total job power. Four predication model results
are shown in comparison.

the prediction from July to September 2017. The power of this
3 month has the biggest standard deviation in 2017 and is the
most difficult to predict. The queued-job prediction model used
all jobs in the past 3 months for the training. The queued-job
prediction model was updated every 15 minutes using the past 3
months from the current time, including newly submitted jobs set
to the training interval shifted every 15 minutes.

The CTPC uses the prediction result of the queued-job predic-
tion model, so there is no need for training. The VRNN model
trains only once and does not update the model in this evaluation.
The learning time of the VRNN was 78 hours using the GPU. The
1-month training interval (April) is separate from the prediction
period (July to September). We assume the prediction accuracy
will be higher if the training time is closer to the prediction time.
However, the VRNN precision relative error is as small as 5.7%.

Figure 15 shows the evaluation results of predicted total job
power in the K computer. The evaluation period is July to
September 2017. The number of jobs predicted was 81,500. The
power of all jobs executed in the evaluation period was predicted,
and the total job power was calculated depending on their exe-
cuted time in real logs from the K computer. The total power

Fig. 16 Examples of total job power predict. A, C: TPC prediction (Septem-
ber 10 to 12 and July 24 to 26, respectively), B, D: TPC + PROB +
INTEG prediction (Same period with A, C).

of the measured job power was also calculated in the same way.
Then, the total predicted job power and the total measured job
power were compared. The relative error was used for the evalu-
ation.

The vertical axis in Fig. 15 shows the monthly average of the
obtained relative errors and total average relative errors. We com-
pared four model cases:
1. TPC (Conventional)

The TPC model predicted both queued jobs and run jobs
in the case of the queued-job prediction model only (Sec-
tion 3.1).

2. TPC + PROB
The TPC + PROB model predicted both queued jobs and
run jobs in the case of the queued-job prediction model only
(Section 3.1).

3. TPC + PROB and CTPC
The queued-job prediction was conducted by the TPC +
PROB. Model and the run-job prediction was executed by
the CTPC (Section 3.2.1).

4. TPC + PROB and INTEG
The run-job prediction model in 3 was changed from the
CTPC to the INTEG (Section 3.2.3).

The prediction was run every 30 minutes and the decision for
job attribution (which job is queued and which is run) was also
calculated every 30 minutes. Then, all calculated data was aver-
aged by the prediction period.

In Fig. 15, all proposed algorithms have better prediction accu-
racy than TPC. Comparing the TPC with the INTEG, the predic-
tion accuracy improved by 14.4%. The same trend of improve-
ment was observed in the monthly relative errors. The improve-
ment was independent on the prediction horizon. Finally, an aver-
age relative error of 5.7% was achieved. We believe that the pre-
diction error is dependent on the sites, the length of the prediction
period and the evaluation function for accuracy. These cannot be
compared directly, even though our result is the most accurate
job power prediction system, demonstrated over long prediction
period using large-scale real HPC data. Details are described in
related work.

Figure 16 shows the examples of the job total measured power
and the predicted power. The power value is not an instantaneous
value but an average value for 30 minutes. This is because the
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average value of power for 30 minutes, which is the time con-
stant, is the control index for cooling-units control. In the period
where the power change is small (July 24 to 26), both the TPC
and the INTEG predict with high accuracy (C, D). Improvement
was observed in the case of the INTEG. If the prediction of the
TPC fails, the prediction continues to fail until job completion,
and the error is large. It can be well observed that the prediction
succeeds by predicting and correcting this with the INTEG (A,
B). The prediction that failed in the TPC is changed to a success
by being corrected in the INTEG.

Overhead for job-scheduler by the prediction is short, i.e., less
than 0.1 sec per 100 jobs.

6. Related Work

Several methods have been proposed to predict job power of
predominantly queued jobs or resource usage for power-aware
job scheduling. A method of predicting job power using ma-
chine learning was reported [4]. A random forest model trained
by 100,000 jobs selects a job script similar to the prediction tar-
get and uses the power of the selected job as the predicted power,
by using the Aurora-supercomputer logs. The average prediction
error for each job was calculated to be 5%. The job power con-
sumption, not time-series power, was used for the evaluation. The
size of the test set was limited to 943 and 714 jobs. We demon-
strate the queued-job prediction of 3-month all jobs (81,500 jobs)
by using the topic model. A power-prediction for power cap-
ping by statistic model was reported using the Luna super com-
puter [27]. The parameters of the statistic model are determined
using a hierarchical Bayesian model. The power required for the
job is predicted with a statistical model in which the determined
parameters are substituted. A power prediction using a dynamic
learner for a power-aware scheduler was reported [10]. They uti-
lized the IBM Blue Gene/Q workload trace. The dynamic learner
calculates power using a simple rule, in which the previous power
of the same user’s job is used as the prediction power. This kind
of trend differs from one HPC site to another. Our queued-job
prediction model enables auto-weight-tuning of the job entries by
the probabilistic model. An application-prediction technique was
reported because jobs with same applications had similar power
profiles [28]. The paragraph vector model clustered jobs from the
hashes and symbols in the scripts to 328 kinds of applications.
The demonstration was carried out on the K computer between
September 2016 and March 2017 (273,121 jobs). The application
predicted with an accuracy of approximately 92%. This work was
only focused in the application prediction, not power prediction
like this work. All above works were conducted for queued-job
power prediction.

In terms of time series prediction, run-job power prediction
has hardly been conducted for HPC. Early work has shown that
RNNs outperform feedforward networks and various types of lin-
ear statistical models on general time series [29]. Subsequently,
various RNN-based models were developed for different time
series, as noisy foreign exchange rate prediction [30], chaotic
time series prediction in communication engineering [31] or stock
price prediction [32]. Also recently, a Long-Short Term Memory
(LSTM), which is an RNN, with an evolving likelihood model

was reported for general-purpose time-series forecasting [24].
The difference between our work and these existing RNN mod-

els is that the conventional RNN have been typically applied to in-
dividual time series; i.e., a different model is fit to each time series
independently [33]. The RNN predicts the future from the trends
that are learned from relatively long past histories of themselves
(monthly, yearly for weather forecasts and stock markets). On
the other hand, this work can be trained using a huge number of
relatively short job power profiles (minutes, hours). This is quite
a different development compared to previous works. Instead of
learning the trend, our VRNN learns similarity from similar past
profiles.

A multi-branch LSTM for stock price forecasting was re-
ported [34]. They utilized different LSTM models for different
patterns to learn each part of the stock market data. Each LSTM
was taught from 4 to 5 sets of clustered data by K-means. This
approach is not suitable in our case, as we have 400 to 800 kinds
of shapes of job profiles, which cannot be identified by K-means
until the job finishes. Our integrated run-job prediction model
can identify the future power without the pre-clustering.

7. Conclusion and Future Work

We developed a highly accurate job total power predicting
system to predictively control the cooling units of a large scale
HPC system. High precision prediction with an average rela-
tive error of 5.7% was demonstrated for all jobs over 3 months
on the K computer. We developed a queued-job power predic-
tion model that consists of the topic model and the probabilis-
tic model. A benefit of the queued-job prediction model is easy
introduction without parameter tuning. We also proposed a no-
ble integrated run-job prediction model that combines the power-
correlated topic model and the variable RNN model. These two
run-job models were successfully integrated in order to achieve
high-precision prediction, shoring up each other’s weak points
in job execution. Furthermore, to the best of our knowledge
this work is the first large-scale attempt at combining queued-
job power prediction and run-job power prediction to predict the
total power of the HPC system.

As future work, we will adopt the proposed prediction model
to other HPC systems to confirm its generality. Especially, the
impact of process fluctuations needs to be discussed carefully. In
this result, since many jobs were executed on many nodes, the
power per job was averaged, so it did not affect the prediction
accuracy. However, in an HPC system with a majority of jobs ex-
ecuted on small nodes. The accuracy of system power prediction
can be degraded.

We also plan power control experiments of the cooling unit and
job scheduler by using it.
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