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Abstract: The palindromic tree (a.k.a. eertree) for a string S of length # is a tree-like data structure that represents
the set of all distinct palindromic substrings of S, using O(n) space [Rubinchik and Shur, 2018]. It is known that, when
S is over an alphabet of size o and is given in an online manner, then the palindromic tree of S can be constructed in
O(nlog o) time with O(n) space. In this paper, we consider the sliding window version of the problem: For a sliding
window of length at most d, we present two versions of an algorithm which maintains the palindromic tree of size
O(d) for every sliding window S[i..j] over S, where 1 < j—i+ 1 < d. The first version works in O(nlogo”’) time
with O(d) space where 0’ < d is the maximum number of distinct characters in the windows, and the second one
works in O(n + do) time with (d + 2)o + O(d) space. We also show how our algorithms can be applied to efficient
computation of minimal unique palindromic substrings (MUPS) and minimal absent palindromic words (MAPW) for

a sliding window.
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1. Introduction

Palindromes.

A palindrome is a string that reads the same forward and back-
ward. Palindromic structures in strings have been heavily studied
in the fields of string processing algorithms and combinatorics
on strings [1], [8], [10], [13], [15], [19]. One of the most fa-
mous results related to palindromic structures is Manacher’s algo-
rithm [15], which computes all maximal palindromes in a given
string S. Manacher’s algorithm essentially computes all palin-
dromes in S, since any palindromic substring of S is a substring
of some maximal palindrome in §. Another interesting topic is
enumeration of distinct palindromes in a string. It is known that
any string of length n contains at most n + 1 distinct palindromes
including the empty string [6]. Groult et al. [10] proposed an
O(n)-time algorithm which enumerates all distinct palindromes
in a given string of length n over an integer alphabet of size
o = n°Y, For the same problem in the online model, Kosolobov
et al. [13] proposed an O(n log o)-time and O(n)-space algorithm
for a general ordered alphabet. Kosolobov et al.’s algorithm is a
combination of Manacher’s algorithm and Ukkonen’s online suf-
fix tree construction algorithm [21]. Rubinchik and Shur [19]
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proposed a new data structure called eertree, which permits ef-
ficient access to distinct palindromes in a string without storing
the string itself. Eertrees can be utilized for solving problems
related to palindromic structures, such as the palindrome count-
ing problem and the palindromic factorization problem [19]. The
size of the eertree of S is linear in the number pg of distinct palin-
dromes in S [19]. It is known that pg is at most |S| + 1, and that
it can be much smaller than the length |S| of the string, e.g., for
S = (abc)"?, ps = 4 since all distinct palindromes in S are a,
b, ¢, and the empty string. Thus, the size of the eertree of S can
be much smaller than that of the suffix tree of S which is ®(n).
Therefore, it is of significance if one can build eertrees without
suffix trees. Rubinchik and Shur [19] indeed proposed an online
eertree construction algorithm running in O(n log o) time without
suffix trees.

Recently, a concept of palindromic structures called minimal
unique palindromic substrings (MUPS) is introduced by Inoue et
al. [12]. A palindromic substring w = S[i..j] of astring S is called
a MUPS of S if w occurs in S exactly once, and S[i+1..j— 1] oc-
curs at least twice in §. MUPSs are utilized for solving the short-
est unique palindromic substring (SUPS) problem [12], which is
motivated by an application in molecular biology. Watanabe et
al. [22] proposed an algorithm to solve the SUPS problem based
on the run-length encoding (RLE) version of eertrees, named
e’rtre?.

Sliding Window Model.

In this paper, we consider the problems of computing palin-
dromic structures for the sliding window model. The sliding win-
dow model is a natural generalization of the online model, and
the assumptions of this model are natural when we need to pro-
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cess a massive or a streaming string data with a limited memory
space. A typical and classical application to the sliding window
model is data compression, such as Lempel-Ziv 77 (the original
version) [23] and PPM [3]. Note that sliding-window Lempel-
Ziv 77 is an immediate application of suffix trees for a sliding
window, which can be maintained in O(n log o) time using O(d)
space [7], [14], [20] where d is the size of the window and 0 < d
is the maximum number of distinct characters in every window.
Recently, several algorithms for computing substrings for a slid-
ing window with certain interesting properties are proposed: For
instance, Crochemore et al. [4] introduced the problem of com-
puting minimal absent words (MAWs) for a sliding window, and
proposed an O(no)-time and O(do)-space algorithm using suffix
trees for a sliding window. Mieno et al. [16] proposed an algo-
rithm for computing minimal unique substrings (MUSs) [11] for a
sliding window, in O(nlog o”)-time and O(d) space, again based
on suffix trees for a sliding window.

Our Contributions.

In this paper, we consider the problem of maintaining eertrees
for the sliding window model, that is, given a string S of length n
and a window of a fixed size d, we maintain eertrees of substrings
S[i..i + d — 1] for incremental i = 0,1,...,n —d. Also, we con-
sider the problem of maintaining MUPSs for a sliding window.
In addition, we introduce a new concept of palindromic structures
called minimal absent palindromic words (MAPW), and consider
the problem of maintaining MAPWs for a sliding window. A
string w is called a MAPW of string S if w is a palindrome, w
does not occur in S, and w([1..Jlw| — 2] occurs in S. MAPWs can
be seen as a palindromic version of the notion of MAWSs, which
are extensively studied in the fields of string processing and bioin-
formatics [2], [5], [9], [17], [18].

In this paper, we propose an algorithm which maintains
eertrees for a sliding window in a total of O(nlog o) time using
O(d) space. We then give an alternative eertree construction al-
gorithm for a sliding window which runs in O(n + do) time with
(d + 2)0 + O(d) space. As applications to the aforementioned
result, we propose an algorithm which maintains MUPSs for a
sliding window in a total of O(nlogo”) time using O(d) space,
and an algorithm which maintains MAPWs for a sliding window
in a total of O(n + do) time using O(do) space. We emphasize
that our algorithms are stand-alone in the sense that they do not
use suffix trees, while the majority of existing efficient sliding
window algorithms (see above) make heavy use of suffix trees.

All proofs of lemmas and theorems are omitted due to lack of
space.

2. Preliminaries

2.1 Strings

Let  be an alphabet of size o. An element of X is called a
character. An element of X* is called a string. The length of
a string S is denoted by |S|. The empty string € is the string
of length 0. If S = xyz, then x, y, and z are called a pre-
fix, substring, and suffix of S, respectively. They are called a
proper prefix, proper substring, and proper suffix of S if x # §,
y # S,and z # S, respectively. If a non-empty string x is both
a proper prefix and a proper suffix of S, then x is called a bor-
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der of S. Forany 0 < i < |S| -1, S[i] denotes the i-th char-
acter of S. Forany 0 < i < j < [S| -1, S[i..j] denotes the
substring of S starting at position i and ending at position j, i.e.,
Sli..j1 = S[i]S[i+1]:- - S[j]. For convenience, S [i..j] = € for any
i> j. Astring S is called a palindrome if S[i] = S[|S|—i— 1] for
every 0 <i < |S|— 1. Note that the empty string is a palindrome.
A substring S[i..j] of S is said to be a palindromic substring of S
if S[i..j] is a palindrome. The center of a palindromic substring
S[i..jlof S is %’ A palindromic substring S[i..j] of S is maxi-
malifi =0, j =1S|-1,0or S[i — 1..j + 1] is not a palindrome.
We denote by Ipp(S) (resp. Ips(S)) the longest palindromic pre-
fix (resp. suffix) of §. We denote by DPal(S ) the set of all distinct
palindromes in S. It is known that [DPal(S)| < |S| + 1 [6]. For
any non-empty strings S and w, w is said to be unique in S if w
occurs in S exactly once. Also, w is said to be repeating in S
if w occurs in S at least twice. For convenience, we define that
the empty string € is repeating in any string. In what follows, we
consider an arbitrary fixed string S of length n > 0.

2.2 Eertrees (Palindromic Trees)

The eertree of S denoted by eertree(S) is a tree-like data struc-
ture that enables us to efficiently access each of the distinct palin-
dromes in S [19]. The eertree(S) consists of m ordinary nodes
and two auxiliary nodes, denoted 0-node and —1-node, where
m = |DPal(S)| — 1. Each ordinary node corresponds to each el-
ement of DPal(§) \ {€}. For each ordinary node v, we denote by
pal(v) the palindrome which corresponds to v, and by len(v) its
length. Conversely, for each non-empty palindromic substring p
of S, we denote by node(p) the node which corresponds to the
palindrome p. Namely, node(pal(v)) = v for each ordinary node
v. For convenience, we define pal(0-node) = pal(—1-node) = &,
len(0-node) = 0, and len(—1-node) = —1. For any nodes «,v in
eertree(S), there is an edge (u, v) if and only if len(u) +2 = len(v)
and pal(u) = pal(v)[1..len(v) — 2]. Each edge (u,v) is labeled
by a character pal(v)[0]. Also, each node v in eertree(S) has
a suffix link denoted by slink(v). For each node v in eertree(S)
with len(v) > 2, slink(v) points to the node corresponding to the
longest palindromic proper suffix of pal(v). For each node v in
eertree(S) with len(v) = 1, slink(v) points to the 0-node. Also,
slink(®-node) = —1-node and slink(—1-node) = —1-node. For
each node v in eertree(S), inSL(v) = [{u | slink(u) = v}| denotes
the number of incoming suffix links of v. See Fig. 1 for an exam-
ple of eertree(S).

Note that each node v does not store the string pal(v) explic-
itly. Instead, we can obtain pal(v) by traversing edges backward,
from v to the root, since pal(u) = ¢ pal(u’)c for each node u with
| pal(u)| > 2 where u’ is the parent of u and c is the label of the
edge («’,u). Each node only stores pointers to its children and a
constant number of integers. Thus, the size of eertree(S) is lin-
ear in the number of nodes, i.e., O(|DPal(S)|). It is known that
eertree(S) can be constructed in O(n log o) time for any string S
given in an online manner [19].

2.3 Sliding Window
We formalize sliding windows over string S. For each time
t = 0,1,..., we consider the substring S [i;..j,] called the win-
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S = aaababababbabb

q b
(ababa ) ( bbabb ) ( babab
( babbab ) a

b
( bababab ) ( abababa )

Fig. 1 The eertree of S = aaababababbabb. The solid and broken ar-
rows represent edges and suffix links, respectively. Note that pal(v)
is written inside each node v in this figure, however, it is for only
explanation. Namely, each node does not explicitly store the corre-
sponding string.

dow at time t. The windows must satisfy the following condi-
tions: (1) ip = jo = O for the initial window at time 0; and
2)0 < i, < j, £ n—1 and either (i, j;) = (-1 + 1, ji—1) oOr
(its j1) = (=1, ji-1 + 1) for every time t > 0. In other words,
the second condition means that we can either delete the leftmost
character from the current window, or append a character to the
right end of the current window at each time.

Given a sequence of windows (or equivalently, a sequence of
delete / append operations), the aim of our sliding window model
is processing the windows in space proportional to the size of
each window. This paper mainly deals with the problem of main-
taining eertrees with respect to a sequence of windows over a
given string S'.

3. Combinatorial Properties on Palindromes
for a Sliding Window

In this section, we show some combinatorial properties on

palindromes for a sliding window, which is helpful for design-
ing efficient algorithms to maintain eertrees for a sliding window.
Since the nodes of the eertree of a string represent all distinct
palindromes in the string, we obtain the next lemma.
Lemma 1. There is a node € in eertree(S[i — 1..j — 1]) to be
removed when the leftmost character S[i — 1] is deleted from
S[i—1..j—1]if and only if (A) pal({) is unique in S[i—1..j — 1],
(B) pal(€) = lpp(Si — 1..j — 1]), and (C) € is a leaf node.

Namely, when the leftmost character of the window is deleted,
at most one leaf will be removed from the eertree. Also, in order
to detect such a leaf, we need to compute the longest palindromic
prefix of each window and to determine its uniqueness. In the fol-
lowing, we show some combinatorial properties on unique palin-
dromes and the longest palindromic prefix for a sliding window.

3.1 Unique Palindromes for a Sliding Window

A palindromic substring w of string S is said to be left-maximal
in S if there is no palindromic substring of S which contains w
as a proper suffix. See Fig. 2 for examples. If a palindrome w is
not left-maximal in S, then for some palindrome w’, w is a proper
suffix and prefix of w’, i.e., w is not unique in S. In other words,

(© 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.2
2021/1/28

any unique palindromic substring must be left-maximal.

01 23 456 7 8 91011 12
S= aababbaababab

<> <>

>

—>
Fig.2 For string S = aababbaababab, its palindromic substring aa is left-
maximal in S. On the other hand, bab is not left-maximal in S since
there is a palindromic substring S[8..12] = babab of S which con-
tains bab as a proper suffix.

>

Lemma 2. For any time t and any left-maximal palindromic sub-
string w of S [i;..J;], there exists time t' < t which satisfies one of
the followings:
(1) the longest palindromic suffix of S [iy..jr] is w, or
(2) the longest palindromic suffix of Ipp(S [iy ..jr]) is w.

As mentioned before, any unique palindrome is left-maximal.
Thus, Lemma 2 is useful for maintaining uniqueness of palin-
dromes for a sliding window.

3.2 Longest Prefix Palindrome for a Sliding Window

Next, we consider the longest palindromic prefixes for sliding
windows.
Lemma 3. Let w be the longest palindromic prefix of the window
S [i;..J:] at time t. There exists time t' < t which satisfies one of
the followings:
(1) the longest palindromic suffix of S [iy..jr] is w, or
(2) the longest palindromic suffix of Ipp(S liy ..j+]) is w.

4. Eertree for a Sliding Window

In this section, we show how to update a given eertree when
we shift the sliding window to the right by one character. Sliding
a given window consists of two operations: deleting the leftmost
character and appending a character to the right end. Namely,
when the eertree of S[i — 1..j — 1] is given, we first compute the
eertree of S [i..j— 1] (deleting the leftmost character S [i —1]), and
then, compute the eertree of S[i..j] (appending a character S j]).
To update the eertree when a character is appended, we can apply
Rubinchik and Shur’s algorithm [19] which constructs the eertree
of a given string in an online manner. In this section, we propose
new additional data structures and algorithms which update the
eertree when the leftmost character is deleted.

We emphasize that our algorithms work for any valid*! se-
quence of windows of arbitrary lengths. However, for simplicity,
we consider the case where a fix-sized window of length d shifts
to the right one-by-one throughout this section.

4.1 Auxiliary Data Structures for Detecting the Node to be
Deleted

We introduce auxiliary data structures for computing the

longest palindromic prefixes and for determining uniqueness of
palindromes.

%1

C.f., the definition of sliding windows in Section 2.3.
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For Computing the Longest Palindromic Prefix.

Let prefPal[0..d — 1] be a cyclic array of size d such that
prefPalli; mod d] stores the node which corresponds to the
longest palindromic prefix of the window S [i;..j;] at each time .
Namely, for every time ¢, prefPalli, mod d] = node(lpp(S [i;..j:]))
holds.

For Determining Uniqueness of a Palindrome.

For each ordinary node v in eertree(S [i.. j]), let rm; ;(v) be the
starting position of the rightmost occurrence of pal(v) in S[i..j].
Further let srm; ;(v) be the starting position of the second right-
most occurrence of pal(v) in S[i..j] if such a position exists, and
otherwise, srm; j(v) = —1. Throughout the computation of the
eertree for a sliding window, for each node v of eertree(S[i..j])
we keep the following invariant BegPair; ;(v) which consists of
two fields first and second such that:

rm; j(v)

) if inSL(v) = 0,
BegPair; ;(v).first

An occurrence of pal(v) in S[0..j]
otherwise.
srm j(v)

if inSL(v) = 0 and srm; j(v) # -1,

BegFair,; ;(v).second
’ An occurrence of pal(v) in S[0..]

otherwise.

Namely, BegFair; ;(v) stores the rightmost and second rightmost
occurrences of pal(v) in S[i..j] when inSL(v) = 0, if such occur-
rences exist. Otherwise, it temporarily stores some pair of inte-
gers, however, it will never be referred in our algorithms. In other
words, we employ a kind of lazy maintenance of the rightmost
and second rightmost occurrences of pal(v) in S [i..j] that suffices
for our purpose. See Fig. 3 for an example of BegPair,; ;(v).

The next lemma states that given a node v, we can determine if
pal(v) is unique or not by checking the incoming suffix links of v
and BegPair; j(v).

Lemma 4. Let v be any node in eertree(S[i..jl). Then,
pal(v) is unique in S[i..j] if and only if inSL(v) = 0 and
BegPair; ;(v).second < i.

Next, we introduce our algorithms to maintain prefPal and
BegPair for a sliding window which utilizes combinatorial prop-
erties shown in Section 3.

4.2 Maintaining the Auxiliary Data Structures

First, in Algorithm 1, we show subroutine update_bp which up-
dates the member variable v.bp of a given node v where v.bp must
be kept equal to BegFair; ; (v) at each time 7. It will be called in
the algorithms that we show later.

Next, we show our algorithms for updating data structures
when we slide the given window. When the leftmost character
S[i— 1] is deleted from S[i — 1..j — 1], our data structures are up-
dated by Algorithm 2. Also, when a character S[;] is appended
to S[i..j — 1], our data structures are updated by Algorithm 3.
Time Complexities.

Clearly, Algorithm 1 runs in constant time. In Algorithm 2, all
lines except for Line 13 can be processed in constant time. Thus,
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01 23 4[5 6 7 8 91011 12 13 1415
S= bcabalcabaacabab|c

eertree(S[5..14])

Fig. 3 Examples for BegPair; ;(v). For string § = bcabacabaacababc and
window [5, 14], the eertree(S[5..14]) is depicted. Consider node
v in eertree(S[5..14]) with pal(v) = aba. The rightmost and the
second rightmost occurrences of aba in the window S[5..14] are
11 and 6. Namely, rms4(v) = 11 and srms4(v) = 6. Further,
inSL(v) = 0, and thus, BegPairs 4(v) = (11,6). Also, for node u
in eertree(S [5..14]) with pal(u) = c, BegPairs 4(u) = (10, 5) since
rms 14(u) = 10, srms 14(u) = 5, and inSL(u) = 0. When the leftmost
character S[5] = c is deleted from the window S[5..14], srms 14(u)
changes to —1. However, BegPairg 4(u) = BegPairs 4(u) = (10,5)
is allowed since BegPairg 14(u).second = 5 < 6 is a valid value for
our invariant. Namely, we do not have to update BegPairg ,(u) ex-
plicitly when deleting the leftmost character S[5] from S[5..14].

Algorithm 1 update _bp(v, x).

Require: Node v, and a starting position x of pal(v).

Ensure: Update v.bp appropriately with respect to the position x.
. if x > v.bp first then
v.bp.second — v.bp first
v.bp first < x

v.bp.second «— x

1
2
3
4: else if x > v.bp.second then
5
6: end if

Algorithm 2 Update BegPair and prefPal when the leftmost char-

acter is deleted.
Require: Ipsuf = node(lps(S[i — 1..j — 1])), and

v.bp = BegPair,-_Lj_l(u) for each node v in eertree(S[i — 1..j — 1]).
Ensure: Ipsuf = node(lps(S[i..j — 1])), and
v.bp = BegPair; ;_,(v) for each node v in eertree(S[i..j — 1]).
1: Ippref « prefPalli — 1] \\ pal(lppref) = Ipp(S[i — 1..j — 1)
2: if Ippref = Ipsuf then
Ipsuf <« slink(Ipsuf)
palindrome
: end if
1 q « slink(Ippref)
: inSL(q) « inSL(q) — 1
: x « i — 1+ len(Ippref) — len(q)
of pal(q)
: update_bp(q, x)
9: if len(q) > len(prefPal[x]) then
10:  prefPallx] = q

W

\\ For the case the window is a

~N O A

\\ xis a starting position

oo

11: end if

12: if inSL(Ippref) = 0 and Ippref.bp.second < i — 1. then
13:  Remove node Ippref from the eertree

14: end if
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Algorithm 3 Update BegPair and prefPal when a character is ap-
pended.
Require: Ipsuf = node(lps(S[i..j — 11)), S[j], and

v.bp = BegPairi.J-,] (v) for each node v in eertree(S [i..j — 1]).

Ensure: Ipsuf = node(lps(S|i..j1)), and
v.bp = BegPFair; ;(v) for each node v in eertree(S [i...j]).

1: Compute Ips(S[i..j]) and overwrite Ipsuf < node(Ips(S [i..j]))

2: if Ipsuf does not exist in eertree(S[i..j — 1]) then

3:  Add new node /psuf to the eertree

4: end if

5:y « j— len(lpsuf) + 1 \\ y is a starting position of
Ips(S[i..jD

6: update_bp(Ipsuf, y)
7: prefPally] « Ipsuf

the total running time of Algorithm 2 is dominated by Line 13,
i.e., O(logo’). In Algorithm 3, the first four lines can be pro-
cessed in amortized O(log o) time by using the online construc-
tion algorithm [19]. Also, the remaining lines can be processed
in constant time, and thus, the total running time of Algorithm 3
is amortized O(log o).

Correctness.

First, it is clear that Algorithm 1 runs correctly.

Next, let us consider the correctness of Algorithm 2. Let us first
consider a special case when the window S[i — 1..j — 1] itself is
a palindrome. Then, we need to update /psuf, which will be used
in Algorithm 3. Lines 2-3 of Algorithm 2 captures such a case.
Next, we show that BegPair for all nodes are updated correctly.
By Lemma 2, it is suffice to update v.bp for every node v where
pal(v) is left-maximal. Let g be is the node corresponding to the
longest palindromic suffix of Ippref = Ipp(S[i — 1..j — 1]). Then,
it is suffice to update g.bp since the node ¢ is the only candidate
for a node whose corresponding palindrome to be left-maximal
Jjust in this step. Thus, we update only ¢.bp in Lines 5-8, if it
is needed. Further, we show that prefPal is also updated cor-
rectly. By Lemma 3, the longest palindromic prefix of a window
must be the longest palindromic suffix of either some window
or the longest palindromic prefix of some window. The palin-
drome pal(g) is the only one which is to be such a palindrome
Jjust in this step. Thus, prefPal[x] is the only candidate which
may be updated in this step where x is the starting position of the
occurrence of pal(g) which is the longest palindromic suffix of
Ipp(S[i — 1, j — 1]). Therefore, it is suffice to update prefPal[x]
and update it if necessary (Lines 9-11). Line 12 determines the
uniqueness of Ipp(S[i — 1..j — 1]) correctly by using Lemma 4,
and if it is unique, then the corresponding node Ippref is removed
(in Line 13).

Finally, consider the correctness of Algorithm 3. When a char-
acter is appended, we first check the new longest palindromic
suffix, and create a new node corresponding to the palindrome
if necessary. These procedures in Lines 1-4 are correctly per-
formed by running the online construction algorithm [19]. Let y
be the starting position of the longest palindromic suffix of the
window S [i..j]. The palindrome /ps(S [i..j]) is the only candidate
for a palindrome to be left-maximal just in this step, and thus, by
Lemma 2, it is suffice to update Ipsuf.bp in this step. Also, by
Lemma 3, Ipsuf is the only candidate for the node that we need

(© 2021 Information Processing Society of Japan

Vol.2021-AL-181 No.2
2021/1/28

to newly store into prefPal in this step. At this moment, /[psuf is
clearly the longest palindrome starting at position y. Thus, we set
prefPally] < Ipsuf (Line 7).

To summarize this section, we obtain the following theorem.
Theorem 1. We can maintain eertrees for a sliding window in a
total of O(nlog o) time using O(d’) + d space where d’ < d be
the maximum number of distinct palindromes in all windows.

By applying a subtle modification to the above algorithm, we
obtain another variant of the algorithm (Theorem 2 below) which
is faster than Theorem 1 when d’c- < nlogo”, but using addi-
tional (d’ + 1)o space.

Theorem 2. We can maintain eertrees for a sliding window in a
total of O(n+d' o) time using (d' +1)0+0(d")+d € O(do) space.

5. Applications of Eertrees for a Sliding Win-
dow

In this section, we apply our sliding-window eertree algorithm
of Section 4 to computing minimal unique palindromic substrings
and minimal absent palindromic words for a sliding window.

5.1 Computing Minimal Unique Palindromic Substrings for
a Sliding Window

A substring S[i..j] of S is called a minimal unique palin-
dromic substring (MUPS) of S if and only if S[i..j] is a palin-
drome, S[i..j] is unique in S, and S[i + 1..j — 1] is repeating
in §. We denote MUPS(S) the set of intervals corresponding to
MUPSs of S, i.e., MUPS(S) = {[i, j] | S[i..j]isa MUPS of S}.
For example, palindromic substring S[9..13] = bbabb of string
S = aaababababbabb is a MUPS of S since S[9..13] = bbabb
is unique in S and S[10..12] = bab is repeating in S.

Now, we show Lemma 5 which states a relationship between
eertrees and MUPSs. Then, in Lemma 6, we show that all MUPS
can be computed using eertrees in an offline manner.

Lemma 5. A string w is a MUPS of S if and only if there is a
node v in eertree(S) such that pal(v) = w, pal(v) is unique in S
and pal(u) is repeating in S, where u is the parent of v.

Lemma 6. Given eertree(S), we can compute MUPS(S) in
O(|DPal($)|) time.

Moreover, we can efficiently maintain MUPSs for a sliding
window.

Theorem 3. We can maintain the set of MUPSs for a sliding win-
dow in a total of O(nlog o) time using O(d) space.

5.2 Computing Minimal Absent Palindromic Words for a
Sliding Window

A string w is called a minimal absent palindromic
word (MAPW) of string S if and only if w is a palindrome,
w does not occur in S, and w[l..lw| — 2] occurs in S. For
example, palindrome w = aabbaa is a MAPW of string
S = aaababababbabb since w does not occur in S and
w[l..lw| — 2] = abba occurs in S at position 8. For a relation
between MAPW:s and eertrees, the next lemma holds.
Lemma 7. For any non-empty string w € X*, w is a MAPW of a
string S if and only if there is a node u in eertree(S) such that
pal(u) = w[l..|w| — 2], len(u) = |w| — 2, and u does not have an
edge labeled by w[0].
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In order to maintain the set of MAPWs on top of eertree(S),
we store an array M, of size o for each node v in eertree(S)
where M,[c] = 0 if v has an edge labeled by ¢ and M,[c] = 1
otherwise. By Lemma 7, M, [c] = 1 iff ¢ pal(v)c is a MAPW of S.
It is easy to see that M, for all nodes v (i.e., all MAPWs of §') can
be computed by traversing eertree(S ) only once. Thus, the next
corollary holds.

Corollary 1. The number of MAPWs of S is at most (|DPal(S)| +
1)o. Also, given eertree(S), the set of MAPWs of S can be com-
puted in O(|DPal(S)|o) time.

Also, we can maintain MAPW:s for a sliding window by apply-
ing Theorem 2.

Corollary 2. We can maintain the set of MAPWs for a sliding
window in a total of O(n + do) time using O(do) space.
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