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A Parametric Flow in Envy-free Cake Cutting

Takao Asanold

Abstract: For the cake-cutting problem, Alijani, et a. [2], [8] and Asano and Umeda [3], [4] gave envy-free and
truthful mechanisms with a small number of cuts, where the valuation function of each player is asingle interval on
the given cake. In this paper, we give a much simpler envy-free and truthful mechanism with a small number of cuts.
Furthermore, we show that this approach can be applied to the envy-free and truthful mechanism proposed by Chen, et
a. [6] where the valuation function of each player is piecewise uniform. Thus, we can obtain an envy-free and truthful
mechanism with a small number of cuts, even if the valuation function of each player is piecewise uniform.
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1. Introduction

The problem of dividing a cake among players in a fair man-
ner was first considered by Steinhaus [9]. Formaly, the cake-
cutting problem is stated as follows. Given a divisible heteroge-
neous cake C and n strategic playersN = {1, 2, ..., n}, where each
player i € N has avaluation function v; over C, find an allocation
of C tothe players N that satisfies one or several fairness criteria.
In the cake cutting literature, one of the most important criteriais
envy-freeness [5]. In an envy-free alocation, each player consid-
ers his’her own alocation at least as good as any other player's
allocation. In recent papers, some restricted classes of valuation
functions have been studied. Piecewise constant and piecewise
uniform valuation functions are two special classes of valuation
functions [2], [5], [6], [8]. For avaluation function v on cake C,
let D(v) = {x € C | v(X) > 0} (thus, D(v) consists of several dis-
joint maximal contiguous intervals). Then the valuation function
v is called piecewise constant if, for each contiguousinterval | in
D(v), v(X') = v(X”’) holds for al X', x” € 1. In a piecewise con-
stant valuation v, if v(X) = v(y) holds for al x,y € D(v), thenv is
called a piecewise uniform function.

Chen, Lai, Parkes, and Procaccia [6] presented an envy-free
and truthful mechanism (i.e., polynomial-time algorithm) for the
cake-cutting problem when the valuation functions are piecewise
uniform. Aziz and Ye [5] considered the problem when valu-
ation functions are piecewise constant and piecewise uniform.
They designed three agorithms called CCEA, MEA and CDA
for piecewise constant valuations. They showed that CCEA be-
comes essentially the same as the envy-free and truthful mecha-
nism proposed by Chen, et al. [6], if it isrestricted for piecewise
uniform valuations. However, CCEA and the mechanism in [6]
uses Q(n Yien M) cuts [2], [8], where my is the number of max-
imal contiguous subintervals in D(vi) = {x € C | vj(X) > O} in
piecewise uniform valuations v;.
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Alijani, Farhadi, Ghodsi, Seddighin, and Tgjik [2], [8] consid-
ered that the number of cutsisimportant and considered the fol-
lowing cake-cutting problem by restricting each piecewise uni-
form valuation v; such that D(v;) = {x € C | vj(X) > O} isasingle
contiguousinterval C; in cake C: Given adivisible heterogeneous
cake C, n strategic players N = {1, 2, ..., n} with valuation inter-
val C; C C of each player i € N, find a mechanism for dividing
C into pieces and alocating pieces of C to n players N to meet
the following conditions: (i) the mechanism is envy-free; (ii) the
mechanism is truthful; and (iii) the number of cuts made on cake
C issmall. And they gave an envy-free and truthful mechanism
with af most 2n — 2 cuts based on the expansion process with
unlocking [2], [8]. By pointing out that their mechanism is not
actually envy free, Asano and Umeda [3], [4] gave an alternative
envy-free and truthful mechanism with at most 2n — 2 cuts.

In this paper, we give a much simpler envy-free and truth-
ful mechanism with a small number of cuts for the above cake-
cutting problem. Furthermore, we show that this approach can
be applied to the envy-free and truthful mechanism proposed by
Chen, Lai, Parkes, and Procaccia [6] for the more general cake-
cutting problem where the valuation function of each player is
piecewise uniform. Thus, we can obtain an envy-free and truth-
ful mechanism with a small number of cuts, even if the valuation
function of each player is piecewise uniform.

2. Prdiminaries

We are given a divisible heterogeneous cake C = [0, 1) = {X |
0 < x < 1} *1, n strategic players N = (1,2, ..., n} with valua-
tioninterval C; = [,B8) = {X|0<a < X< B <1} cCof
each player i € N. We denote by Cy the (multi-)set of valuation
intervals of all theplayersN, i.e., Gy = (C1,Cy, ..., Cy). Wealso

“1 To guarantee that the pieces allocated to the players by a mechanism
are mutually disoint, we represent a given cake CtobeC = [0,1) =
{Xx | 0 < x < 1} in this paper and we assume that if a subinterval
X=[X,X")=1{x| X <x<X'}Jof C=[0,1)iscutaty e X with
X < y < X’ then X is divided into two subintervals X’ = [ X, y) and
X" =[y,x").
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writeCy = (G 1 i € N).

The valuation intervals Cy is caled solid, if, for every point
x € C, thereisaplayer i € N whose valuation interval C; € Cyn
contains x. Asassumed in [2], [5], [8], we will aso assume that
Cn is solid throughout this paper, i.e., Ug,ce, Ci = C.

A union X of mutual digjoint sets Xy, Xo, ..., Xk is denoted by
X =Xg+Xo+--+ X = X%, X A piece A of cake C isaunion
of mutually disjointsubintervaIsAil,A.-Z,...,AiN of C. Thus, A =
A AL+ A =30 A, A partition Ay = (A Ag, ..., Ay)
of cake C into n digoint pieces Aj, Ay, ..., A, is caled an al-
location of C to n players N if each piece A = 2‘[11 A, isd-
located to player i. We also write Ay = (A @ i € N). Thus,
Yien A = Cinallocation Ay = (A ;i € N) of CtonplayersN,
and A = Z‘le A, iscalled an allocated piece of C to player i.

For aninterval X = [ X, X") of C, the length of X, denoted by
len(X), is defined by x” — x'. For apiece A = YX, X, of cake
C, thelength of A, denoted by len(A), is defined by the total sum
of len(X,), i.e, len(A) = Y, len(X,). For eachi € N and valu-
ation interval C; of player i, the value of piece A = z;zle for
player i, denoted by V;(A), is the total sum of len(X, N C), i.e,
Vi(A) = 2, len(Xe N Cy).

For an allocation Ay = (A : i € N) of cake C to n players N,
if Vi(A) > Vi(A)) for al j e N, then the allocated piece A; to
player i is caled envy-free for player i. If, for every playeri € N,
the allocated piece A; to player i isenvy-freefor player i, then the
alocation Ay = (A i € N) ton players N is called envy-free.

Let M be a mechanism for the cake-cutting problem. Let
Cn = (Ci : i € N) be an arbitrary input to M and Ay = (A :
i € N) be an allocation of cake C to n players N obtained by
M. If Ay = (A : i e N)with A = 3¥ A, for every input
Cn = (Ci i € N) to M isenvy-freethen M is called envy-free.

Now, assume that only player i gives afalse valuation interval
C and let C|(i) = (C; : j € N) (@l the other players j # i give
true valuation intervals C; and thus C; = C; for each j # i) bean
input to M and let an allocation of cake C to n players N obtained
by M be A (i) = (A} 1 j € N)with A = Z:]:l A, foreach j e N.
The values of A = ¥ A, and A' = 3| A for player i are
Vi(A) = £, len(A, N C) and Vi(A) = 3y, len(A' N C;) (note
that V;(A) # Zl;;llen(ﬁq[ N C). If Vi(A) = Vi(A), then player
i does not want to give false valuation interval C/ and player i
will report true valuation interval C; to M (thus, to report true
vauation interval C; is adominant strategy of player i). For each
player i € N, if this holds, then M is called truthful (allocation
An = (A 1 i € N) obtained by M is also called truthful ).

For given solid valuation intervals Cy = (Cj @ i € N) and an
interval X = [ X/, x”) of cake C, let N(X) be the set of playersi
in N whose valuation intervals C; are entirely contained in X and
let Cn(x) be the (multi-)set of valuation intervalsin Cy which are
entirely contained in X. Let ny be the cardinality of N(X). Thus,
N(X) ={ieN|Ci c X,Cj e Cn}, GN(X) = (Ci eCy:ie N(X)),
and nx = [N(X)|. The density of interval X = [ X/, X”) of C, de-
noted by p(X), is defined by p(X) = %%2' = X=X The density
p(X) isthe average length of pieces of the playersin N(X) when
the part X of cake C is divided among the playersin N(X). Note
that, if X # 0 (i.e., len(X) # 0) and nx = 0 then p(X) = co. Let
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X be the set of all nonempty intervalsin C. Let pmin be the mini-
mum density among the densities of all nonempty intervalsin C,
i€, pmin = Minyex P(X). Let Xmin = {X € X | p(X) = Pmin}-
Thus, Xmin isthe set of all intervals of minimum density inC. An
interval X € Xmin iscalled amaximal interval of minimum density
if no other interval of Xy,in contains X properly.

The mechanisms by proposed in [2], [8] and [3], [4] were quite
complicated. In this paper, for agiveninput of cakeC = [0, 1), n
playersN = {1,2,...,n}, and solid valuation intervals Cy = (C; :
i € N) with valuation interval C; = [«@,8i) = {X| 0 < aj < X<
Bi < 1} ¢ C of each player i € N, we give simple envy-free and
truthful mechanisms with a small number of cuts. That is, each
simple mechanism M finds an alocation Ay = (A 1 i € N) to
players N satisfying the following properties: (a) M is envy-free;
(b) M istruthful; (c) Ay € C; for eachi € N; and (d) >ieny A = C.

3. CoreMechanism M;

We first give a core mechanism M; which assumes that a cake
C =1[0,1) isaninterval of minimum density pmin-

Mechanism 3.1 Core Mechanism Mj.
A cakeC =[0,1), nplayersN ={1,2,...,n} and
solid valuation intervals Cy = (C; : i € N) with
valuation interval C; = [ a4, 5;) of each playeri e N
and Ug,ce, Ci = C, whereC = [0, 1) isan interval
of minimum density pmin in cake C = [0, 1).
Output: Allocation Ay = (A ;i € N)with A € Cj and
len(A) = pmin foreachi € N and ;. A = C.
Algorithm {
sort the valuation intervals Gy = (Cj i e N) ina
lexicographic order with respect to (8;, ;) and assume
C; < Cy < --- < Cy inthislexicographic order;
set Ag = 0;
fori=1tondo
set A = [a, i) \ 22 Ar € Ci\ 20 A with length
Pomin, Where[a;, b)) € Cj and a; istheleftmost endpoint
inGCi\ XA

Input:

}

Fig.1 shows an example of solid valuation intervals Cy = (C; :
i € N) (N ={1,2,3,4,5}) with p(C) = pmin = 0.2 and an aloca-
tion Ay = (A : i € N) obtained by M.

Theorem 3.1 ForcakeC =[0,1), nplayersN = {1,2,...,n},
and solid valuation intervals Cy = (C;j : i € N) with valuation
interval C; = [ a4, 5;) of each playeri € N, let [0, 1) be an interval
of minimum density pmin in cake C = [0, 1). Then, M; finds an
alocation Ay = (A i € N) with Ay € C; and len(A) = pmin for
eachi € N and ,;cy Al = C. Furthermore, the number of cuts
made on cake C is at most 2n — 2.

Proof: It is clear that the number of cuts made on cake C is at
most 2n — 2, since M7 uses at most two cuts at a; and b to obtain
A = [a, b))\ :,‘:10 A;» and no cut isrequired at 0, 1, the endpoints
of cakeC = [0, 1).

We next prove that M correctly finds an allocation Ay = (A :
i € N) with Ay € G, len(Aj) = pmin and Yy A = C.
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c=[0,1)
0 0102 03 04 05 06 07 08 09 1
C,=[0.1,06)
C,=[030.7)
C,=[0,08)
C,=[05,08)
C;=[031)
(@
c=[0,)
0 0102 03 04 05 06 07 08 09 1
C,=[0.1,06) A =[01,0.3)
C,=[030.7) A,=[0.3,05)
C,=[0,08) A;=[0,0.1)+[0.5,0.6)
C,=[05,08) A,=[06,0.8)
Cs=[031) A =[0.81)

(b)

Fig. 1 (a) Solid vauation intervals Cy = (Cj : i € N) with p(C) = pmin =
0.2. (b) Allocation Ay = (A : i € N) obtained by MM;.

Suppose contrarily that we could not set Ay = [a,hb) \

L AL € C; with length ppin for somei € N. Let j be the mini-
mum among suchi'sandlet J = {1,2,..., j}. Thus, we could set
A = [a.b) \ XI5 A € G = [i.8) with length pn for each
i € J\{j}butcould not set Aj = [aj,bj)\zij,_::](.)Aj' cCj =l[aj.B8)
with length pmin.  This implies that C; \ Z{;%Ap = [a;,8)) is
of length p; less than pmin. Now we consider valuation intervals
C; = (G ;i € J). Notethat each C; = [,8i) € C; satisfies
Bi < Bj, since the valuation intervalsin Cy = (Cj : i € N) were
sorted in the lexicographic order with respect to (8;, «;). Let

A=A (€d\(j) and A =Cj\ T A =[a,.5).

Allocation (A : i € J) (i.e,, Yy A) consists of several maxi-
mal contiguousintervals. Let | = [a, b) be the rightmost maximal
contiguous interval among the maximal contiguous intervals in
alocation (A/ : i € J). Thus, b = ;. Let K C J be the set of
alieJwithAnl £0,ie, K={iecdJ|Anl 0. If
A = Ci\ XI5 A = [a,5) = 0, then we modify K = K U (j}.
Thus, inany case (i.e, A] = () or not),

K={jjufieJ|A NI 0.

Now we consider valuation intervals Cx = (Cj : i € K). Then
each C; € Ck iscontained in |. This can be obtained as follows.

Of course, C; = [aj,B)) is contained in |. Actualy, since
C\XI oA = [y, 8)) isof length < pmin and A| = C\X) 5 Ar =
[a;,8)), if A =0 thenC; C Zij;% Ay and a single contiguous in-
terval C; is contained in the rightmost maximal contiguous inter-
va 1 inT) 5 A = AUSI A (e, Cj c 1), and otherwise (i e,
if A # 0),Cj c AU Zij,':t Ay and a single contiguous interval
Cj is contained in the rightmost maximal contiguousinterval | in
AU S A

Now suppose that there were some C; € Ck \ {Cj} not con-
tained in |. Thus, C; = [@,8) € Ck (i € K\ {j}) would contain
apoint xin[0,b) \ I =[0,8;)\ | =[0,a). Letk € K bethe
minimum among such i’'s and let Cx = [ax,Bk) € Ck contains
apoint x in [0,b) \ | = [0,8;) \ | = [0,&). Thus, B« < Bj
anday < X < a < a < fxforsomea, € ANl # 0since
k e K\ {j} € J\{j}. Furthermore, since we chose | = [a,b)
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as the rightmost maximal contiguous interval among the maxi-
mal contiguous intervals in alocation (A : i € J), there is the
maximal contiguous interval |’ = [&,a) which is not contained
in alocation (A’ : i € J). Since Cx = [, Bk) is a contiguous
interval and satisfies ax < X < a < & < Bk, we can assume
X € "'NCy # 0. Thus, x ¢ A,. Then, however, M; would
have included X into A, in place of some & € A, N1 # 0, be-
cause My sets A, = A = [a, b) \ 5 Ar € G\ XiZp Ar with
length pmin Where [a, bx) € Cy and & is the leftmost endpoint in
Ck\ XK A Thisisacontradiction. Thus, we have each C; € Cx
iscontainedin | and ek Ci C .

By the argument above, we have Jiex Ci = | = Yk A/, Since
Uik G € Tand | = ZicsAjN T = Zieck AN C Y A €
Yiek Ci by the definitions of | and K and A/ < C; for eachi € K.
Thus, K = N(I) and n, = |N(I)|. Furthermore, by noting that
Ien(A’].) = pj < pmin for j € K and len(A)) = pmin for each
i € K\ {j}, wehave

pPjt Z pmin =len(l) = b-a < pmin + Z Pmin = IK|omin.
ieK\{j} ieK\{j}

Thus, p(1) = 5 < pmin. However, thisis a contradiction, since
C =[0,1) isthe maximal interval of minimum density omin.
Thus, M; correctly finds an alocation Ay = (A : i € N) with

A € Cj, len(A) = pmin and Yien A = C. O

M; can be used as a procedure in the mechanism proposed
for the cake-cutting problem in Asano and Umeda [4], where
cake C = [0,1) is not necessarily an interval of minimum den-
sity pmin. Actualy, M; is CutMaxInterva(N, C, Cy) when C is
a maximal interval of minimum density pmin in cake C. Thus,
M; can be modified a little and used in place of Procedure
CutMaxInterval (R, H, Dg) as follows, where H is a maximal in-
terval of minimum density pmin, R = N(H), and valuation interval
D; € Dr of each player i € RisD; = Cj € Cg (thus, Dgr = CR).

Procedure3.1 CutMaxInterval(R, H, Dg) {
sort the valuation intervals Dg = (D; = (@,8i) ;i € R)ina
lexicographic order with respect to (8;, ;) and assume
DR, < Dg, < --- < Dg, inthislexicographic order
wherer = |R];
set Ag, = 0;
fori=1tordo
set Ag = [ar,br) \ ZiZoAr, € Dr \ i) Ar, With
length pmin, Where[ag , br) € Dg and ag isthe
leftmost endpoint in Dg \ Y%
}

Thus, their mechanism in Asano and Umeda[4] can be written
as follows, although we omit the details.

Mechanism 3.2 Their cake-cutting mechanism in [4].

A cakeC =[0,1), nplayersN ={1,2,...,n} and
solid valuation intervals Cy with valuation interval

Ci = [, B) of each playeri e N and | Jc,c¢, Ci = C.
Output: Allocation Ay = (A : i1 € N) to players N.
CutCake(N,C,Cn); 1}

Input:

Algorithm {
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c=[0)
0 0102 03 04 05 06 07 08 09 1

C,=[0.15,0.35)
C,=[0.25,0.35) -
C,=[0.25,0.45)
C,=[0.1,05)
C5=[0.65,0.75) —
Co=[0,08)
C, =[0.55,0.8)
Cy=[02)

@

c=[0,)
0 0102 03 04 05 06 07 08 09 1

€, =[0.15,0.35) A =[0.15,0.25)
C,=[0.25,0.35) - A, =[0.25,0.35)
C,=[0.25,0.45) A, =[0.35,0.45)
C,=[0.105) H, =[0685.0.75) 5 _i0,1,0.15)+[0.45,05)
C, =[0.65,0.75) HL-[0.105) ‘ —_— ‘ A, =[0.65,0.75)
Co=[0,08)
C, =[055,0.8
Cy=[02.0)

(b)

Fig.2 (a) Example of solid vauation intervals Cy = (Ci : i € N)
(N=1{12,..., 8}). (b) In first iteration, maximal intervals Hi, H,
of minimum density pmin = 0.1 with N(H1) = {1,2,3,4} and
N(H;) = {5}, and alocation Ayn,) = (A - i € N(Hy)) and alo-
cation AN(HZ) = (A5)

Procedure 3.2 CutCake(P, D, Dp) {

Find all the maximal intervals of minimum density pmin in the
cake-cutting problem with cake D, players P and solid
valuation intervals Dp;

LetHy =[h},h), Ho =[h},1),..., Ho=[h{,h’) beall the
maximal intervals of minimum density omin;

for £=1to Ldo
cut cake D at both endpoints hy, hy of Hy;

R, ={ke P| Dk € Hy,Dx € Dp}; Dr, = (Dx € Dp : ke Ry);
CutMaxInterval(R;, H¢, Dr,);

P =P; D =D;

for t=1toLdo PP=P \R;; D =D\ Hy;

if PP#0then//P=P\Y\, RandD’' =D\ Y5, H,

Dp =0,

for each Dy € Dp withk € P’ do
Dy = D\ Sy Hes D, = D, + (Dy);

Perform virtually shrinking of all Hy, Ho, ..., Hy;

Let D®, D® e DY, DE) be obtained from D', D;, € Dj,
Dy, by virtually shrinking of all Hy, Ha, ..., Hi;

CutCake(P’, D, DE));

}

For an input examplein Fig.2(a), their cake-cutting mechanism
given above works as shown in Fig.2(b) and Fig.3. Note that the
original CutMaxInterval(R, H, Dg) in Asano and Umeda [4] was
complicated because it was based on the quite complicated core
method for solving the cake-cutting problem where cake X is a
minimal interval of minimum density pmin in maximal interval H
of minimum density pmin. The following theorem holds.

Theorem 3.2 [4] Asano and Umeda's mechanism correctly
finds, in O(n%) time, an envy-free and truthful alocation Ay =
(A :i € N)of cakeC ton players N with A; € C; for each player
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c=[01
0 01 02 03 04 05 06 07 08 09 1

C,=[0.15,0.35) A =[0.15,0.25)
C,=[0.25,0.35) - A, =[0.25,0.35)
C,=[0.25,0.45) A;=[0.35,0.45)
C,=[0.1,05) A, =[0.1,0.15) +[0.45,0.5)
C;=[0.65,0.75) [— A, =[0.65,0.75)
C=[0,0.8) As=[0,0.1) +[0.5,0.55)
C, =[055,0.8) A, =[0.55,0.65) +[0.75,0.8)
Cy=[02) A, =[0.81)

Fig. 3 The second and third iterations for the example in Fig.2. In the sec-
ond iteration, the minimum density is pmin = 0.15 and N(H;) =
{6,7}, As = [0,0.1) + [0.5,0.55) and A; = [0.55, 0.65) + [0.75,0.8).
In the third (last) iteration, the minimum density is pmin = 0.2 and
N(H;) = {8} and Ag = [0.8, 1).

i € Nand Y;cy A = C. Furthermore, the number of cuts made
over C by Mechanism 3.2 isat most 2n — 2.

We can improve the time complexity from O(n®) to O(n? log n)
using a parametric flow [7] in the later sections.

4, Second Version M>

In this section, we give the second version M, which can be
applied to the envy-free and truthful mechanism proposed by
Chen, et a. [6] when the valuation function of each player is
piecewise uniform. We are given acake C = [0,1), n players
N ={1,2,...,n}, and solid valuation intervals Cy = (C; : i € N)
with valuation interval C; = [«;,Bi) € C of each player i € N.
We are also given (s : i € N) such that there is an alocation
A= (A :ieN)toplayersNwithA'cCiand s = len(A)) > 0
foreachi € Nand Yicy Al = C (thus Yicn s = 1). Then M is
almost the same as M; and can be written as follows.

Mechanism 4.1 Second Version Ms.

Input: A cakeC =[0,1),nplayersN ={1,2,...,n} and
solid valuation intervals Cy = (G : 1 € N) with
valuation interval C; = [ «;,5;) of each playeri e N
and Ug,ee,, Ci =Cand (s :i € N) for playersN
such that thereis an allocation Ay = (A :i e N)
to players N with A/ € C; and len(A') = s > Ofor
eachi e Nand }icny A = C (thus Yy S = 1).

Output: Allocation Ay = (A ;i € N)with A € Cj and
len(A)) = s foreachi e Nand Y.y A = C.

Algorithm {

sort the valuationintervals Gy = (Cj ;i e N) ina
lexicographic order with respect to (8;, ;) and assume
C; <Cy < --- < Cyinthislexicographic order;
set Ag = 0;
fori=1tondo
st A = [a, ) \ 502 A € G\ 20 A with length s,
where [, bj) € Cj and g isthe leftmost endpoint in
Ci\ Sido A
}

Fig.4 shows an input example of solid valuation intervals Cy =
(G :ieN)and(s : i€ N)with }cnys = 1 and an alocation
Ay = (A 1 i € N) obtained by M,. By an argument similar to one
in Theorem 3.1 we have the following theorem.
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c=[01)
0 0102 03 04 05 06 07 08 09 1

§=01 C;=[0.15,0.35)
$,=01 C,=[0.25,0.35) —
=01 C,=[0.25,045)
=01 C,=[0.105)

$=01 C5=[065,0.75) —
§=0.15 C;=[0,0.8)

5,=0.15 C, =[0.55,0.8)

§=02 Cy=[0.21)
@
c=[0Y
0 0102 03 04 05 06 07 08 09 1

§=0.1 C;=[0.15,0.35) A =[0.15,0.25)

5=01 C,=[0.25,0.35) et A, =[0.25,0.35)

=01 C,=[0.25,045) A;=[0.35,0.45)

=01 C,=[0.1,05) A,=[0.1,0.15)+[0.45,0.5)
$=0.1 C;=[0.650.75) —_— A;=[0.65,0.75)

$=0.15 C; =[0,0.8)
5,=0.15 C, =[0.55,0.8)
§=02 Cy=[021)

A;=[0,0.1) +[0.5,0.55)
A, =[0.55,0.65) +[0.75,0.8)
A=[08))

(b)

Fig. 4 (a) Example of solid valuation intervals Cy = (C; @ i € N)
(N=1{12..., 8) and (s : i € N)with ey s = 1. (b) Alloca-
tion Ay = (A : i € N) obtained by M,.

Theorem 4.1 M, correctly finds an alocation Ay = (A @i €
N) with Ay € Cj and len(A)) = s foreachi e Nand Yy A = C.
Furthermore, the number of cuts made on cake C isat most 2n-2.

By Theorem 4.1, in order to obtain an envy-free alocation
Ay = (A i e N)withA C Cjandlen(A) = s foreachi € N
and Y;cyA = C, weonly need (s : i € N) such that there is
an envy-free allocation A, = (A : i € N) to players N with
A c Ciandlen(A) = s foreachi € Nand }icy A = C. Further-
more, Theorem 4.1 can be applied to Chen, et a.'s mechanism for
the cake-cutting problem when the valuation function v; of each
player i € N is piecewise uniform [6]: Given acakeC = [0, 1),
nplayersN = {1,2,...,n} and solid pricewise-uniform valuation
functions (v; : i € N) such that D(v;) = {x € C | vj(X) > O} of
each valuation function v; consists of i, > 1 digointsintervalsin
C (i.e, D(yy) = rjrllcij where C;, isasingle maximal interval in
C) and Ujen D(vi) = C. Chen, et a.'s mechanism finds an envy-
free allocation Ay = (Al : i € N) such that A/ = Z?llAi’J with
Ai’j c Cj foreachi e N,each j=1,2,...,mand Yien A = C.
Thus, we can set §; = Ien(Ai’j) and apply Theorem 4.1 to obtain
an envy-free allocation Ay = (A : i € N) such that A; = ZTllAh
with A;; € Cj; and len(A;) = s; with at most 2(3icn m) — 2 cuts.

5. Flow Network on Valuation Intervals

In this section, we consider a flow network arising from valu-
ation intervals to find such (s : i € N) when D(vj) = {x € C |
vi(X) > O} of valuation function v; isasingleinterval C; inC.

Let Xy be the set of al endpoints «;,8; of Ci = [«a;,Bi) of

Cy = (G : i € N) and we assume the elements in Xy are
sorted Xg < X < -+ < Xy Where xp = 0, Xy = 1 and
" < 2n-1 Foreach jwithl < j <, letlj = [Xj_1,%)

and let Iy = (|] 1< J < nl). Let Gy = (GN,JN,EN) be a
bipartite graph with vertex set Vy = Cy + Iy and edge set Ey
where (Ci,|j) € Ey if and only if |j c Ci. Gy = (GN,stEN)
is called a convex bipartite graph since it has a property that if
(Ci, 1), (Ci, 1) € Ey with j < | then (C;, Ij+) € Ey for each j”
with j < j” < |’ (Fig.5).
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c=[0y
0 0102 03 04 0506 07 08 09 1

C,=[0.15,0.35)
C,=[0.25,0.35) -
C,=[0.25,0.45)
C,=[0.105)
C5=[0.65,0.75) —
Cs=[0,08)
C, =[0.55,08)
Cy=[02)

Il IZI3I4 |5 IG |7|8 |9 |10 Ill |12
1,=[001) 1,=[01015) 1,=[01502) 1,=[020.25) I5=[0.25,0.35)
1=[0.35,045) 1,=[04505) 13=[0.5055) |o=[0.550.65) I, =[0.650.75)

1,=[07508) 1,=[081)

Il |2 |3 |4 |5 IE I7 IS IQ IlD Ill |12

Fig.5 Exampleof valuationintervals Cy = (Cij :ie N) (N ={1,2,..., 8})
In=(>j:1<j<n)(j=212..., 12) and the convex bipartite
graph Gy = (Cn, In, En)-

Il IZ |3 IA |5 IG I7 IS IQ IlD Ill |12
01 005 005 005 01 01 005 005 01 01 005 02

Fig. 6 Network Hy = (Gn, Sn, Tn) corresponding to examplein Fig.5 with
S +S+-+S5 =1

Fig. 7 Network Hn(st) = (Gn,capay,st) corresponding to Hy =
(GN, SN,TN) in F|g6

Now we assume that we are given apositive number s for each
valuation interval C; € €y and a positive number t; = len(l;) for
each|j € Jy. Let Sy = (S1, S, ..., S) and Ty = (b1, to, ..., tw).
Notethatt1+t2+- -+ty = 1. LetHy = (GN, SN,TN) be anetwork
on convex bipartite graph Gy with supply s of each vertex C; and
demand t; of each vertex |; (Fig.6). A function f : Ey — R, is
caled an flow in Hy and a flow f in Hy is caled feasible, if
S = Xewsc) f(€) foreach Cj € Cn and tj = Yoy f(€) for
each |; € Jy, where §(v) is the set of edges in Ey incident to
vertex v in Gy. It is clear that if Hy has a feasible flow then
SS+S+-+S =1

We also consider anetwork Hy(s,t) = (G, capay;, S t) which
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is obtained Hy = (Gn, Sn, Tn) by adding two new vertices s, t
and adding a directed edge (s, C;) with capacity capay(s,Ci) =
s for each C; € Cy and a directed edge (I;,t) with capacity
capay(lj,t) = t; for each Ij € Jn. We assume that each edge
(Ci, 1j) € Ey isdirected from C; to |; and has an infinite capac-
ity capay (Ci, 1) = oo (Fig.7). We denote by V(s t) and En(s,t)
the set of all vertices and the set of all directed edgesin Hy (s t),
respectively. Thus, Vn(s,t) = Vn + {S t} = Cy + In + {S 1} and
En(st) = En +{(S Ci) | Ci € Cn} + {(l5,1) | I} € In}. A function
f: En(st) » Ry isan st flowin Hy(s t) if (i) and (ii) hold:
(i) 0 < (s Cj) < s foreach edge (s,C;) and 0 < f(I,1) < t;
for each edge (1;,t), and
(i) f(s,Ci) = Ze(ci1esr(c) f(€) foreachCi € Cy and f(1,1) =
Ze=(c.pes-(y) f(€) for each 1 € Iy, where 67(Cj) is the set
of directed edgesin Hy(s, t) leaving from C; and (1) isthe
set of directed edgesin Hy(s, t) entering into 1.
The value of an st flow f in Hy(st), denoted by val(f),
is defined by va(f) = Xcce, f(8Ci). Clearly, va(f) =
Zijery f(15,1) by the above condition (ii). An st flow f in
Hn(s, t) iscalled maximumif val(f) > val(f’) for al s-tflow f"in
Hn(s t). A partition (Y, Y) of vertex set V(s t) = Cn + In + {S. 1}
iscaled an st cutin Hy(st) if se Yandt € Y. We aso call
ECVY)={e=(y.y) e En(st) | ye VY, y € Y)thestcutin
Hn(s. t) defined by st cut (Y, Y). The capacity of an st cut (Y,Y)
in Hy(s, t), denoted by capay (Y, Y), is defined by the sum of the
capacities capay (€) of all edgese = (y,y’) € En(st) withy € Y
andy’ €V, i.e, capay(Y.) = Sk, s: yex. v (6.
An st cut (YY) in Hy(s 1) is called minimum if capay(Y,Y) <
capay (Y, Y) for al st cuts (Y, Y”) in Hy(s ). For any st flow
f and any st cut (Y,Y) in Hy(s t), val(f) < capay(Y.Y) holds.
Furthermore, val(f) = capay(Y, Y) holdsif and only if f isamin-
imum st flow and (Y,Y) is a minimum st cut in Hy(s, t) (the
well-known maximum-flow and minimum-cut theorem).

For a flow f in Hy(s t), a residua network with respect to
f, denoted by Hn(s t)(f), is defined as follows. The vertex set
V(s t) () of Hy(s, t)(f) isthevertex set (s, t) of Hy(s, t). The
edge set En(s, t)(f) of Hy(s, t)(f) is defined as follows. For an
edge e = (u,v) of Hy(st), let €% = (v,u) (i.e, €% = (v,u)
is the reverse edge of e = (u,v) € En(st). Let E§¥(st) =
{€¥ | e € En(S1)}). The residual capacity capa;(a) of an edge
a=(u,0) € En(s,t) + EY(s 1), isdefined as follows:

capa(a) - f(a) (acEn(st)

f(e) (a=¢€¥, ec En(s t)). )

capa; (a) ={
Then the edge set En (s, t)(f) of Hn(s t)(f) isdefined by
En(s t)(f) = {a€ En(st) + ELY(s t) | capas(a) > O}

Thus, the capacity of each edge a of Hy(s, t)(f) is capa;(a) > O.
It iswell known that an s-t flow f in Hy(s,t) is maximum if and
only if there is no st path in the residual network Hy(s, t)(f).
Furthermore, suppose that there is no st path in Hy(s, t)(f),
and let Y be the set of vertices v such that there is a v-t path in
Ha(s t)(f) and Y = V(s 1) \ Y. Then (Y, Y) in Hy(s t) isamin-

imum s-t cut and Y’ C Y holds for each minimum s-t cut (Y’, Y’)
in Hn(s t).
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5.1 A Parametric Flow on Valuation Intervals

For a parameter A withO < A < 1,lets = Aforeachi € N.
We denote by Sy this special Sy = (S1, S, ..., ) withs = 2
foreachi e N, i.e, Sy = (4, 4,...,4) = (S, S,...,S) = Sn.
Let Ty = (t1,tp,...,ty) withty + & + --- + ty = 1 as before.
We use Hn(yy = (Gn, Sniy, Tn) and Hygy (S, t) when we empha-
size Snpy = (4, 4,...,4) = (S1,%,...,%) = Sn (this network
Hney(s t) is proposed by Chen, et a. [6]). An st flow f in
Hney(s t) is called a parametric flow in Hy(y (s t). Parametric
flows and parametric searching were considered in [1], [7], [10].

The density p(X) of interval X = [X, x”) of cake C = [0, 1)
is closely related to this parameter 1. For a maximum flow f,
in Hney (s t) found in this paper, Y, throughout this paper is the
set of vertices v such that there is av-t path in Hyy (s t)(f1) and
let Y, = Vn(st)\ Y, Then (Y,,Y)) is aminimum st cut in
Hney(s t) and Y, € Y, (thus, Y, c Y_/’l) holds for each minimum
steut (Y, Y1) in Hyey(s t). That is, Y, isaminimal set among
the minimum s-t cuts (Y/’I,Y_ﬁ) in Hyy (s t). Furthermore, for two
distinct parameters A’ < 4, Y, 2 Y, (i.e, Y, C Y,) holds.

Specifically, for 1 = pmin and the minimum st cut (Y,,Y,) in
Hny (s t) defined above, Y, is the digjoint union of al maximal
intervals of minimum density pmin and its capacity capa(Yy, Y,)
is capa(Y. Y2) = Yy N Cnl + Toev,ng, CPA, ). Of course,
AY N CNl = ¥,vin e, CAPA(S,0), Since capa(s,v) = A for each
v € Cy. There are at most n distinct minimum s-t cuts (Y, Y;) in
Hny (s t) for parameters A with0 < 4 < 1, sinceYy 2 Y, (i.e,
Yy € Y,) holds for two distinct parameters I’ < A as described
above. Supposethat there are exactly K distinct minimum s-t cuts
(Ya, Y2) in Hygy(s t) for parameters A with 0 < A < 1, and let

=01 <A< <Ak £ =1, )

where we consider 1o = 0 and A, = 1, for convenience.

Fig.8 shows an example of network Hyy (s, t) corresponding
to valuation intervals Cy = (Cj : i e N) (and Iy = (I : 1 <
j <)) in Fig.5 and the minimum s+t cut (Y3, Y,) in Hyey (s t)
with 2 = pmin = 0.1. Fig.9 shows that the minimum s-t cuts
(Y, Y2) in Hygy (s t) in Fig.8 for parameters A with 0 < 4 < 1
form alower envelope of the arrangement of lines generated by
y = capa(Yy,Yy) = AYi N Cnl + Tieyng, CaPA,Y) (K = 3
and 1; = 0.1 < 2, = 015 < 23 = 0.2). Note that there are
more minimum s-t cuts in Hygy(s t), for example, (Z,Z) with
Z ={s,Cp,Cs, ls, I10} and Z = {t} +(Cn \ {C2, Cs}) + (In \ {I5. l10})
isaminimum st cut Hyay (S, t) with A = 0.1 and the correspond-
inglineisy = capa(Z, Z) = 61+capa(ls, t)+capa(lqo, t) = 61+0.2.
Note aso that, for finding alower envelope of the arrangement of
lines generated by all the minimum st cuts in Hygy (s t) for pa-
rameters A with 0 < A < 1, it is sufficient to consider only all the
minimum st cuts (Y,, Y,) in Hygy (S, t) defined above.

Suppose that Procedure CutCake(P, D, Dp) iscalled exactly K’
timesin Mechanism 3.2 for the cake-cutting problem with a cake
C=[0,1), nplayersN = {1, 2,...,n}, and solid valuation inter-
valsCy = (C; : i € N) whereC; = [«;,8i) € Cisavaluation in-
terval of playeri € N, and let pf:i)n be the minimum density of in-
terval in the k-th call of CutCake(P, D, D). Clearly, p{) = pmin
in CutCake(N, C, Cy). Furthermore, by Lemma6 in [4], we have

oD < p@ <. < p¥) Thus, we have the following lemma.
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Fig.8 Example of network Hy(y (s, t) corresponding to the valuation inter-
vasCy=(Ci:ieN)(N={L2,..., 8)andIn=(j:1<j<n)
(j =1,2...,12) in Fig.5 and aminimum st cut (Y,Y) = (Y3,Y,)
in HN(A)(S, t) with A = pmin = 0.1.

y
y=84 y=31+05
y=1+0.8
1 ——
o.s/ﬁ y=1
0.5
0 01 015 02 A

Fig.9 Minimum st cuts (Y;,Y,) in Hywy(s t) in Fig.8 for parameters A
with 0 < A4 < 1 form alower envelope of the arrangement of lines
generated by y = capa(Y,, Ya) = AUYa N Cnl + Ziev,n g, CPA, 1)
(K=3and1; =0.1< 1, =0.15< 13 =0.2).

Lemmab.1 For the cake-cutting problem with cakeC = [0, 1),
n players N = {1,2,...,n} and solid valuation intervals Cy =
(Ci : i € N)whereC; = [«a,;) € Cisavaluation interval of
player i € N, and the corresponding network Hyy (s, t), we have

and p® = (k=12 .K) @

min

K=K’
Proof: To prove pmin = p%)n = Ay, we consider a maximum
st flow 1 in Hypy(St) and let Y, be the set of vertices v of
Hn(s t) such that there is a path from v to t in the residual net-
work Hygiy) (s t)(fr) with respect to f; andlet Yy, = Vn(s, H\Y,,.
Then (Yﬂl,Y_/h) isaminimum s-t cut in Hyga,) (S, t). Let Hyg) (1)
be the subnetwork of Hya,) (s, t)(f1) induced by Yy, \ {s}, that is,
Hniay)(f1) is the network obtained from Hya,) (S, t)(f1) by delet-
ing all the verticesin Y, + {s}. We next compute all the strongly
connected components Zy, Zy, ..., Zg of Hygy)(f1). Of course,
two distinct strongly connected components Zg, Zy are vertex-
digoint, i.e., V(Zg) N V(Zy) = 0for1 < g < g < Q and the set
Yy, \ {s} is partitioned into V(Z;) + V(Z2) + --- + V(Zg), where
V(Zg) is the vertex set of Z, for eachq = 1,2,...,Q. Then we
contract each strongly connected component Z into one vertex
zg. The resulting network H;Wl)(fl) is called a condensed net-
work of Hy,)(f1). This condensed network is acyclic, that is,
it has no directed cycle. Thus, there is a vertex z; with inde-
gree 0. By symmetry, there is also a vertex z; with outdegre 0.
We denote by V(z,) the set of vertices z, such that there is a di-
rected path from z, to zy in H,’\‘(h)(fl), and we denote by V(z)
be the set of vertices in the strongly connected components Zy
of Hny,)(f1) corresponding to the vertices z; € V(z;). Then

(© 2021 Information Processing Society of Japan
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Fig. 10 (&) Theresidual network Hya,) (S, t)(f1) with respect to amaximum
flow f1 in Hngy) (s t) where 21 = 0.1, (b) the subnetwork Hygi,) (1)
of Hng (s, t)(f1) induced by Y, \{s} and (c) the condensed network
Higuy (f1) of Hgy (f2).

each V(z;) corresponding to vertex z; with indegree 0 forms a
maximal interval of minimum density ppin. Similarly, each V(z,)
corresponding to vertex z; with outdegree 0 forms a minimal in-
terval of minimum density pmin. Furthermore, for a vertex sub-
set U of HY,,(f1), each connected component in ey V(Zg)
corresponding to vertices z; € U forms an interval of minimum
density. Thus, Uzcu V(zg) forms adisjoint union of intervals of
minimum density. Furthermore, let Z = {s} + ey V(z5). Then
(Z,2) isaminimum s-t cut in Hyga,) (S 1).

Since ({s}, V(Hn(s ) \ {s}) and (Y,,, Y,,) are both minimum s-
t cutsin Hya,) (S t), we have capa({s}, V(Hn(s 1)) \ {S}) = n4y =
capa(Yy,, Ya,) = 44lYa, N €Nl + pminlYa, N Cnl @nd pmin = A1

Thus, if K = 1 then the lemma clearly holds. If K > 1,
then we use an induction on K. Suppose that lemma holds for
al K < K” -1 (K” > 2) and consider when K = K”. Since
al the maximal intervals Hy, Ho, ..., H_ of minimum density
Pmin are deleted and the resulting hollow intervals Hy, Ha, ..., H.
are virtually shrunken in the first cal CutCake(N,C, Cy), the
second call CutCake(P, D, Dp) is for cake D = C’®), players
P=N\ Z'Z:1 N(H,) and solid valuation intervals Dp, where D,
D € Dp and Dp are obtained from C’, C; = Cy \ Xj_q He € €},
and €}, (which consists of valuations C; = Cy \ 2'5:1 H, # 0 for
al k € N’) by virtually shrinking of all Hy,H,,...,H_ . Dueto
the shortage of space, we omit details, but we can use the induc-
tion hypothesis on the second call CutCake(P, D, Dp) including
all the other calls and obtain that the lemma holds. m]
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5.2 Finding A3, Ay, ..., Ak in Parametric Flow

To find all A1, 41,..., 4k, We use a binary search on interval
(A7, a%) tofind A, with A~ < A < A* based on the method in [7].
Weinitialy set A~ = 0, 2* = Land Hyy-, 4+ (S 1) = Hyy (s 1).
Then we find the minimum st cut (Y-, Y3-) in Hygoyao, (S 1)
and the minimum s-t cut (Ya+, Ya+) in Hygyao, ) (S ). Let

ya-(2) =AY N CNl+ Tiev, a7, CEPAD 1),
ya-(2) = A N CNI+ Tiev,, 7, CEPAD ).

Initialy, ya- (1) = yo(1) = nd and y,+ (1) = y1(1) = 1. Note that,
ya- (A7) = capa(Ya-, Ya-) = Yo 0 Cnl + Tiey, g, capalo,t),
yar (1) = capa(Yy, Yar) = A7V 0 Cnl + Toev o n gy CAPAD, T).
In each iteration, we find A* such that y,-(1*) = y,-(1*) and find
the minimum st cut (Ya, Y3-) in Hygey a0 (s 1) and g (2) =
AYp N CNL+ Diev,onay CaPR(0, ). 1f g (1) = ya-(2) = yar (2)
then A* = A and we stop the binary search on interval (17, 1*).
Otherwise, we continue the binary search on interval (1-,1%)
in the network Hyyea-,4)(S t) obtained from Hygye-, 1+)(S t) by
deleting Y- \ {t} and the binary search on interval (1*, 1*) in the
network Hyeiy,a+)(S t) obtained from Hygyei-, 1+ (S, t) by delet-
ing Yy \ {s}. We denote by Cn:-, 1) the set of verticesC; € Cy
which are contained in Hneyo, 44y (S t).  Similarly, we denote
by In-,a+) the set of vertices |; € Jy which are contained in
Hyo-, (S 1), We also use Cngi-ay = Cn \ Cnge.ary and
INe, a9 = IN\ I, ). To find the minimum s+t cut (Y., Yr)
in Hyeeyo, a0)(S 1), we use the following mechanism.

Mechanism 5.1 Parametric Flow Mechanism.

Input: A cakeC=1[0,1),nplayersN ={1,2,...,n} and
solid vauation intervals Cy = (C; : i € N) with
valuation interval C; = [ «;, B;) of each playeri € N
and Ucee, Ci = C.

Output: (s :i € N) suchthat thereis an envy-free allocation

A| = (A :i e N)toplayersN with A/ € C; and
len(A) = s foreachi € Nand }icy A = C.
Algorithm {
Let Xy = {Xo, X1, . - ., Xy} be the set of &l endpoints «;, 3; of
Ci=[a,p)of Cy=(Ci:ieN);
assume Xg < X1 < -+ - < Xy by sorting the elementsin Xy
where xg = 0, Xy = 1;
letIj = [Xj-1, X)) and t; = xj — xj_1 foreach jwith1 < j < n’;
letIy=(lj:1<j<n);
letC; < Cy < --- < Cyinalexicographic order with respect
to (i, a;) by sorting valuation intervals Cj = («i,8i) € Cn;
set - =0and A =1,
Consider Hygyi-, a0 (S ) with A~ <2 < A%
K=0;
FindMaxFlow(Hny -, (S, 1));
}

Note that, Parametric Flow Mechanism 5.1 not only correctly
finds such (s : i € N) but aso finds an envy-free alocation
Av = (A i e N)withA C Cjandlen(A) = s foreachi e N
and Y;cny A = C. We can also show that Mechanism 5.1 is envy-
free and truthful by the argument in [3]. It can be implemented
to run in O(n? log n) time with union-split-find data structures by
considering Hyyo-.+)(S t) implicitly. We omit the details.
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Procedure5.1  FindMaxFlow(Hnye- a1 (S 1)) {
find 2* such that y,- (1%) = y,-(17);

let Cna-, ) = (Ciy, Gy -

-,Cip)withi1<i2<...<ip;

A, =0;
for j=1topdo

2 = 35 Ay + D |

set A = [a;, b))\ Z < Cj;\Z of length min{A*,1en(Cj; \ 2)}
where g; is the minimum endpoint in C;, \ Z;

f(sCy) = len(A);

let A=30 A
for each | € In-,0+) do f(1,1) = len(AN1);
for each edge (Ci;, I) in Hygya-.a4) (S, 1)) do

£(Ci,, 1) = len(A; N 1);

let Hneyo, a+) (S 1)(f) beresidual network with respect to f;
let Yy be the set of vertices v of Hygyi-, 1+ (S )(f) such

that thereis a path from v to t in Hygeyi-, a4 (S )(F);

let Y,. bethe set of verticesv of Hy(iya-, 4+)(S 1)(F)

not contained in Y-

let ya-(2) = Ay N CNI+ Tuev,n g, CAPA, T);
if Y- (%) = yp- (1) = y+ (A7) then

K=K+1; 2" = A;

for each Cij in HN(A)(A—,,V)(S,t)) do S, = AK;

else

FindMaxFlow(Hngy-,4) (S 1)) where Hyy- (S, 1) is
obtained from Hygya-.+)(S 1) by deleting Yz \ {t};
FindMaxFlow(Hngy,1+) (S 1)) where Hyye a4 (S, 1) is
obtained from Hyy-, 4+)(S, t) by deleting Y- \ {s}.
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