
IPSJ SIG Technical Report

A Parametric Flow in Envy-free Cake Cutting

Takao Asano1,a)

Abstract: For the cake-cutting problem, Alijani, et al. [2], [8] and Asano and Umeda [3], [4] gave envy-free and
truthful mechanisms with a small number of cuts, where the valuation function of each player is a single interval on
the given cake. In this paper, we give a much simpler envy-free and truthful mechanism with a small number of cuts.
Furthermore, we show that this approach can be applied to the envy-free and truthful mechanism proposed by Chen, et
al. [6] where the valuation function of each player is piecewise uniform. Thus, we can obtain an envy-free and truthful
mechanism with a small number of cuts, even if the valuation function of each player is piecewise uniform.

Keywords: cake-cutting problem, envy-freeness, fairness, truthfulness, mechanism design, parametric flow

1. Introduction

The problem of dividing a cake among players in a fair man-
ner was first considered by Steinhaus [9]. Formally, the cake-
cutting problem is stated as follows: Given a divisible heteroge-
neous cake C and n strategic players N = {1, 2, . . . , n}, where each
player i ∈ N has a valuation function vi over C, find an allocation
of C to the players N that satisfies one or several fairness criteria.
In the cake cutting literature, one of the most important criteria is
envy-freeness [5]. In an envy-free allocation, each player consid-
ers his/her own allocation at least as good as any other player’s
allocation. In recent papers, some restricted classes of valuation
functions have been studied. Piecewise constant and piecewise
uniform valuation functions are two special classes of valuation
functions [2], [5], [6], [8]. For a valuation function v on cake C,
let D(v) = {x ∈ C | v(x) > 0} (thus, D(v) consists of several dis-
joint maximal contiguous intervals). Then the valuation function
v is called piecewise constant if, for each contiguous interval I in
D(v), v(x′) = v(x′′) holds for all x′, x′′ ∈ I. In a piecewise con-
stant valuation v, if v(x) = v(y) holds for all x, y ∈ D(v), then v is
called a piecewise uniform function.

Chen, Lai, Parkes, and Procaccia [6] presented an envy-free
and truthful mechanism (i.e., polynomial-time algorithm) for the
cake-cutting problem when the valuation functions are piecewise
uniform. Aziz and Ye [5] considered the problem when valu-
ation functions are piecewise constant and piecewise uniform.
They designed three algorithms called CCEA, MEA and CDA
for piecewise constant valuations. They showed that CCEA be-
comes essentially the same as the envy-free and truthful mecha-
nism proposed by Chen, et al. [6], if it is restricted for piecewise
uniform valuations. However, CCEA and the mechanism in [6]
uses Ω(n

∑
i∈N mi) cuts [2], [8], where mi is the number of max-

imal contiguous subintervals in D(vi) = {x ∈ C | vi(x) > 0} in
piecewise uniform valuations vi.

1 Chuo University
a) asano@ise.chuo-u.ac.jp

Alijani, Farhadi, Ghodsi, Seddighin, and Tajik [2], [8] consid-
ered that the number of cuts is important and considered the fol-
lowing cake-cutting problem by restricting each piecewise uni-
form valuation vi such that D(vi) = {x ∈ C | vi(x) > 0} is a single
contiguous interval Ci in cake C: Given a divisible heterogeneous
cake C, n strategic players N = {1, 2, . . . , n} with valuation inter-
val Ci ⊆ C of each player i ∈ N, find a mechanism for dividing
C into pieces and allocating pieces of C to n players N to meet
the following conditions: (i) the mechanism is envy-free; (ii) the
mechanism is truthful; and (iii) the number of cuts made on cake
C is small. And they gave an envy-free and truthful mechanism
with at most 2n − 2 cuts based on the expansion process with
unlocking [2], [8]. By pointing out that their mechanism is not
actually envy free, Asano and Umeda [3], [4] gave an alternative
envy-free and truthful mechanism with at most 2n − 2 cuts.

In this paper, we give a much simpler envy-free and truth-
ful mechanism with a small number of cuts for the above cake-
cutting problem. Furthermore, we show that this approach can
be applied to the envy-free and truthful mechanism proposed by
Chen, Lai, Parkes, and Procaccia [6] for the more general cake-
cutting problem where the valuation function of each player is
piecewise uniform. Thus, we can obtain an envy-free and truth-
ful mechanism with a small number of cuts, even if the valuation
function of each player is piecewise uniform.

2. Preliminaries

We are given a divisible heterogeneous cake C = [0, 1) = {x |
0 ≤ x < 1} *1, n strategic players N = {1, 2, . . . , n} with valua-
tion interval Ci = [αi, βi) = {x | 0 ≤ αi ≤ x < βi ≤ 1} ⊆ C of
each player i ∈ N. We denote by CN the (multi-)set of valuation
intervals of all the players N, i.e., CN = (C1,C2, . . . ,Cn). We also

*1 To guarantee that the pieces allocated to the players by a mechanism
are mutually disjoint, we represent a given cake C to be C = [0, 1) =
{x | 0 ≤ x < 1} in this paper and we assume that if a subinterval
X = [x′, x′′) = {x | x′ ≤ x < x′′} of C = [0, 1) is cut at y ∈ X with
x′ < y < x′′ then X is divided into two subintervals X′ = [x′, y) and
X′′ = [y, x′′).

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.4
2021/1/29

IPSJ SIG Technical Report

write CN = (Ci : i ∈ N).
The valuation intervals CN is called solid, if, for every point

x ∈ C, there is a player i ∈ N whose valuation interval Ci ∈ CN

contains x. As assumed in [2], [5], [8], we will also assume that
CN is solid throughout this paper, i.e.,

⋃
Ci∈CN

Ci = C.
A union X of mutual disjoint sets X1, X2, . . . , Xk is denoted by

X = X1 +X2 + · · ·+Xk =
∑k
�=1 X�. A piece Ai of cake C is a union

of mutually disjoint subintervals Ai1 , Ai2 , . . . , Aiki
of C. Thus, Ai =

Ai1 + Ai2 + · · ·+ Aiki
=
∑ki

�=1 Ai� . A partition AN = (A1, A2, . . . , An)
of cake C into n disjoint pieces A1, A2, . . . , An is called an al-

location of C to n players N if each piece Ai =
∑ki

�=1 Ai� is al-
located to player i. We also write AN = (Ai : i ∈ N). Thus,∑

i∈N Ai = C in allocation AN = (Ai : i ∈ N) of C to n players N,
and Ai =

∑ki

�=1 Ai� is called an allocated piece of C to player i.
For an interval X = [x′, x′′) of C, the length of X, denoted by

len(X), is defined by x′′ − x′. For a piece A =
∑k
�=1 X� of cake

C, the length of A, denoted by len(A), is defined by the total sum
of len(X�), i.e., len(A) =

∑k
�=1 len(X�). For each i ∈ N and valu-

ation interval Ci of player i, the value of piece A =
∑k
�=1 X� for

player i, denoted by Vi(A), is the total sum of len(X� ∩ Ci), i.e.,
Vi(A) =

∑k
�=1 len(X� ∩Ci).

For an allocation AN = (Ai : i ∈ N) of cake C to n players N,
if Vi(Ai) ≥ Vi(Aj) for all j ∈ N, then the allocated piece Ai to
player i is called envy-free for player i. If, for every player i ∈ N,
the allocated piece Ai to player i is envy-free for player i, then the
allocation AN = (Ai : i ∈ N) to n players N is called envy-free.

Let M be a mechanism for the cake-cutting problem. Let
CN = (Ci : i ∈ N) be an arbitrary input to M and AN = (Ai :
i ∈ N) be an allocation of cake C to n players N obtained by
M. If AN = (Ai : i ∈ N) with Ai =

∑ki

�=1 Ai� for every input
CN = (Ci : i ∈ N) to M is envy-free then M is called envy-free.

Now, assume that only player i gives a false valuation interval
C′i and let C′N(i) = (C′j : j ∈ N) (all the other players j � i give
true valuation intervals C j and thus C′j = C j for each j � i) be an
input to M and let an allocation of cake C to n players N obtained

by M be A′N(i) = (A′j : j ∈ N) with A′j =
∑k′j
�=1 A′j� for each j ∈ N.

The values of Ai =
∑ki

�=1 Ai� and A′i =
∑k′i
�=1 A′i� for player i are

Vi(Ai) =
∑ki

�=1 len(Ai� ∩ Ci) and Vi(A′i) =
∑k′i
�=1 len(A′i� ∩ Ci) (note

that Vi(A′i) �
∑k′i
�=1 len(A′i� ∩ C′i)). If Vi(Ai) ≥ Vi(A′i), then player

i does not want to give false valuation interval C′i and player i

will report true valuation interval Ci to M (thus, to report true
valuation interval Ci is a dominant strategy of player i). For each
player i ∈ N, if this holds, then M is called truthful (allocation
AN = (Ai : i ∈ N) obtained by M is also called truthful).

For given solid valuation intervals CN = (Ci : i ∈ N) and an
interval X = [x′, x′′) of cake C, let N(X) be the set of players i

in N whose valuation intervals Ci are entirely contained in X and
let CN(X) be the (multi-)set of valuation intervals in CN which are
entirely contained in X. Let nX be the cardinality of N(X). Thus,
N(X) = {i ∈ N | Ci ⊆ X,Ci ∈ CN}, CN(X) = (Ci ∈ CN : i ∈ N(X)),
and nX = |N(X)|. The density of interval X = [x′, x′′) of C, de-
noted by ρ(X), is defined by ρ(X) = len(X)

|N(X)| =
x′′−x′

nX
. The density

ρ(X) is the average length of pieces of the players in N(X) when
the part X of cake C is divided among the players in N(X). Note
that, if X � ∅ (i.e., len(X) � 0) and nX = 0 then ρ(X) = ∞. Let

X be the set of all nonempty intervals in C. Let ρmin be the mini-
mum density among the densities of all nonempty intervals in C,
i.e., ρmin = minX∈X ρ(X). Let Xmin = {X ∈ X | ρ(X) = ρmin}.
Thus, Xmin is the set of all intervals of minimum density in C. An
interval X ∈ Xmin is called a maximal interval of minimum density

if no other interval of Xmin contains X properly.
The mechanisms by proposed in [2], [8] and [3], [4] were quite

complicated. In this paper, for a given input of cake C = [0, 1), n

players N = {1, 2, . . . , n}, and solid valuation intervals CN = (Ci :
i ∈ N) with valuation interval Ci = [αi, βi) = {x | 0 ≤ αi ≤ x <

βi ≤ 1} ⊆ C of each player i ∈ N, we give simple envy-free and
truthful mechanisms with a small number of cuts. That is, each
simple mechanism M finds an allocation AN = (Ai : i ∈ N) to
players N satisfying the following properties: (a) M is envy-free;
(b) M is truthful; (c) Ai ⊆ Ci for each i ∈ N; and (d)

∑
i∈N Ai = C.

3. Core Mechanism M1

We first give a core mechanism M1 which assumes that a cake
C = [0, 1) is an interval of minimum density ρmin.

Mechanism 3.1 Core Mechanism M1.

Input: A cake C = [0, 1), n players N = {1, 2, . . . , n} and
solid valuation intervals CN = (Ci : i ∈ N) with
valuation interval Ci = [αi, βi) of each player i ∈ N

and
⋃

Ci∈CN
Ci = C, where C = [0, 1) is an interval

of minimum density ρmin in cake C = [0, 1).
Output: Allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci and

len(Ai) = ρmin for each i ∈ N and
∑

i∈N Ai = C.
Algorithm {

sort the valuation intervals CN = (Ci : i ∈ N) in a
lexicographic order with respect to (βi, αi) and assume
C1 ≤ C2 ≤ · · · ≤ Cn in this lexicographic order;

set A0 = ∅;
for i = 1 to n do

set Ai = [ai, bi) \∑i−1
i′=0 Ai′ ⊆ Ci \∑i−1

i′=0 Ai′ with length
ρmin, where [ai, bi) ⊆ Ci and ai is the leftmost endpoint
in Ci \∑i−1

i′=0 Ai′ ;
}
Fig.1 shows an example of solid valuation intervals CN = (Ci :

i ∈ N) (N = {1, 2, 3, 4, 5}) with ρ(C) = ρmin = 0.2 and an alloca-
tion AN = (Ai : i ∈ N) obtained by M1.

Theorem 3.1 For cake C = [0, 1), n players N = {1, 2, . . . , n},
and solid valuation intervals CN = (Ci : i ∈ N) with valuation
interval Ci = [αi, βi) of each player i ∈ N, let [0, 1) be an interval
of minimum density ρmin in cake C = [0, 1). Then, M1 finds an
allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci and len(Ai) = ρmin for
each i ∈ N and

∑
i∈N Ai = C. Furthermore, the number of cuts

made on cake C is at most 2n − 2.

Proof: It is clear that the number of cuts made on cake C is at
most 2n− 2, since M1 uses at most two cuts at ai and bi to obtain
Ai = [ai, bi) \∑i−1

i′=0 Ai′ and no cut is required at 0, 1, the endpoints
of cake C = [0, 1).

We next prove that M1 correctly finds an allocation AN = (Ai :
i ∈ N) with Ai ⊆ Ci, len(Ai) = ρmin and

∑
i∈N Ai = C.

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.4
2021/1/29

IPSJ SIG Technical Report

0 1
[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

1 [0.1,0.3)A =

2 [0.3,0.5)A =

3 [0,0.1) [0.5,0.6)A = +

4 [0.6,0.8)A =

5 [0.8,1)A =

3 [0,0.8)C =

1 [0.1,0.6)C =

5 [0.3,1)C =
4 [0.5,0.8)C =

2 [0.3,0.7)C =

(b)

0 1
[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

(a)

3 [0,0.8)C =

1 [0.1,0.6)C =

5 [0.3,1)C =
4 [0.5,0.8)C =

2 [0.3,0.7)C =

Fig. 1 (a) Solid valuation intervals CN = (Ci : i ∈ N) with ρ(C) = ρmin =

0.2. (b) Allocation AN = (Ai : i ∈ N) obtained by M1.

Suppose contrarily that we could not set Ai = [ai, bi) \∑i−1
i′=0 Ai′ ⊆ Ci with length ρmin for some i ∈ N. Let j be the mini-

mum among such i’s and let J = {1, 2, . . . , j}. Thus, we could set
Ai = [ai, bi) \ ∑i−1

i′=0 Ai′ ⊆ Ci = [αi, βi) with length ρmin for each
i ∈ J \ { j} but could not set Aj = [a j, b j)\∑ j−1

i′=0 Ai′ ⊆ C j = [α j, β j)
with length ρmin. This implies that C j \ ∑ j−1

i′=0 Ai′ = [a j, β j) is
of length ρ j less than ρmin. Now we consider valuation intervals
CJ = (Ci : i ∈ J). Note that each Ci = [αi, βi) ∈ CJ satisfies
βi ≤ β j, since the valuation intervals in CN = (Ci : i ∈ N) were
sorted in the lexicographic order with respect to (βi, αi). Let

A′i = Ai (i ∈ J \ { j}) and A′j = C j \∑ j−1
i′=0 Ai′ = [a j, β j).

Allocation (A′i : i ∈ J) (i.e.,
∑

i′∈J A′i) consists of several maxi-
mal contiguous intervals. Let I = [a, b) be the rightmost maximal
contiguous interval among the maximal contiguous intervals in
allocation (A′i : i ∈ J). Thus, b = β j. Let K ⊆ J be the set of
all i ∈ J with A′i ∩ I � ∅, i.e., K = {i ∈ J | A′i ∩ I � ∅}. If
A′j = C j \ ∑ j−1

i′=0 Ai′ = [a j, β j) = ∅, then we modify K = K ∪ { j}.
Thus, in any case (i.e., A′j = ∅ or not),

K = { j} ∪ {i ∈ J | A′i ∩ I � ∅}.

Now we consider valuation intervals CK = (Ci : i ∈ K). Then
each Ci ∈ CK is contained in I. This can be obtained as follows.

Of course, C j = [α j, β j) is contained in I. Actually, since
C j\∑ j−1

i′=0 Ai′ = [a j, β j) is of length < ρmin and A′j = C j\∑ j−1
i′=0 Ai′ =

[a j, β j), if A′j = ∅ then C j ⊆ ∑ j−1
i′=0 Ai′ and a single contiguous in-

terval C j is contained in the rightmost maximal contiguous inter-
val I in

∑ j−1
i′=0 Ai′ = A′j∪

∑ j−1
i′=0 Ai′ (i.e., C j ⊆ I), and otherwise (i.e.,

if A′j � ∅), C j ⊆ A′j ∪
∑ j−1

i′=0 Ai′ and a single contiguous interval
C j is contained in the rightmost maximal contiguous interval I in
A′j ∪

∑ j−1
i′=0 Ai′ .

Now suppose that there were some Ci ∈ CK \ {C j} not con-
tained in I. Thus, Ci = [αi, βi) ∈ CK (i ∈ K \ { j}) would contain
a point x in [0, b) \ I = [0, β j) \ I = [0, a). Let k ∈ K be the
minimum among such i’s and let Ck = [αk, βk) ∈ CK contains
a point xk in [0, b) \ I = [0, β j) \ I = [0, a). Thus, βk ≤ β j

and αk ≤ xk < a ≤ a′k < βk for some a′k ∈ A′k ∩ I � ∅ since
k ∈ K \ { j} ⊆ J \ { j}. Furthermore, since we chose I = [a, b)

as the rightmost maximal contiguous interval among the maxi-
mal contiguous intervals in allocation (A′i : i ∈ J), there is the
maximal contiguous interval I′ = [a′, a) which is not contained
in allocation (A′i : i ∈ J). Since Ck = [αk, βk) is a contiguous
interval and satisfies αk ≤ xk < a ≤ a′k < βk, we can assume
xk ∈ I′ ∩ Ck � ∅. Thus, xk � A′k. Then, however, M1 would
have included xk into A′k in place of some a′′k ∈ A′k ∩ I � ∅, be-
cause M1 sets A′k = Ak = [ak, bk) \∑k−1

i′=0 Ai′ ⊆ Ck \∑k−1
i′=0 Ai′ with

length ρmin where [ak, bk) ⊆ Ck and ak is the leftmost endpoint in
Ck\∑k−1

i′=0 Ai′ . This is a contradiction. Thus, we have each Ci ∈ CK

is contained in I and
⋃

i∈K Ci ⊆ I.
By the argument above, we have

⋃
i∈K Ci = I =

∑
i∈K A′i , since⋃

i∈K Ci ⊆ I and I =
∑

j∈J A′j ∩ I =
∑

i∈K A′i ∩ I ⊆ ∑i∈K A′i ⊆∑
i∈K Ci by the definitions of I and K and A′i ⊆ Ci for each i ∈ K.

Thus, K = N(I) and nI = |N(I)|. Furthermore, by noting that
len(A′j) = ρ j < ρmin for j ∈ K and len(A′i) = ρmin for each
i ∈ K \ { j}, we have

ρ j +
∑

i∈K\{ j}
ρmin = len(I) = b − a < ρmin +

∑

i∈K\{ j}
ρmin = |K|ρmin.

Thus, ρ(I) = len(I)
|K| < ρmin. However, this is a contradiction, since

C = [0, 1) is the maximal interval of minimum density ρmin.
Thus, M1 correctly finds an allocation AN = (Ai : i ∈ N) with

Ai ⊆ Ci, len(Ai) = ρmin and
∑

i∈N Ai = C. �

M1 can be used as a procedure in the mechanism proposed
for the cake-cutting problem in Asano and Umeda [4], where
cake C = [0, 1) is not necessarily an interval of minimum den-
sity ρmin. Actually, M1 is CutMaxInterval(N,C,CN) when C is
a maximal interval of minimum density ρmin in cake C. Thus,
M1 can be modified a little and used in place of Procedure
CutMaxInterval(R,H,DR) as follows, where H is a maximal in-
terval of minimum density ρmin, R = N(H), and valuation interval
Di ∈ DR of each player i ∈ R is Di = Ci ∈ CR (thus, DR = CR).

Procedure 3.1 CutMaxInterval(R,H,DR) {
sort the valuation intervals DR = (Di = (αi, βi) : i ∈ R) in a

lexicographic order with respect to (βi, αi) and assume
DR1 ≤ DR2 ≤ · · · ≤ DRr in this lexicographic order
where r = |R|;

set AR0 = ∅;
for i = 1 to r do

set ARi = [aRi , bRi) \
∑i−1

i′=0 ARi′ ⊆ DRi \
∑i−1

i′=0 ARi′ with
length ρmin, where [aRi , bRi) ⊆ DRi and aRi is the
leftmost endpoint in DRi \

∑i−1
i′=0 ARi′ ;

}
Thus, their mechanism in Asano and Umeda [4] can be written

as follows, although we omit the details.

Mechanism 3.2 Their cake-cutting mechanism in [4].

Input: A cake C = [0, 1), n players N = {1, 2, . . . , n} and
solid valuation intervals CN with valuation interval
Ci = [αi, βi) of each player i ∈ N and

⋃
Ci∈CN

Ci = C.

Output: Allocation AN = (Ai : i ∈ N) to players N.

Algorithm { CutCake(N,C,CN); }

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.4
2021/1/29

IPSJ SIG Technical Report

0 1
[0,1)C =

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =
7 [0.55,0.8)C =

3 [0.25,0.45)C =
2 [0.25,0.35)C =

5 [0.65,0.75)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

0 1
[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =
7 [0.55,0.8)C =

3 [0.25,0.45)C =
2 [0.25,0.35)C =

5 [0.65,0.75)C =
4 [0.1,0.15) [0.45,0.5)A = +

1 [0.15,0.25)A =

3 [0.35,0.45)A =
2 [0.25,0.35)A =

5 [0.65,0.75)A =

(a)

(b)

1 [0.1,0.5)H =

2 [0.65,0.75)H =

Fig. 2 (a) Example of solid valuation intervals CN = (Ci : i ∈ N)
(N = {1, 2, . . . , 8}). (b) In first iteration, maximal intervals H1,H2

of minimum density ρmin = 0.1 with N(H1) = {1, 2, 3, 4} and
N(H2) = {5}, and allocation AN(H1) = (Ai : i ∈ N(H1)) and allo-
cation AN(H2) = (A5).

Procedure 3.2 CutCake(P,D,DP) {
Find all the maximal intervals of minimum density ρmin in the

cake-cutting problem with cake D, players P and solid
valuation intervals DP;

Let H1 = [h′1, h
′′
1), H2 = [h′2, h

′′
2), . . . , HL = [h′L, h

′′
L) be all the

maximal intervals of minimum density ρmin;
for � = 1 to L do

cut cake D at both endpoints h′�, h
′′
� of H�;

R� = {k ∈ P | Dk ⊆ H�,Dk ∈ DP}; DR� = (Dk ∈ DP : k ∈ R�);
CutMaxInterval(R�,H�,DR�);

P′ = P; D′ = D;
for � = 1 to L do P′ = P′ \ R�; D′ = D′ \ H�;
if P′ � ∅ then // P′ = P \∑L

�=1 R� and D′ = D \∑L
�=1 H�

D′P′ = ∅;
for each Dk ∈ DP with k ∈ P′ do

D′k = Dk \∑L
�=1 H�; D′P′ = D′P′ + {D′k};

Perform virtually shrinking of all H1,H2, . . . ,HL;
Let D(S), D(S)

k ∈ D(S)
P′ , D(S)

P′ be obtained from D′, D′k ∈ D′P′ ,
D′P′ by virtually shrinking of all H1,H2, . . . ,HL;

CutCake(P′,D(S),D(S)
P′);

}
For an input example in Fig.2(a), their cake-cutting mechanism

given above works as shown in Fig.2(b) and Fig.3. Note that the
original CutMaxInterval(R,H,DR) in Asano and Umeda [4] was
complicated because it was based on the quite complicated core
method for solving the cake-cutting problem where cake X is a
minimal interval of minimum density ρmin in maximal interval H

of minimum density ρmin. The following theorem holds.

Theorem 3.2 [4] Asano and Umeda’s mechanism correctly
finds, in O(n3) time, an envy-free and truthful allocation AN =

(Ai : i ∈ N) of cake C to n players N with Ai ⊆ Ci for each player

0 1
[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =
7 [0.55,0.8)C =

3 [0.25,0.45)C =
2 [0.25,0.35)C =

5 [0.65,0.75)C =
4 [0.1,0.15) [0.45,0.5)A = +

1 [0.15,0.25)A =

6 [0,0.1) [0.5,0.55)A = +

8 [0.8,1)A =
7 [0.55,0.65) [0.75,0.8)A = +

3 [0.35,0.45)A =
2 [0.25,0.35)A =

5 [0.65,0.75)A =

Fig. 3 The second and third iterations for the example in Fig.2. In the sec-
ond iteration, the minimum density is ρmin = 0.15 and N(H1) =
{6, 7}, A6 = [0, 0.1) + [0.5, 0.55) and A7 = [0.55, 0.65) + [0.75, 0.8).
In the third (last) iteration, the minimum density is ρmin = 0.2 and
N(H1) = {8} and A8 = [0.8, 1).

i ∈ N and
∑

i∈N Ai = C. Furthermore, the number of cuts made
over C by Mechanism 3.2 is at most 2n − 2.

We can improve the time complexity from O(n3) to O(n2 log n)
using a parametric flow [7] in the later sections.

4. Second Version M2

In this section, we give the second version M2 which can be
applied to the envy-free and truthful mechanism proposed by
Chen, et al. [6] when the valuation function of each player is
piecewise uniform. We are given a cake C = [0, 1), n players
N = {1, 2, . . . , n}, and solid valuation intervals CN = (Ci : i ∈ N)
with valuation interval Ci = [αi, βi) ⊆ C of each player i ∈ N.
We are also given (si : i ∈ N) such that there is an allocation
A′N = (A′i : i ∈ N) to players N with A′i ⊆ Ci and si = len(A′i) > 0
for each i ∈ N and

∑
i∈N A′i = C (thus

∑
i∈N si = 1). Then M2 is

almost the same as M1 and can be written as follows.

Mechanism 4.1 Second Version M2.

Input: A cake C = [0, 1), n players N = {1, 2, . . . , n} and
solid valuation intervals CN = (Ci : i ∈ N) with
valuation interval Ci = [αi, βi) of each player i ∈ N

and
⋃

Ci∈CN
Ci = C and (si : i ∈ N) for players N

such that there is an allocation A′N = (A′i : i ∈ N)
to players N with A′i ⊆ Ci and len(A′i) = si > 0 for
each i ∈ N and

∑
i∈N A′i = C (thus

∑
i∈N si = 1).

Output: Allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci and
len(Ai) = si for each i ∈ N and

∑
i∈N Ai = C.

Algorithm {
sort the valuation intervals CN = (Ci : i ∈ N) in a

lexicographic order with respect to (βi, αi) and assume
C1 ≤ C2 ≤ · · · ≤ Cn in this lexicographic order;

set A0 = ∅;
for i = 1 to n do

set Ai = [ai, bi) \∑i−1
i′=0 Ai′ ⊆ Ci \∑i−1

i′=0 Ai′ with length si,
where [ai, bi) ⊆ Ci and ai is the leftmost endpoint in
Ci \∑i−1

i′=0 Ai′ ;
}
Fig.4 shows an input example of solid valuation intervals CN =

(Ci : i ∈ N) and (si : i ∈ N) with
∑

i∈N si = 1 and an allocation
AN = (Ai : i ∈ N) obtained by M2. By an argument similar to one
in Theorem 3.1 we have the following theorem.

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.4
2021/1/29

IPSJ SIG Technical Report

0 1
[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =
7 [0.55,0.8)C =

3 [0.25,0.45)C =
2 [0.25,0.35)C =

5 [0.65,0.75)C =

1=0.1s

2=0.1s

3=0.1s

4=0.1s

5=0.1s

6=0.15s

8=0.2s
7 =0.15s

(a)

[0,1)C =
0 10.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =
7 [0.55,0.8)C =

3 [0.25,0.45)C =
2 [0.25,0.35)C =

5 [0.65,0.75)C =

1=0.1s

2=0.1s

3=0.1s

4=0.1s

5=0.1s

6=0.15s

8=0.2s
7 =0.15s

(b)

4 [0.1,0.15) [0.45,0.5)A = +

1 [0.15,0.25)A =

6 [0,0.1) [0.5,0.55)A = +

8 [0.8,1)A =
7 [0.55,0.65) [0.75,0.8)A = +

3 [0.35,0.45)A =
2 [0.25,0.35)A =

5 [0.65,0.75)A =

Fig. 4 (a) Example of solid valuation intervals CN = (Ci : i ∈ N)
(N = {1, 2, . . . , 8}) and (si : i ∈ N) with

∑
i∈N si = 1. (b) Alloca-

tion AN = (Ai : i ∈ N) obtained by M2.

Theorem 4.1 M2 correctly finds an allocation AN = (Ai : i ∈
N) with Ai ⊆ Ci and len(Ai) = si for each i ∈ N and

∑
i∈N Ai = C.

Furthermore, the number of cuts made on cake C is at most 2n−2.

By Theorem 4.1, in order to obtain an envy-free allocation
AN = (Ai : i ∈ N) with Ai ⊆ Ci and len(Ai) = si for each i ∈ N

and
∑

i∈N Ai = C, we only need (si : i ∈ N) such that there is
an envy-free allocation A′N = (A′i : i ∈ N) to players N with
A′i ⊆ Ci and len(A′i) = si for each i ∈ N and

∑
i∈N A′i = C. Further-

more, Theorem 4.1 can be applied to Chen, et al.’s mechanism for
the cake-cutting problem when the valuation function vi of each
player i ∈ N is piecewise uniform [6]: Given a cake C = [0, 1),
n players N = {1, 2, . . . , n} and solid pricewise-uniform valuation
functions (vi : i ∈ N) such that D(vi) = {x ∈ C | vi(x) > 0} of
each valuation function vi consists of imi ≥ 1 disjoints intervals in
C (i.e., D(vi) =

∑mi

j=1 Cij where Cij is a single maximal interval in
C) and

⋃
i∈N D(vi) = C. Chen, et al.’s mechanism finds an envy-

free allocation A′N = (A′i : i ∈ N) such that A′i =
∑mi

j=1 A′i j
with

A′i j
⊆ Cij for each i ∈ N, each j = 1, 2, . . . ,mi and

∑
i∈N A′i = C.

Thus, we can set si j = len(A′i j
) and apply Theorem 4.1 to obtain

an envy-free allocation AN = (Ai : i ∈ N) such that Ai =
∑mi

j=1 Aij

with Aij ⊆ Cij and len(Aij) = si j with at most 2(
∑

i∈N mi) − 2 cuts.

5. Flow Network on Valuation Intervals

In this section, we consider a flow network arising from valu-
ation intervals to find such (si : i ∈ N) when D(vi) = {x ∈ C |
vi(x) > 0} of valuation function vi is a single interval Ci in C.

Let XN be the set of all endpoints αi, βi of Ci = [αi, βi) of
CN = (Ci : i ∈ N) and we assume the elements in XN are
sorted x0 < x1 < · · · < xn′ where x0 = 0, xn′ = 1 and
n′ ≤ 2n − 1. For each j with 1 ≤ j ≤ n′, let I j = [x j−1, x j)
and let IN = (I j : 1 ≤ j ≤ n′). Let GN = (CN , IN , EN) be a
bipartite graph with vertex set VN = CN + IN and edge set EN

where (Ci, I j) ∈ EN if and only if I j ⊆ Ci. GN = (CN , IN , EN)
is called a convex bipartite graph since it has a property that if
(Ci, I j), (Ci, I j′) ∈ EN with j < j′ then (Ci, I j′′) ∈ EN for each j′′

with j < j′′ < j′ (Fig.5).

1 [0,0.1)I = 2 [0.1,0.15)I = 3 [0.15,0.2)I = 4 [0.2,0.25)I = 5 [0.25,0.35)I =

6 [0.35,0.45)I = 7 [0.45,0.5)I = 8 [0.5,0.55)I = 9 [0.55,0.65)I = 10 [0.65,0.75)I =

11 [0.75,0.8)I = 12 [0.8,1)I =

1I 2I 5I3I 4I 6I 7I 8I 9I 10I 11I 12I

1C 2C 3C 4C 5C 6C 7C 8C

1I 2I 5I3I 4I 6I 7I 8I 9I 10I 11I 12I

0 1
[0,1)C =

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =
7 [0.55,0.8)C =

3 [0.25,0.45)C =
2 [0.25,0.35)C =

5 [0.65,0.75)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

Fig. 5 Example of valuation intervals CN = (Ci : i ∈ N) (N = {1, 2, . . . , 8})
IN = (I j : 1 ≤ j ≤ n′) (j = 1, 2, . . . , 12) and the convex bipartite
graph GN = (CN , IN , EN).

0.20.1 0.1 0.1 0.1 0.1 0.15 0.15

1C 2C 3C 4C 5C 6C 7C 8C

1I 2I 5I3I 4I 6I 7I 8I 9I 10I 11I 12I

0.1 0.05 0.1 0.10.050.05 0.05 0.05 0.1 0.1 0.05 0.2

Fig. 6 Network HN = (GN , S N , TN) corresponding to example in Fig.5 with
s1 + s2 + · · · + sn = 1.

1I

2I 5I3I 4I 6I 7I 8I 9I 10I 11I 12I

1C 2C 3C 4C 5C 6C 7C 8C

0.20.1 0.1 0.1 0.1 0.1 0.15 0.15

0.1 0.05 0.1
0.1

0.050.05
0.05 0.050.1 0.1 0.05 0.2

s

t

Fig. 7 Network HN (s, t) = (GN , capaN , s, t) corresponding to HN =

(GN , S N , TN) in Fig.6.

Now we assume that we are given a positive number si for each
valuation interval Ci ∈ CN and a positive number t j = len(I j) for
each I j ∈ IN . Let S N = (s1, s2, . . . , sn) and TN = (t1, t2, . . . , tn′).
Note that t1+t2+· · ·+tn′ = 1. Let HN = (GN , S N , TN) be a network
on convex bipartite graph GN with supply si of each vertex Ci and
demand t j of each vertex I j (Fig.6). A function f : EN → R+ is
called an flow in HN and a flow f in HN is called feasible, if
si =

∑
e∈δ(Ci) f (e) for each Ci ∈ CN and t j =

∑
e∈δ(I j) f (e) for

each I j ∈ IN , where δ(v) is the set of edges in EN incident to
vertex v in GN . It is clear that if HN has a feasible flow then
s1 + s2 + · · · + sn = 1.

We also consider a network HN(s, t) = (GN , capaN , s, t) which

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.4
2021/1/29

IPSJ SIG Technical Report

is obtained HN = (GN , S N , TN) by adding two new vertices s, t

and adding a directed edge (s,Ci) with capacity capaN(s,Ci) =
si for each Ci ∈ CN and a directed edge (I j, t) with capacity
capaN(I j, t) = t j for each I j ∈ IN . We assume that each edge
(Ci, I j) ∈ EN is directed from Ci to I j and has an infinite capac-
ity capaN(Ci, I j) = ∞ (Fig.7). We denote by VN(s, t) and EN(s, t)
the set of all vertices and the set of all directed edges in HN(s, t),
respectively. Thus, VN(s, t) = VN + {s, t} = CN + IN + {s, t} and
EN(s, t) = EN + {(s,Ci) | Ci ∈ CN} + {(I j, t) | I j ∈ IN}. A function
f : EN(s, t)→ R+ is an s-t flow in HN(s, t) if (i) and (ii) hold:
(i) 0 ≤ f (s,Ci) ≤ si for each edge (s,Ci) and 0 ≤ f (I j, t) ≤ t j

for each edge (I j, t), and
(ii) f (s,Ci) =

∑
e=(Ci ,I j)∈δ+(Ci) f (e) for each Ci ∈ CN and f (I j, t) =∑

e=(Ci ,I j)∈δ−(I j) f (e) for each I j ∈ IN , where δ+(Ci) is the set
of directed edges in HN(s, t) leaving from Ci and δ−(I j) is the
set of directed edges in HN(s, t) entering into I j.

The value of an s-t flow f in HN(s, t), denoted by val(f),
is defined by val(f) =

∑
Ci∈CN

f (s,Ci). Clearly, val(f) =∑
I j∈IN

f (I j, t)) by the above condition (ii). An s-t flow f in
HN(s, t) is called maximum if val(f) ≥ val(f ′) for all s-t flow f ′ in
HN(s, t). A partition (Y,Y) of vertex set VN(s, t) = CN + IN + {s, t}
is called an s-t cut in HN(s, t) if s ∈ Y and t ∈ Y . We also call
E(Y,Y) = {e = (y, y′) ∈ EN(s, t) | y ∈ Y, y′ ∈ Y} the s-t cut in
HN(s, t) defined by s-t cut (Y,Y). The capacity of an s-t cut (Y, Y)
in HN(s, t), denoted by capaN(Y, Y), is defined by the sum of the
capacities capaN(e) of all edges e = (y, y′) ∈ EN(s, t) with y ∈ Y

and y′ ∈ Y , i.e., capaN(Y, Y) =
∑

e=(y,y′)∈EN (s,t): y∈Y, y′∈Y capaN(e).
An s-t cut (Y,Y) in HN(s, t) is called minimum if capaN(Y, Y) ≤
capaN(Y ′, Y ′) for all s-t cuts (Y ′, Y ′) in HN(s, t). For any s-t flow
f and any s-t cut (Y,Y) in HN(s, t), val(f) ≤ capaN(Y, Y) holds.
Furthermore, val(f) = capaN(Y, Y) holds if and only if f is a min-
imum s-t flow and (Y, Y) is a minimum s-t cut in HN(s, t) (the
well-known maximum-flow and minimum-cut theorem).

For a flow f in HN(s, t), a residual network with respect to
f , denoted by HN(s, t)(f), is defined as follows. The vertex set
VN(s, t)(f) of HN(s, t)(f) is the vertex set VN(s, t) of HN(s, t). The
edge set EN(s, t)(f) of HN(s, t)(f) is defined as follows. For an
edge e = (u, v) of HN(s, t), let erev = (v, u) (i.e., erev = (v, u)
is the reverse edge of e = (u, v) ∈ EN(s, t)). Let Erev

N (s, t) =
{erev | e ∈ EN(s, t)}. The residual capacity capa f (a) of an edge
a = (u, v) ∈ EN(s, t) + Erev

N (s, t), is defined as follows:

capa f (a) =

⎧⎪⎪⎨⎪⎪⎩
capa(a) − f (a) (a ∈ EN(s, t))
f (e) (a = erev, e ∈ EN(s, t)).

(1)

Then the edge set EN(s, t)(f) of HN(s, t)(f) is defined by

EN(s, t)(f) = {a ∈ EN(s, t) + Erev
N (s, t) | capa f (a) > 0}.

Thus, the capacity of each edge a of HN(s, t)(f) is capa f (a) > 0.
It is well known that an s-t flow f in HN(s, t) is maximum if and
only if there is no s-t path in the residual network HN(s, t)(f).
Furthermore, suppose that there is no s-t path in HN(s, t)(f),
and let Y be the set of vertices v such that there is a v-t path in
HN(s, t)(f) and Y = VN(s, t) \ Y . Then (Y, Y) in HN(s, t) is a min-
imum s-t cut and Y ′ ⊆ Y holds for each minimum s-t cut (Y ′, Y ′)
in HN(s, t).

5.1 A Parametric Flow on Valuation Intervals
For a parameter λ with 0 ≤ λ ≤ 1, let si = λ for each i ∈ N.

We denote by S N(λ) this special S N = (s1, s2, . . . , sn) with si = λ

for each i ∈ N, i.e., S N(λ) = (λ, λ, . . . , λ) = (s1, s2, . . . , sn) = S N .
Let TN = (t1, t2, . . . , tn′) with t1 + t2 + · · · + tn′ = 1 as before.
We use HN(λ) = (GN , S N(λ), TN) and HN(λ)(s, t) when we empha-
size S N(λ) = (λ, λ, . . . , λ) = (s1, s2, . . . , sn) = S N (this network
HN(λ)(s, t) is proposed by Chen, et al. [6]). An s-t flow f in
HN(λ)(s, t) is called a parametric flow in HN(λ)(s, t). Parametric
flows and parametric searching were considered in [1], [7], [10].

The density ρ(X) of interval X = [x′, x′′) of cake C = [0, 1)
is closely related to this parameter λ. For a maximum flow fλ
in HN(λ)(s, t) found in this paper, Yλ throughout this paper is the
set of vertices v such that there is a v-t path in HN(λ)(s, t)(fλ) and
let Yλ = VN(s, t) \ Yλ. Then (Yλ,Yλ) is a minimum s-t cut in
HN(λ)(s, t) and Y ′λ ⊆ Yλ (thus, Yλ ⊆ Y ′λ) holds for each minimum
s-t cut (Y ′λ, Y

′
λ) in HN(λ)(s, t). That is, Yλ is a minimal set among

the minimum s-t cuts (Y ′λ, Y
′
λ) in HN(λ)(s, t). Furthermore, for two

distinct parameters λ′ < λ, Yλ′ ⊇ Yλ (i.e., Yλ′ ⊆ Yλ) holds.
Specifically, for λ = ρmin and the minimum s-t cut (Yλ, Yλ) in

HN(λ)(s, t) defined above, Yλ is the disjoint union of all maximal
intervals of minimum density ρmin and its capacity capa(Yλ,Yλ)
is capa(Yλ, Yλ) = λ|Yλ ∩ CN | + ∑v∈Yλ∩ IN

capa(v, t). Of course,
λ|Yλ ∩ CN | = ∑v∈Yλ∩CN

capa(s, v), since capa(s, v) = λ for each
v ∈ CN . There are at most n distinct minimum s-t cuts (Yλ, Yλ) in
HN(λ)(s, t) for parameters λ with 0 ≤ λ ≤ 1, since Yλ′ ⊇ Yλ (i.e.,
Yλ′ ⊆ Yλ) holds for two distinct parameters λ′ < λ as described
above. Suppose that there are exactly K distinct minimum s-t cuts
(Yλ, Yλ) in HN(λ)(s, t) for parameters λ with 0 ≤ λ ≤ 1, and let

λ0 = 0 ≤ λ1 < λ2 < · · · < λK ≤ λ∞ = 1, (2)

where we consider λ0 = 0 and λ∞ = 1, for convenience.
Fig.8 shows an example of network HN(λ)(s, t) corresponding

to valuation intervals CN = (Ci : i ∈ N) (and IN = (I j : 1 ≤
j ≤ n′)) in Fig.5 and the minimum s-t cut (Yλ,Yλ) in HN(λ)(s, t)
with λ = ρmin = 0.1. Fig.9 shows that the minimum s-t cuts
(Yλ, Yλ) in HN(λ)(s, t) in Fig.8 for parameters λ with 0 ≤ λ ≤ 1
form a lower envelope of the arrangement of lines generated by
y = capa(Yλ,Yλ) = λ|Yλ ∩ CN | + ∑v∈Yλ∩ IN

capa(v, t) (K = 3
and λ1 = 0.1 < λ2 = 0.15 < λ3 = 0.2). Note that there are
more minimum s-t cuts in HN(λ)(s, t), for example, (Z,Z) with
Z = {s,C2,C5, I5, I10} and Z = {t}+ (CN \{C2,C5})+ (IN \{I5, I10})
is a minimum s-t cut HN(λ)(s, t) with λ = 0.1 and the correspond-
ing line is y = capa(Z,Z) = 6λ+capa(I5, t)+capa(I10, t) = 6λ+0.2.
Note also that, for finding a lower envelope of the arrangement of
lines generated by all the minimum s-t cuts in HN(λ)(s, t) for pa-
rameters λ with 0 ≤ λ ≤ 1, it is sufficient to consider only all the
minimum s-t cuts (Yλ, Yλ) in HN(λ)(s, t) defined above.

Suppose that Procedure CutCake(P,D,DP) is called exactly K′

times in Mechanism 3.2 for the cake-cutting problem with a cake
C = [0, 1), n players N = {1, 2, . . . , n}, and solid valuation inter-
vals CN = (Ci : i ∈ N) where Ci = [αi, βi) ⊆ C is a valuation in-
terval of player i ∈ N, and let ρ(k)

min be the minimum density of in-
terval in the k-th call of CutCake(P,D,DP). Clearly, ρ(1)

min = ρmin

in CutCake(N,C,CN). Furthermore, by Lemma 6 in [4], we have
ρ(1)

min < ρ
(2)
min < · · · < ρ(K′)

min . Thus, we have the following lemma.

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.4
2021/1/29

IPSJ SIG Technical Report

1I
2I 5I3I 4I 6I 7I 8I 9I 10I 11I 12I

1C 2C 3C 4C 5C 6C 7C 8C

0.1 0.05 0.1
0.10.050.05 0.05

0.05 0.10.1 0.05 0.2

s

t

C'N

I'

YY

CN C'N

I'IN

λ λ
λ

λ λ λ λλ

0.1λ =

Fig. 8 Example of network HN(λ)(s, t) corresponding to the valuation inter-
vals CN = (Ci : i ∈ N) (N = {1, 2, . . . , 8}) (and IN = (I j : 1 ≤ j ≤ n′)
(j = 1, 2, . . . , 12)) in Fig.5 and a minimum s-t cut (Y,Y) = (Yλ,Yλ)
in HN(λ)(s, t) with λ = ρmin = 0.1.

y=1
1

0.8

0.5

0 0.1 0.15 0.2

y

8y λ= 3 0.5y λ= +

0.8y λ= +

λ

Fig. 9 Minimum s-t cuts (Yλ,Yλ) in HN(λ)(s, t) in Fig.8 for parameters λ
with 0 ≤ λ ≤ 1 form a lower envelope of the arrangement of lines
generated by y = capa(Yλ,Yλ) = λ|Yλ ∩ CN | + ∑v∈Yλ∩IN

capa(v, t)
(K = 3 and λ1 = 0.1 < λ2 = 0.15 < λ3 = 0.2).

Lemma 5.1 For the cake-cutting problem with cake C = [0, 1),
n players N = {1, 2, . . . , n} and solid valuation intervals CN =

(Ci : i ∈ N) where Ci = [αi, βi) ⊆ C is a valuation interval of
player i ∈ N, and the corresponding network HN(λ)(s, t), we have

K = K′ and ρ(k)
min = λk (k = 1, 2, . . . ,K). (3)

Proof: To prove ρmin = ρ
(1)
min = λ1, we consider a maximum

s-t flow f1 in HN(λ1)(s, t) and let Yλ1 be the set of vertices v of
HN(s, t) such that there is a path from v to t in the residual net-
work HN(λ1)(s, t)(f1) with respect to f1 and let Yλ1 = VN(s, t)\Yλ1 .
Then (Yλ1 , Yλ1) is a minimum s-t cut in HN(λ1)(s, t). Let HN(λ1)(f1)
be the subnetwork of HN(λ1)(s, t)(f1) induced by Yλ1 \ {s}, that is,
HN(λ1)(f1) is the network obtained from HN(λ1)(s, t)(f1) by delet-
ing all the vertices in Yλ1 + {s}. We next compute all the strongly
connected components Z1,Z2, . . . ,ZQ of HN(λ1)(f1). Of course,
two distinct strongly connected components Zq, Zq′ are vertex-
disjoint, i.e., V(Zq) ∩ V(Zq′) = ∅ for 1 ≤ q < q′ ≤ Q and the set
Yλ1 \ {s} is partitioned into V(Z1) + V(Z2) + · · · + V(ZQ), where
V(Zq) is the vertex set of Zq for each q = 1, 2, . . . ,Q. Then we
contract each strongly connected component Zq into one vertex
zq. The resulting network H′N(λ1)(f1) is called a condensed net-

work of HN(λ1)(f1). This condensed network is acyclic, that is,
it has no directed cycle. Thus, there is a vertex zq with inde-
gree 0. By symmetry, there is also a vertex zq′ with outdegre 0.
We denote by V(zq) the set of vertices zq′ such that there is a di-
rected path from zq to zq′ in H′N(λ1)(f1), and we denote by V(zq)
be the set of vertices in the strongly connected components Zq′

of HN(λ1)(f1) corresponding to the vertices zq′ ∈ V(zq). Then

1I
2I 5I3I 4I 6I 7I 8I 9I 10I 11I 12I

1C 2C 3C 4C
5C 6C 7C 8C

0.1 0.05 0.1
0.10.050.05 0.05

0.05 0.10.1 0.05 0.2

s

t

C'N

I'

Yλ
Yλ

CN C'N

I'IN

λ λ
λ

λ λ λ λλ

0.1λ =

0.05
0.05

0.1

0.1

0.1
0.10.1

0.1
0.1

0.05

0.05

(a)

4C

2I 7I

3C

6I
1C

3I 4I

5I
2C

10I
5C

2I 5I3I 4I 6I 7I 10I

1C 2C 3C 4C
5C

0.05 0.1 0.10.050.05 0.05 0.05

(b)

(c)

Yλ

Yλ

Fig. 10 (a) The residual network HN(λ1)(s, t)(f1) with respect to a maximum
flow f1 in HN(λ1)(s, t) where λ1 = 0.1, (b) the subnetwork HN(λ1)(f1)
of HN(λ1)(s, t)(f1) induced by Yλ1 \{s} and (c) the condensed network
H′N(λ1)(f1) of HN(λ1)(f1).

each V(zq) corresponding to vertex zq with indegree 0 forms a
maximal interval of minimum density ρmin. Similarly, each V(zq)
corresponding to vertex zq with outdegree 0 forms a minimal in-
terval of minimum density ρmin. Furthermore, for a vertex sub-
set U of H′N(λ1)(f1), each connected component in

⋃
zq∈U V(zq)

corresponding to vertices zq ∈ U forms an interval of minimum
density. Thus,

⋃
zq∈U V(zq) forms a disjoint union of intervals of

minimum density. Furthermore, let Z = {s} +⋃zq∈U V(zq). Then
(Z, Z) is a minimum s-t cut in HN(λ1)(s, t).

Since ({s},V(HN(s, t))\{s}) and (Yλ1 , Yλ1) are both minimum s-
t cuts in HN(λ1)(s, t), we have capa({s},V(HN(s, t)) \ {s}) = nλ1 =

capa(Yλ1 , Yλ1) = λ1|Yλ1 ∩ CN | + ρmin|Yλ1 ∩ CN | and ρmin = λ1.
Thus, if K = 1 then the lemma clearly holds. If K > 1,

then we use an induction on K. Suppose that lemma holds for
all K ≤ K′′ − 1 (K′′ ≥ 2) and consider when K = K′′. Since
all the maximal intervals H1,H2, . . . ,HL of minimum density
ρmin are deleted and the resulting hollow intervals H1,H2, . . . ,HL

are virtually shrunken in the first call CutCake(N,C,CN), the
second call CutCake(P,D,DP) is for cake D = C′(S), players
P = N \ ∑L

�=1 N(H�) and solid valuation intervals DP, where D,
Dk ∈ DP and DP are obtained from C′, C′k = Ck \∑L

�=1 H� ∈ C′N′
and C′N′ (which consists of valuations C′k = Ck \∑L

�=1 H� � ∅ for
all k ∈ N′) by virtually shrinking of all H1,H2, . . . ,HL. Due to
the shortage of space, we omit details, but we can use the induc-
tion hypothesis on the second call CutCake(P,D,DP) including
all the other calls and obtain that the lemma holds. �

7ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.4
2021/1/29

IPSJ SIG Technical Report

5.2 Finding λ1, λ2, . . . , λK in Parametric Flow
To find all λ1, λ2, . . . , λK , we use a binary search on interval

(λ−, λ+) to find λk with λ− < λk < λ
+ based on the method in [7].

We initially set λ− = 0, λ+ = 1 and HN(λ)(λ− , λ+)(s, t) = HN(λ)(s, t).
Then we find the minimum s-t cut (Yλ− , Yλ−) in HN(λ−)(λ− , λ+)(s, t)
and the minimum s-t cut (Yλ+ , Yλ+) in HN(λ+)(λ− , λ+)(s, t). Let
yλ− (λ) = λ|Yλ− ∩ CN | +∑v∈Yλ−∩ IN

capa(v, t),
yλ+ (λ) = λ|Yλ+ ∩ CN | +∑v∈Yλ+∩ IN

capa(v, t).
Initially, yλ− (λ) = y0(λ) = nλ and yλ+ (λ) = y1(λ) = 1. Note that,
yλ− (λ−) = capa(Yλ− ,Yλ−) = λ−|Yλ− ∩ CN | +∑v∈Yλ−∩ IN

capa(v, t),
yλ+ (λ+) = capa(Yλ+ ,Yλ+) = λ+|Yλ+ ∩ CN | +∑v∈Yλ+∩ IN

capa(v, t).
In each iteration, we find λ∗ such that yλ− (λ∗) = yλ+ (λ∗) and find
the minimum s-t cut (Yλ∗ , Yλ∗) in HN(λ∗)(λ− , λ+)(s, t) and yλ∗ (λ) =
λ|Yλ∗ ∩ CN | +∑v∈Yλ∗ ∩ IN

capa(v, t). If yλ∗ (λ∗) = yλ− (λ∗) = yλ+ (λ∗)
then λ∗ = λk and we stop the binary search on interval (λ−, λ+).
Otherwise, we continue the binary search on interval (λ−, λ∗)
in the network HN(λ)(λ−,λ∗)(s, t) obtained from HN(λ)(λ−, λ+)(s, t) by
deleting Yλ∗ \ {t} and the binary search on interval (λ∗, λ+) in the
network HN(λ)(λ∗ ,λ+)(s, t) obtained from HN(λ)(λ− , λ+)(s, t) by delet-
ing Yλ∗ \ {s}. We denote by CN(λ− , λ+) the set of vertices Ci ∈ CN

which are contained in HN(λ)(λ− , λ+)(s, t). Similarly, we denote
by IN(λ− , λ+) the set of vertices I j ∈ IN which are contained in
HN(λ)(λ−, λ+)(s, t). We also use CN(λ− , λ+) = CN \ CN(λ− , λ+) and
IN(λ− , λ+) = IN \ IN(λ− , λ+). To find the minimum s-t cut (Yλ∗ , Yλ∗)
in HN(λ∗)(λ− , λ+)(s, t), we use the following mechanism.

Mechanism 5.1 Parametric Flow Mechanism.

Input: A cake C = [0, 1), n players N = {1, 2, . . . , n} and
solid valuation intervals CN = (Ci : i ∈ N) with
valuation interval Ci = [αi, βi) of each player i ∈ N

and
⋃

Ci∈CN
Ci = C.

Output: (si : i ∈ N) such that there is an envy-free allocation
A′N = (A′i : i ∈ N) to players N with A′i ⊆ Ci and
len(A′i) = si for each i ∈ N and

∑
i∈N A′i = C.

Algorithm {
Let XN = {x0, x1, . . . , xn′ } be the set of all endpoints αi, βi of

Ci = [αi, βi) of CN = (Ci : i ∈ N);
assume x0 < x1 < · · · < xn′ by sorting the elements in XN

where x0 = 0, xn′ = 1;
let I j = [x j−1, x j) and t j = x j − x j−1 for each j with 1 ≤ j ≤ n′;
let IN = (I j : 1 ≤ j ≤ n′);
let C1 ≤ C2 ≤ · · · ≤ Cn in a lexicographic order with respect

to (βi, αi) by sorting valuation intervals Ci = (αi, βi) ∈ CN ;
set λ− = 0 and λ+ = 1;
Consider HN(λ)(λ− , λ+)(s, t) with λ− < λ < λ+;
K = 0;
FindMaxFlow(HN(λ)(λ− ,λ∗)(s, t));
}
Note that, Parametric Flow Mechanism 5.1 not only correctly

finds such (si : i ∈ N) but also finds an envy-free allocation
AN = (Ai : i ∈ N) with Ai ⊆ Ci and len(Ai) = si for each i ∈ N

and
∑

i∈N Ai = C. We can also show that Mechanism 5.1 is envy-
free and truthful by the argument in [3]. It can be implemented
to run in O(n2 log n) time with union-split-find data structures by
considering HN(λ)(λ− , λ+)(s, t) implicitly. We omit the details.

Procedure 5.1 FindMaxFlow(HN(λ)(λ−,λ∗)(s, t)) {
find λ∗ such that yλ− (λ∗) = yλ+ (λ∗);
let CN(λ− , λ+) = (Ci1 ,Ci2 , · · · ,Cip) with i1 < i2 < . . . < ip;
Ai0 = ∅;
for j = 1 to p do

let Z =
∑ j−1

j′=0 Aij′ +
∑

I∈IN(λ− , λ+)
I;

set Aij = [ai j , bi j)\Z ⊆ Cij \Z of length min{λ∗, len(Cij \Z)}
where ai j is the minimum endpoint in Cij \ Z;

f (s,Cij) = len(Aij);
let A =

∑p
j=1 Aij ;

for each I ∈ IN(λ− , λ+) do f (I, t) = len(A ∩ I);
for each edge (Cij , I) in HN(λ)(λ−,λ∗)(s, t)) do

f (Cij , I) = len(Aij ∩ I);
let HN(λ∗)(λ− , λ+)(s, t)(f) be residual network with respect to f ;
let Yλ∗ be the set of vertices v of HN(λ∗)(λ− , λ+)(s, t)(f) such

that there is a path from v to t in HN(λ∗)(λ− , λ+)(s, t)(f);
let Yλ∗ be the set of vertices v of HN(λ∗)(λ− , λ+)(s, t)(f)

not contained in Yλ∗ ;
let yλ∗ (λ) = λ|Yλ∗ ∩ CN | +∑v∈Yλ∗ ∩ IN

capa(v, t);
if yλ∗ (λ∗) = yλ− (λ∗) = yλ+ (λ∗) then

K = K + 1; λ∗ = λK ;
for each Cij in HN(λ)(λ− ,λ∗)(s, t)) do si j = λK ;

else
FindMaxFlow(HN(λ)(λ− ,λ∗)(s, t)) where HN(λ)(λ−,λ∗)(s, t) is

obtained from HN(λ)(λ− , λ+)(s, t) by deleting Yλ∗ \ {t};
FindMaxFlow(HN(λ)(λ∗ ,λ+)(s, t)) where HN(λ)(λ∗ ,λ+)(s, t) is

obtained from HN(λ)(λ− , λ+)(s, t) by deleting Yλ∗ \ {s}.
}

References

[1] H. Aissi, S.T. McCormick, and M. Queyranne, Faster algorithms for
next breakpoint and max value for parametric global minimum cuts,
Proc. of 21st International Conference on Integer Programming and
Combinatorial Optimization, pp.27–39, 2020.

[2] R. Alijani, M. Farhadi, M. Ghodsi, M. Seddighin, and A.S. Tajik,
Envy-free mechanisms with minimum number of cuts, Proc. of 31st
AAAI Conference on Artificial Intelligence, pp.312–318, 2017.

[3] T. Asano and H. Umeda, An envy-free and truthful mechanism for
the cake-cutting problem, RIMS Kôkyûroku 2154, Kyoto University,
April, pp.54–91, 2020.

[4] T. Asano and H. Umeda, Cake Cutting: An envy-free and truthful
mechanism with a small number of cuts, 31st International Sympo-
sium on Algorithms and Computation (ISAAC 2020), pp.15.1–15.16,
2020.

[5] H. Aziz and C. Ye, Cake cutting algorithms for piecewise constant and
piecewise uniform valuations, Proc. of 10th International Conference
on Web and Internet Economics, pp.1–14, 2014.

[6] Y. Chen, J. K. Lai, D. C. Parkes, and A. D. Procaccia, Truth, justice,
and cake cutting, Games and Economic Behavior, Vol.77, pp.284–
297, 2013.

[7] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan, A fast parametric max-
imum flow algorithm and applications, SIAM Journal on Computing,
Vol. 18, pp.30–55, 1989.

[8] M. Seddighin, M. Farhadi, M. Ghodsi, R. Alijani, and A.S. Tajik, Ex-
pand the shares together: envy-free mechanisms with a small number
of cuts, Algorithmica, Vol. 81, pp.1728–1755, 2019.

[9] H. Steinhaus, The problem of fair division, Econometrica, Vol. 16,
pp.101–104, 1948.

[10] T. Tokuyama, Minimax parametric optimization problems and multi-
dimensional parametric searching, Proc. of 33rd ACM Symposium on
Theory of Computing, pp.75–83, 2001.

8ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.4
2021/1/29

