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Abstract: In a variant of the stable marriage problem where ties and incomplete lists are allowed, finding a stable
matching of maximum cardinality is known to be NP-hard. There are a lot of experimental studies for evaluating
the performance of approximation algorithms or heuristics, using randomly generated or artificial instances. One of
standard evaluation methods is to compare an algorithm’s solution with an optimal solution, but finding an optimal
solution itself is already hard. In this paper, we investigate the possibility of generating instances with known optimal
solutions. We propose three instance generators based on a known random generation algorithm, but unfortunately
show that none of them meet our requirements, implying a difficulty of instance generation in this approach.
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1. Introduction

Consider a situation where there are n men and n women,
where each person has a preference list that ranks the members
of the opposite gender, and we are seeking for a matching, i.e.,
n pairs of a man and a woman, based on the preference lists. A
matching that does not have an unmatched pair each of whom
prefers the other to the matched partner is called a stable match-

ing. The problem of finding a stable matching is called the stable

marriage problem (or SM for short) [2] and has been extensively
studied. The stable marriage problem is widely used in matching
or assignment systems, such as assigning residents to hospitals
and assigning students to labs in universities. It is known that for
any instance, at least one stable matching exists, and one can be
found in O(n2) time by using the so-called Gale-Shapley algo-
rithm [2].

Note that, in the above setting, each person must rank all the
members of the opposite gender in a strict order. These restric-
tions are clearly strict for applications so there are two major ex-
tensions considered. One is to allow ties in preference lists, where
two or more persons with the same preference are tied in a pref-
erence list. This variant is denoted as SMT . When ties are intro-
duced, there exist three stability notions, super, strong, and weak
stabilities. Throughout this paper, we consider only the weak sta-
bility, which is the most natural notion (formal definitions will be
given later). In SMT, a stable matching always exists and one can
be found in O(n2) time. The other is to allow incomplete lists,
where each person’s preference list can contain only acceptable
persons. This variant is denoted as SMI. Similarly, in SMI, a
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stable matching exists in any instance and one can be found in
O(n2) time. In this case, a stable matching may no longer be
a perfect matching, but all the stable matchings have the same
size [3], [28], [29]. Hence in these three problems, it is easy to
find a maximum size stable matching.

However, when both ties and incomplete lists are allowed (de-
noted SMTI), stable matchings may have different sizes. There-
fore, although a stable matching can still be obtained in poly-
nomial time, there is no guarantee that its size is maximum.
In fact, the problem of finding a largest stable matching is NP-
hard [12], [21], and hence the existence of a polynomial time al-
gorithm cannot be expected. For this reason, heuristics such as
local search methods [4], [5], [24], [25], mathematical program-
ming approaches [6], [17], [22], and approximation algorithms
with theoretical guarantee [1], [9], [10], [13], [14], [15], [16],
[18], [23], [26] have been devised.

In experimental studies, approximation algorithms and/or
heuristics are implemented and run on computers to evaluate their
performance. In some experiments, the sizes of an optimal solu-
tion and the algorithm’s solution are compared to evaluate the
goodness of algorithms [7], [11], [27], but since the problem is
NP-hard, it takes a fair amount of time to find an optimal solution
for large instances. Therefore, there is a problem that experi-
ments can be performed only on small size instances. If an in-
stance whose optimal solution is known in advance can be used,
this problem can be solved.

In this study, we investigate the possibility of constructing an
instance generation algorithm that produces instances whose op-
timal solution is known. To evaluate the performance of algo-
rithms fairly and accurately, it is desirable to use a wide variety
of instances. However, by using the same argument as the liter-
ature [19], [30], it can be shown that NP=coNP holds if there is
a polynomial-time algorithm that can generate any instance with
an optimal solution. Therefore, we aim to devise algorithms that
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can generate a wide range, if not all, of the instances. In this
paper, we focus on an instance generation algorithm based on
the method of Gent and Prosser [7], which is widely used as in-
put for an experimental performance evaluation. Specifically, we
first create an SMI instance I and find its stable matching M. In
the SMI instance, M is the maximum size stable matching of I

because, as mentioned above, all the stable matchings are of the
same size. Then, by adding ties to preference lists one after an-
other, we eventually obtain an SMTI instance I′. Since the stable
matching of the instance before adding a tie is also stable in the
instance after adding the tie, M is a stable matching of I′. Our
goal is to make M be a maximum stable matching of I′. To do so,
it is necessary not to create a stable matching larger than M when
adding ties.

We first considered an algorithm that determines whether a sta-
ble matching larger than M will be created when adding a tie,
and adds this tie if not. If we can make this decision correctly, it
is possible to generate various types of instances. However, we
show that P=NP holds if there exists a polynomial time algorithm
to make this decision.

Next, when adding a tie on the list of a person p, we put some
restrictions on putting p’s partner in M into the tie. This is a suffi-
cient condition that a stable matching larger than M is not created.
However, we found that this condition is too strong to the extent
that the algorithm does not create stable matchings smaller than
M either, so the size of stable matchings is always constant.

We then relaxed the above constraint, while maintaining the
condition that a stable matching larger than M is not created. Al-
though we performed a more detailed analysis and devised a new
generator that actually relaxes the constraints, we found that the
size of the stable matching is still constant.

To summarize, the first method is flexible but cannot be ex-
pected to run in polynomial time. The second and the third meth-
ods run in polynomial time but can produce only instances having
stable matchings of the same size, which are useless for the pur-
pose of experiments since for such instances, it suffices to find
one stable matching, e.g., by the Gale-Shapley algorithm. From
our study in this paper, we think that if we insist on using Gent
and Prosser’s algorithm [7], more consideration is needed, or oth-
erwise we may have to seek for completely different methods.

2. Preliminaries

2.1 Stable Marriage Problem
An SMTI instance of size n consists of n men, n women, and

each person’s incomplete preference list that may contain ties. If
the preference list of a person p includes a person q, we say that
q is acceptable to p. Here, we assume without loss of generality
that woman w is acceptable to man m if and only if m is acceptable
to w.

Consider three persons p, q, and q′, where q and q′ are of the
same gender and p is of a different gender. In the preference list
of p, if q is written higher than q′, we write q �p q′. If both are
written in the same order (i.e., q and q′ are tied in p’s list), we
write q =p q′. The notation q �p q′ means that either q �p q′ or
q =p q′ holds.

A set of pairs (m, w) in which each person appears at most once

Fig. 1 The Gale-Shapley algorithm [2].

is called a matching. The size of a matching M, written as |M|, is
the number of pairs included in M. If (m, w) ∈ M for a matching
M, then we write M(m) = w and M(w) = m. In this case, m is
called the partner of w, and similarly, w is called the partner of
m. If the person p does not appear in M, then p is said to be single

in M.
We then define the stability of matchings. When ties are

present, there are three types of stability notions, weak stability,
strong stability, and super-stability. In this paper, we deal with
only weak stability. A blocking pair is a pair (m, w) that satisfies
all the following three conditions:
( 1 ) M(m) � w but m and w are mutually acceptable.
( 2 ) w �m M(m) or m is single in M.
( 3 ) m �w M(w) or w is single in M.

A matching that has no blocking pair is a weakly stable match-

ing. In this paper, we call a weakly stable matching simply a
stable matching. Different sizes of stable matchings may exist in
an SMTI instance. We write the size of a maximum stable match-
ing of an instance I as opt(I). The problem of finding a maximum
size stable matching is denoted MAX SMTI.

2.2 The Gale-Shapley Algorithm
Gale and Shapley proposed a polynomial-time algorithm (the

Gale-Shapley algorithm) [2] for finding a stable matching in SM
and SMI. Instance generators proposed in this paper use this al-
gorithm as a subroutine. The Gale-Shapley algorithm is described
in Fig. 1.

2.3 Instance Generators and Hardness of Constructing a
Complete Generator

A MAX SMTI instance generation algorithm considered in this
paper is a nondeterministic algorithm that, given an input 1n, out-
puts a pair (I, opt(I)) of an SMTI instance of size n and its optimal
solution. When an instance generator G can generate any SMTI
instance, we say that G is complete.

An ultimate goal of this research is to find a complete instance
generator that runs in polynomial time in n. However, this is un-
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Fig. 2 Gent and Prosser’s instance generator [7].

likely due to the following proposition, whose proof is almost the
same as that of [19], [30].
Proposition 1. If there is a complete polynomial time instance
generator for MAX SMTI, then NP=coNP.
Proof. Consider the following language L = {(I, k) | I is an
SMTI instance, opt(I) ≥ k} corresponding to the MAX SMTI
decision problem. Since L is NP-complete [12], [21] and the lan-
guage {(I, k) | I is an SMTI instance, k is an integer} belongs
to the class P, the complement of L, L = {(I, k) | I is an SMTI
instance, opt(I) < k}, is coNP-complete.

Given a complete polynomial-time instance generator H, con-
sider the following algorithm A that uses it to nondeterministi-
cally determine whether an input (I, k) belongs to L or not. A

runs H on input n, and obtains its output (I′, k′). If I′ = I and
k′ < k, accept (I, k); otherwise, reject. This works in polynomial
time and determines membership in L correctly, so L ∈ NP. From
this, NP = coNP is derived. �

2.4 Gent and Prosser’s Instance Generation Algorithm
The instance generator used in Ref. [7], which is the basis of

our proposed method, is described in Fig. 2.
In Step 1, a complete list without ties is created. Next, in Step

2, an incomplete list having an expected length of p1n is obtained.
After Step 2, we obtain an SMI instance (a set of incomplete pref-
erence lists without ties). Then, in Step 4, each person on a prefer-
ence list is tied with a person just above him/her with probability
p2, and as a result, we obtain an SMTI instance.

Fig. 3 General framework.

3. Proposed Instance Generators

All three instance generators proposed in this section are based
on Gent and Prosser’s one [7] described in Section 2.4. Here we
explain how we modify their generator.

First, we are not interested in probability distribution of in-
stances. Hence we do not use probabilities p1 and p2 used in
Ref. [7]. Instead, we perform deletion of persons or tying persons
nondeterministically.

Second, Step 3 of Ref. [7] is not essential so we omit this oper-
ation (i.e., we allow an instance with empty lists).

Third, which is essential, we compute a stable matching M af-
ter we obtain an SMI instance at Step 2. As all the stable match-
ings have the same size, M is clearly an optimal solution. After
this, we add ties in preference lists. For convenience, we consider
a person who is not included in a tie as in a tie of length one. Ini-
tially, all the ties are of length one, and we repeatedly and non-
deterministically merge two consecutive ties to one. Note that a
stable matching before merging ties is also stable after merging,
because by merging ties no new blocking pair can arise (this is
formally proved in the proof of Lemma 1). Hence M is a sta-
ble matching throughout this process. However, by merging ties,
an unstable matching may turn stable. To guarantee that M is of
maximum cardinality in an output SMTI instance, we have to pre-
vent a matching that is larger than M (which is of course initially
unstable) from becoming stable.

A framework of our method is given in Fig. 3. Step 5 executes
the operation of merging ties. Our three generators only differ in
a condition for allowing two ties to be merged.

3.1 Algorithm Using a Decision Problem
In our first method, we check if two ties can be merged with-
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Fig. 4 Step 5 of Algorithm 1.

out changing the optimal solution (the size of a maximum sta-
ble matching). If so, then we merge them, otherwise, we do not
merge. Consider the following decision problem.
Problem: Is Size Same
Input: SMTI instances I and Ĩ, where Ĩ is the result of merging
two adjacent ties on the preference list of a person in I.
Output: YES if opt(Ĩ) = opt(I). Otherwise NO.

Algorithm 1 solves Is Size Same before merging adjacent ties,
and merge them if and only if the answer is YES. In Fig. 4, we
describe only Step 5 of Algorithm 1 (as other parts are unchanged
from Fig. 3).

If Is Size Same can be solved in polynomial time, Algorithm 1
terminates in polynomial time. However, as we will show in The-
orem 1, Is Size Same is NP-hard. First, we prove the following
Lemma 1.
Lemma 1. Let I and Ĩ be input SMTI instances for Is Size Same.
Then, opt(Ĩ) ≥ opt(I) holds.
Proof. Let M∗ be a maximum stable matching of I. It suffices
to show that M∗ is stable in Ĩ. Suppose not. Then, there is a
blocking pair (m, w) of M∗ in Ĩ. By definition, “w �m M∗(m) or
m is single in M∗” and “m �w M∗(w) or w is single in M∗” hold
in Ĩ. However, by construction of Ĩ, I is a result of breaking a tie
of Ĩ in some way, so both relations w �m M∗(m) and m �w M∗(w)
also hold in I. This implies that (m, w) is a blocking pair of M∗ in
I, contradicting the stability of M∗ in I. �

By Lemma 1, the answer of NO means that opt(Ĩ) > opt(I).
Lemma 2 guarantees that opt(Ĩ) is at most one more than opt(I).
Lemma 2. Let I and Ĩ be input SMTI instances for Is Size Same.
Then, opt(Ĩ) ≤ opt(I) + 1 holds.
Proof. Without loss of generality, let the person whose ties are
merged be a man m. Let M be one of the maximum stable match-
ings of I, and M̃ be one of the maximum stable matchings of Ĩ.
That is, opt(I) = |M| and opt(Ĩ) = |M̃|.

It is known that there is a way of breaking ties of Ĩ so that M̃

is stable in the resulting instance (Lemma 3.1 of Ref. [20]). Let
Ĩ1 be the SMI instance obtained in this way. Next, let I1 be the
SMTI instance obtained from I by breaking ties of all the people,
except for the man m, in the same way as in Ĩ1, and M1 be one
of the maximum stable matchings of I1. Since M1 is also a stable
matching of I, |M1| ≤ |M| holds.

Consider the bipartite graph G = (V, E) with vertex set
V = {m1,m2, . . . ,mn, w1, w2, . . . , wn} and edge set E = {(m, w) |
(m, w) ∈ (M1 ∪ M̃)}. This graph represents M1 and M̃ being
superimposed. Since the degree of each vertex is at most two,
each connected component is an isolated vertex, a path, or a cy-
cle (possibly of length two). In the following, we show that if a

Fig. 5 A path on the bipartite graph G = (V, E).

path exists, it must contain the man m. Then since there can be at
most one path, the sizes of M1 and M̃ differ by at most 1, and we
have that |M̃| ≤ |M1| + 1 ≤ |M| + 1, as desired.

Suppose that there exists a path that does not contain m. By re-
naming persons, let m1, w1,m2, . . . ,mk, wk be the men and women
along this path, where (mi, wi) ∈ M1 for 1 ≤ i ≤ k and
(mi+1, wi) ∈ M̃ for 1 ≤ i ≤ k − 1. In Fig. 5, solid edges repre-
sent the pairs of M1 and dotted edges represent the pairs of M̃.
This path starts from a man and ends with a woman, but the fol-
lowing argument holds for any other case. Note that every person
in this path has the same strict preference list in I1 and Ĩ1.

Since (m1, w1) ∈ M1, w1 is acceptable to m1. If m1 �w1 m2 then
(m1, w1) is a blocking pair for M̃ in Ĩ1, contradicting the stability
of M̃ in Ĩ1. Hence we have that m2 �w1 m1. If w1 �m2 w2 then
(m2, w1) is a blocking pair for M1 in I1, contradicting the stabil-
ity of M1 in I1. Hence we have that w2 �m2 w1. Continuing in
this way, we eventually have that wk �mk wk−1. Then (mk, wk) is a
blocking pair for M̃ in Ĩ1 since mk is acceptable to wk. This is a
contradiction and the proof is completed. �
Theorem 1. If there exists a deterministic polynomial time algo-
rithm that solves Is Size Same, then P=NP.
Proof. Suppose there is a deterministic polynomial time algo-
rithm A that solves Is Size Same. Given a MAX SMTI instance I,
construct an algorithm B to solve it as follows. Prepare a variable
x and set its initial value to 0. Also, let I1 = I.

If there is a tie of length 2 or more in Ii, construct an SMTI in-
stance Ii+1 by dividing it arbitrarily into two, and give Ii and Ii+1 to
A. If opt(Ii+1) � opt(Ii), increment x by 1. If opt(Ii+1) = opt(Ii),
do not change the value of x. This is repeated as long as the
instance includes a tie, and let Ik be the finally obtained SMI in-
stance.

By Lemmas 1 and 2, opt(Ii+1) � opt(Ii) implies opt(Ii+1) =
opt(Ii) − 1, so opt(Ik) = opt(I) − x. Since Ik is an SMI instance,
opt(Ik) can be computed in polynomial time. Therefore, opt(I)
can be computed in polynomial time, and B is a polynomial time
algorithm for finding the optimal solution of MAX SMTI. Since
MAX SMTI is NP-hard, P=NP is implied. �

3.2 Algorithm Using a Sufficient Condition
Theorem 1 implies that it is hard to precisely determine

whether we can merge two ties without changing the optimal so-
lution. One way of avoiding this problem is to rely on a sufficient
condition for preserving the optimal solution when merging two
ties. In this section, we propose Algorithm 2, which is described
in Fig. 6. As before, we give only Step 5.
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Fig. 6 Step 5 of Algorithm 2.

Fig. 7 An SMI instance and a matching M obtained after Step 4.

Fig. 8 A generated SMTI instance.

3.2.1 Example
We show an execution of Algorithm 2 using an example of

n = 4. Let 1, 2, 3, and 4 be men and A, B, C, and D be women.
Suppose that after Step 3, we obtained an SMI instance given in
Fig. 7. Here, each row represents a preference list of each person.
For example, in the man 1’s preference list, C, A and B are the
first, the second, and the third choices, respectively.

In Step 4, a stable matching M is obtained. In Fig. 7, the person
written inside the circle is the partner in M. A person who does
not have a circle on the list is single in M.

In Step 5, we repeatedly merge two ties (recall that initially all
the ties are of length one). Ties that do not include a circle can be
merged freely, such as B and C in 2’s list or 1 and 4 in B’s list. A
tie with a circle can be merged with an upper tie, such as D and
A in 4’s list. However, a tie with a circle cannot be merged with a
lower tie, such as C and A in 1’s list or 2 and 1 in A’s list.

Figure 8 shows an example instance after executing Step 5.
3.2.2 Proof of Correctness

Here we show that Algorithm 2 works correctly.
Theorem 2. opt(I′) = |M| holds.
Proof. To show this, it suffices to show that (1) the matching M

obtained in Step 4 is a stable matching of I′ and (2) there is no
stable matching of I′ larger than M. (1) can be proved by repeat-
edly applying the argument in the proof of Lemma 1, so in the
rest we prove (2).

Assume that there exists a stable matching M′ of I′ that
is larger than M. As in the proof of Lemma 2, we con-
sider the bipartite graph G = (V, E) with vertex set V =

{m1,m2, . . . ,mn, w1, w2, . . . , wn} and edge set E = {(m, w) |
(m, w) ∈ (M ∪ M′)}. Since |M′| > |M|, G contains an augment-
ing path, i.e., a path starting from and ending with edges of M′.
Let the persons along this path be m1, w1,m2, . . . ,mk, wk, where

Fig. 9 A path on the bipartite graph G = (V, E).

Fig. 10 Preference lists in I added to Fig. 9.

M′(m1) = w1,M(w1) = m2,M′(m2) = w2, . . . ,M(wk−1) = mk, and
M′(mk) = wk. In Fig. 9, the solid edges represent the pairs of M′,
and the dotted edges represent the pairs of M.

If m1 �w1 m2 holds in I, then (m1, w1) becomes a blocking pair
of M in I, which contradicts the stability of M in I. Since prefer-
ence lists of I contain no ties, it must be the case that m2 �w1 m1

in I. By the rule of Step 5, M(w1) (= m2) is not tied with the
lower man in w1’s preference list. Hence m2 and m1 are not tied
in I′ and m2 �w1 m1 also holds in I′.

Next, if w1 �m2 w2 holds in I, w1 and w2 do not belong to the
same tie in I′ due to the condition of Step 5, because M(m2) = w1

cannot belong to the same tie with a lower-ranked woman. Hence
w1 �m2 w2 also holds in I′. Then, (m2, w1) becomes a block-
ing pair of M′ in I′, contradicting the stability of M′ in I′. Thus
w2 �m2 w1 holds in I.

By a similar argument, we can deduce that wi �mi wi−1 holds
in I for 2 ≤ i ≤ k, and mi+1 �wi mi holds in I for 1 ≤ i ≤ k − 1.
Figure 10 shows the preference lists in I added to Fig. 9.

Then, wk �mk wk−1 holds in I, and (mk, wk) becomes a blocking
pair for M in I, which contradicts the stability of M in I. There-
fore, we can conclude that there is no stable matching of I′ larger
than |M|. �
3.2.3 Proof that the Sizes of Stable Matchings are Equal

We show that all the stable matchings of an output of Algo-
rithm 2 are equal.
Theorem 3. All the stable matchings of I′ are of the same size.
Proof. Let S = {I1, I2, . . . , Ik} be the set consisting of all the
SMI instances obtained by breaking all the ties of I′. When merg-
ing ties to form I′ from I in Step 5, in each person p’s prefer-
ence list, M(p) is not tied with a lower ranked person. Hence if
M(p) �p q holds in I, it also holds in I′, so M(p) �p q holds in
any I′′ ∈ S . Thus M is stable in all the SMI instances of S .

Let M′ be an arbitrary stable matching of I′. Then, by
Lemma 3.1 of Ref. [20], M′ is stable in at least one SMI instance
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Fig. 11 Step 5 of Algorithm 3.

Fig. 12 An SMI instance and a matching M obtained after Step 4.

of S , say Ii. As discussed above, M is also stable in Ii. Since in
SMI the sizes of all the stable matchings are equal, |M| = |M′|
holds. Therefore, the size of any stable matching of I′ is |M|. �

3.3 Algorithm Using a Relaxed Sufficient Condition
Theorem 3 implies that the condition of Algorithm 2 at Step 5

is too strong. In this section, we propose Algorithm 3 in Fig. 11,
which relaxes the condition in Step 5 of Algorithm 2.

Recall that, in Algorithm 2, ties t1 and t2 cannot be merged if
t1 contains M(p). However, in Algorithm 3, there is additional
condition. Hence, ties allowed to be merged in Algorithm 2 are
also allowed in Algorithm 3. As will be shown in the next section,
it can happen that ties not allowed to be merged in Algorithm 2
can be merged in Algorithm 3. Thus Algorithm 3 is actually a
relaxation of Algorithm 2.
3.3.1 Example

We show an execution of Algorithm 3 using the same example
as in Section 3.2.1, which is given in Fig. 12.

Let the person p in Step 5 be the man 1 and his upper tie t1
consists of the woman C and a lower tie consists of the woman A.
Recall that in Algorithm 2, t1 and t2 are not allowed to be merged.
However, this time we can merge them because the only woman
A in t2 neither is single nor satisfies 1 �A 2 in the current list. For
the same reason, 2 and 1 in A’s list can be merged.

However, D and C in 4’s list cannot be merged because 4 �C 1
holds. (p, r, and M(r) in Step 5 correspond to the man 4, the
woman C, and the man 1, respectively). Figure 13 shows a pos-
sible output of Algorithm 3, which Algorithm 2 cannot produce.

It should be noted that men 2 and 1 in A’s list can be merged
in Fig. 12, but it is no longer possible in Fig. 13 because C and A

are now tied in 1’s list.
3.3.2 Proof of Correctness

In this section, we show that the output of Algorithm 3 is cor-
rect.
Theorem 4. opt(I′) = |M| holds.
Proof. As in the proof of Theorem 2, the matching M ob-
tained in Step 4 is a stable matching of I′, so we show that

Fig. 13 A generated SMTI instance.

Fig. 14 A path on the bipartite graph G = (V, E).

there is no stable matching of I′ larger than M. This part goes
like that of Theorem 2, with a bit more sophisticated analy-
sis. Assume that there exists a stable matching M′ of I′ that
is larger than M. Then, on a bipartite graph with vertex set
V = {m1,m2, . . . ,mn, w1, w2, . . . , wn} and edge set E = {(m, w) |
(m, w) ∈ (M∪M′)}, there exists an augmenting path starting from
a man m1 who is single in M but matched in M′, and ending
with a woman wk who is single in M but matched in M′. Hence
(mi, wi) ∈ M′ for 1 ≤ i ≤ k and (mi+1, wi) ∈ M′ for 1 ≤ i ≤ k − 1.
In Fig. 14, the solid edges represent the pairs of M′, and the dot-
ted edges represent the pairs of M.

If m1 �w1 m2 holds in I, then (m1, w1) becomes a blocking pair
of M in I, which contradicts the stability of M. Hence m2 �w1 m1

holds in I, and by construction of I′, m2 �w1 m1 holds in I′. Since
m1 is single in M, m2 =w1 m1 does not hold in I′ by the condition
of Step 5. Hence m2 �w1 m1 holds in I′.

Next, if w1 �m2 w2 holds in I′, then (m2, w1) becomes a block-
ing pair of M′ in I′, which contradicts the stability of M′ in I′.
Therefore, w2 �m2 w1 holds in I′.

If w2 �m2 w1 holds in I′, w2 �m2 w1 also holds in I. If
w1 =m2 w2 holds in I′, then either w1 �m2 w2 or w2 �m2 w1 may
hold in I. Hence it suffices to consider the following two cases:
(1) w2 �m2 w1 holds in I

If m2 �w2 m3 holds in I, then (m2, w2) is a blocking pair for M

in I. So m3 �w2 m2 holds in I. Since w2 �m2 w1 holds in I, the
tie containing m3 and the tie containing m2 are not merged due to
the condition of Step 5 (by identifying p = w2, M(p) = m3, and
r = m2 in Step 5). So m3 �w2 m2 holds in I′.
(2) w1 �m2 w2 holds in I and w1 =m2 w2 holds in I′

Suppose that m2 �w2 m3 holds in I. Since M(m2) = w1 and
w1 �m2 w2 holds in I, by the condition of Step 5, w1 and w2 are
not in the same tie. This contradicts w1 =m2 w2, so m3 �w2 m2

in I. Note that w1 =m2 w2 in I′ by the condition of this case.
When w1 and w2 are put into the same tie, it must be the case that
m3 �w2 m2 as otherwise, the condition of Step 5 prohibits merg-
ing the tie containing w1 and the tie containing w2. After this, the
relation m3 �w2 m2 is maintained by the condition of Step 5; since
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Fig. 15 A path on the bipartite graph G = (V, E).

w1 =m2 w2, the tie containing m3 and the tie containing m2 will
not be merged. Therefore m3 �w2 m2 holds in I′.

Hence, in either of the two cases (1) and (2), m3 �w2 m2 holds
in I′. By repeating the same argument along this path, we have
that wi+1 �mi+1 wi in I′ and mi+1 �wi mi in I′, and eventually we
have that wk �mk wk−1 in I′. This means that wk �mk wk−1 in I.
Then, (mk, wk) is a blocking pair for M in I, which contradicts the
stability of M. Therefore, there is no stable matching of I′ larger
than |M|. �
3.3.3 Proof that the Sizes of Stable Matchings are Equal
Theorem 5. All the stable matchings of I′ are of the same size.
Proof. By Theorem 4, there is no stable matching M′ of I′

such that |M′| > |M|. Assume that there exists a stable match-
ing M′ of I′ such that |M′| < |M|. Then, on the bipartite graph
with vertex set V = {m1,m2, . . . ,mn, w1, w2, . . . , wn} and edge set
E = {(m, w) | (m, w) ∈ (M∪M′)}, there exists a path starting from
a woman w1 who is matched in M but is single in M′, and ending
with a man mk who is matched in M but is single in M′. Hence
M(w1) = m1,M′(m1) = w2,M(w2) = m2, . . . ,M′(mk−1) = wk, and
M(wk) = mk. In Fig. 15, the solid edges represent the pairs of M′,
and the dotted edges represent the pairs of M.

As a starting point, w2 �m1 w1 holds in I′, as otherwise,
(m1, w1) is a blocking pair for M′ in I′. By applying the same
argument as the proof of Theorem 4, we have that mk �wk mk−1 in
I′. Then, (mk, wk) becomes a blocking pair of M′, which contra-
dicts the stability of M′. Therefore, all the stable matchings of I′

have the same size |M|. �

4. Conclusion

In this paper, we have investigated possibilities of construct-
ing a polynomial time instance generator for an NP-hard problem
MAX SMTI. We require a generator to output the optimal value,
as well as an instance itself.

By following an argument of Refs. [19], [30], we first observed
that if there exists an instance generator that can produce any in-
put, then NP=coNP holds. Hence we focused on constructing
generators that can produce a subset of instances.

We have proposed three generators based on Gent and
Prosser’s [7]. In all of them, we first construct an SMI instance
(that has no tie) and find a candidate optimal solution M. After
that, we introduce ties while keeping M to be an optimal solu-
tion. The three generators differ in the conditions to guarantee
this property when merging ties. In the first generator, the con-
dition is too general to the extent that the generator cannot be
expected to run in polynomial time, while in the second and the

third ones, the conditions are too strong to the extent that the sizes
of stable matchings in an output instance are constant and hence
such instances are far from useful for empirically evaluating al-
gorithms.

One possible future direction is to further relax the condition
of Step 5 of Algorithm 3. Another line of research is to consider
a new generation method whose base is different than Gent and
Prosser’s [7].
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