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Abstract: After decades of development, natural language processing is widely used in life and research. In recent years, 
the Transformer-based NLP model has achieved good results on many tasks, in which a model called BERT is a major 
progress in recent years. However, the BERT model is really large, which requires a lot of storage and computing resources. 
In order to implement the BERT model on hardware, Intel has built a project named Q8BERT to quantize the model 
parameters to save memory space and computing resources. This paper implements the Q8BERT, and makes some 
improvements by proposing clipping, which is to limit the range of weights, and piece-wise quantization, which is to divide 
the range of weights into several pieces to get higher resolutions. We show experimentally that the clipping can get higher 
accuracy while inference, which is better than the Q8BERT. And we get some intermedium results of non-linear 
experiments. Experiments for piece-wise quantization are in progress. 
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1. Introduction     

With the development of artificial intelligence, many NLP 
models based on neural networks like GPT [1] have been 
proposed. Many of them have good performance, show good 
results on many tasks, and are widely used in many places, such 
as automatic translation, AI voice, even medical care. But at the 
same time, in order to meet these performance requirements, the 
size of the model is getting larger and larger, taking up a lot of 
memory and computing resources, requiring GPUs or TPUs. In 
order to allow these models to operate on hardware such as 
FPGAs-ASICs with fixed point integer calculations, quantization 
techniques are proposed. 

2. Background 

2.1 Natural Language Processing 
Natural language processing (NLP) usually refers to making 

computers understand and process languages that humans can 
understand, such as English, Chinese, Japanese, and even 
artificial languages. NLP has been developed for decades, and 
now with the rise of neural networks, many NLP models based on 
neural networks have been proposed, such as models based on 
RNN or LSTM [2] in the last several years. NLP has now been 
applied to a plenty of fields, providing many conveniences for 
our lives and work, such as automatic translation tools, AI speech 
recognition and so on. 

2.2 Attention Mechanism 
NLP tasks are usually processing a sequence of unknown length. 

It is different from image processing. Image processing can 
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transmit an entire image to CNN as input at the same time, and 
perform parallel processing to obtain the results. However, the 
input of NLP is usually related to each other. Sequence to 
sequence architecture is one of the structures to solve this kind of 
sequence input. In the structure, Encoder translates the input 
sequence into intermediate semantic C, and Decoder decodes 
semantic C into the target text sequence. RNNs are often used for 
this mapping with their recursion mechanism. 
 
Although RNN has some memory properties, in 

Encoder-Decoder architecture, no matter how the input changes, 
the encoder gives a vector of fixed dimensions, and in the 
decoder, the semantic vector C which is used to generate each 
target text. This is obviously not good, because for each target 
text, the weight of each word in the input sequence is different.  

 

 
 

Figure 1: Encoder-Decoder model (Up) and with Attention (Down) 

 
A mechanism called Attention [3] makes some optimization on 

such problems. The attention mechanism, as its name, is inspired 
by human attention. Imagine when we look at a portrait, although 
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we can see the whole painting, our attention is first attracted by 
the portrait, and secondly the landscape behind the portrait, which 
means the weight of the portrait is larger than the weight of the 
background. The same is true for the Attention mechanism, and 
when generating each word, it gives different weights for 
different input words. Through the self-attention mechanism, we 
can also obtain the internal relationship among the input sentence 
itself. 

2.3 BERT 
With the introduction of Attention, researchers have proposed a 

new NLP model, completely abandoning the traditional RNN or 
LSTM structure, and only consisting of Attention., which is 
called Transformer [5]. Transformer divides the model into 
encoder and decoder. Each contains several layers of Attention 
structure. 
 

BERT (Bidirectional Encoder Representations from 
Transformers) [4] is an improved and optimized model based on 
Transformer. Transformer [5] is a unidirectional connection. 
BERT uses a bidirectional architecture to improve the 
performance of the model and has achieved SOTA results on 
many NLP tasks. 

3. Related Works 

3.1 Linear quantization 
Linear quantization [6] is a kind of uniform quantization. 

Symmetric linear quantization meanly maps 32-bit floating-point 
numbers to linear integer space of 8-bit integers ([-127, 127]). 
The symmetrical linear quantization calculation is simpler 
because there is no need to consider the offset caused by the 
position of 0. The quantization calculation can be simply 
represented by the following formula: 

 
Where the scale is the quantization conversion ratio, and thresh 

is the maximum allowable value after quantization, which in this 
case is 127. The round function obtains the nearest integer by 
rounding. clamp is to prevent data overflow. The quantized 
integer data can be restored to FP32 data by the following 
formula: 

 

 
Figure 2: 8bit symmetric linear quantization 

 

3.2 Post-training quantization 
Post-training quantization is a relatively simple quantization 

method. After the training of the original floating-point number 
model is completed to obtain the FP32 model, the weights in the 
FP32 model can be directly quantized into integers by the above 
formula. By this, quantization can reduce the size of the model 
several times in a short time. However, in the inference process, 
we still need to use FP32 format for calculation. This is because 
the range of the input variable is not known, so it is still 
necessary to dequantize the quantized weight to FP32 for 
calculation. 
 
Therefore, quantization after training is suitable to reduce the 

size of the model, but it cannot reduce the amount of calculation, 
and it is difficult to apply it to hardware. In addition, this method 
also brings some precision loss due to rounding when quantized 
to an integer. 

3.3 Quantization-aware training [7] 
In order to obtain higher precision, and can also perform 

calculations using only quantized integers during inference to 
reduce computing resources and be suitable for hardware 
implementation, it is necessary to perform quantization during 
training to continuously obtain and update the input range and 
quantization scale. 

3.4 Q8BERT 
Intel's AI laboratory combines Linear quantization and 

Quantization-aware training and implements it on the BERT 
model. It completes the 8-bit linear quantization for the BERT 
model, which is called Q8BERT [8]. 
 
As we introduced in 2.1, Q8BERT uses symmetric linear 

quantization. In the formula, scale determines the range and 
resolution after quantization, so Q8BERT learns the range and 
scale of input through fake-quantization training, so that all scale 
and thresh parameters of the quantization model after training can 
be fixed in order to use these fixed parameters to perform 
inference with only integers. 
 
Fake-quantization is a training process that includes forward and 

backward propagation. 

 
In this process, because the round function is not derivable, in 

order to obtain gradient, STE [9] was introduced instead of the 
gradient calculation function. STE (straight-through estimator) is 
a method commonly used in neural network gradient calculations. 
It can replace some underivable functions in the training process 
to generate gradients so that the model can be trained and learned 
normally. After the training is completed, the inference can be 
performed using only integers. 

4. Proposed Improvements 

Q8BERT has achieved good results in 8bit quantization, but it 
still requires a lot of storage and computing resources. Once it is 
less than 8bit, the result becomes much worse. We hope to make 
some improvements and make comparisons to further reduce the 
number of bits while maintaining accuracy. 
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4.1 Clipping 
We analyzed the reason why the accuracy is greatly reduced 

when directly quantizing into lower bits. 8bit means there are 256 
quantized integers which can be mapped, while there are only 16 
integers for 4bit, the number is only 1/16 of 8bit. This means that 
the interval between the two numbers has increased by 16 times 
and the resolution has dropped by 16 times. The weights of BERT 
follow a normal distribution, so smaller weights have higher 
frequencies, but too large intervals make these small weights all 
quantized to the same value (such as 0), and too many values are 
quantized to 0, the performance of the model becomes terrible. 
This is because in the Attention structure, the output passed to the 
next layer is the matrix multiplication of the input and weights. 
As shown in the figure, in the 4-bit model, 75% of the weights 
are quantized to integer 0, which is only 12% in 8bit model. 
Therefore, as the results show, the performance descending of the 
low-bit model is very serious. 

 
As mentioned above, when the number of bits is determined, the 

resolution is determined by the maximum value. If the maximum 
value is quite large, most weights can only obtain very low 
resolution, which greatly reduces the accuracy. At the same time, 
the greater the weights, the lower the frequency. If the errors 
generated by ignoring these low-frequency large values are small 
enough, then we can reduce the maximum by ignoring them, and 
the resolution can be greatly improved, resulting in higher 
accuracy. This is the idea of clipping [10]. 

 

 
Figure 3: Weight frequency of 8bit-linear (Up) and 4bit-linear quantization 

(Down) 

 
But we need to find a suitable clipping position. If the value of 

the position is too large, it has little effect on improving the 
resolution. If this value is too small, the accuracy may be reduced 
because of limiting too many large values. A very popular but 

effective method is to calculate the MSE (Mean Squared Error) of 
quantization after clipping [12].  

 

 
 

Figure 4: Weights in one layer of BERT showing clipping shortens the 

interval and increases the resolution 

 
We divide the area of weights [0, maximum] into several parts, 

set the clipping value as the point in the end of each part, then do 
the quantization and compare the MSE generated after clipped 
quantization, and select the point with the smallest MSE as the 
clipping position. Through this method, the MSE generated by 
quantization can be significantly reduced, and the resolution can 
be improved several times, thereby obtaining higher accuracy. 

 

4.2 Non-linear quantization 
As we analyzed in section 4.1, the normal distribution of 

weights results in smaller weights having higher frequencies, 
while larger weights have lower frequencies. The Clipping result 
validates the importance of the resolution with a smaller weight 
to a certain extent. The demand for resolution with small weights 
is far larger than that with large weights. Therefore, we associate 
the Log function in the non-linear function [11]. 
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Figure 5: Log function 

 

As shown in the figure, the gradient of the log function quickly 
becomes smaller as the input becomes larger. This just meets our 
needs. With the same number of bits, the Log function has higher 
resolution, and has a larger representation range due to its 
non-linearity. Therefore, Log scale quantization may be a good 
solution. 
 
After the above transformation, the matrix multiplication of the 

original linear space becomes the following operation. 
 
The reason why 2 is selected as the bottom of the log function is 

that it can change the exponential operation into a simple shift 
operation. For hardware, the complex multiply-add operation is 
simplified for addition and shift operations, which should save a 
lot of hardware resources. 

 
But the log function has a problem that it can only handle 

positive numbers. This means that negative numbers must be 
absolute values before they can be processed by the log function. 
But in this case, there will be a problem that the original sign of 
the variable cannot be restored during the dequantization process 
and the inference process, which causes the result to be 
completely wrong in the accumulation operation. 
 
A simple solution is to create an additional sign matrix for each 

weight matrix to store FP32 real number signs. In the experiment 
of this article, in order to make the experiment easier and avoid 
creating additional storage space, another similar method is 
adopted. In order to retain both the signs before and after 
quantization, an additional bit is used as the sign bit of original 
FP32 value, but the specific implementation method is to add an 
extra bit as the sign bit of the quantized data, which becomes 9bit 
integers. During the operation, the sign of the original data is 
restored by judging the state of this bit. 

4.3 Piece-wise quantization 
Piece-wise is a multi-segment linear quantization, which divides 

the original data into two parts, we call them w1 and w2. w1 and 
w2 both occupy 7 bits, which together occupy 8 bits in total. If it 
is single quantization, then the split point of w1 and w2 is at the 
midpoint of the range max(x)/2 (equivalent to a special 

piece-wise). When we move the position of the segmentation 
from the middle to the left, the range of w1 gradually shrinks. 
Therefore, when it is quantized into a 7-bit integer, the data in w1 
gets a greater resolution. At the same time, the data in w2 obtains 
a smaller resolution. Since the weights of the neural network 
conform to the normal distribution, more data near 0. Therefore, 
moving the split point to the left effectively makes the resolution 
of most data better. 
 
It would be bad if we completely ignore the accuracy of the 

right half, so we need to find a suitable split position. The 
piece-wise quantization can be equivalent to a double linear 
quantization problem, that is, w1 is mapped to a 7-bit integer qw1 
through linear quantization, and w2 is mapped to a 7-bit integer 
qw2 through linear quantization, and then they are combined to 
occupy just 8 bits. 
 
Since w1 and w2 are actually in the same matrix, they are the 

results of 7bit quantization, so there may be duplication, so we 
need to process to distinguish them. 
 
An obvious way is to use the most significant bit. qw1 occupies 

-0000000~+0111111, while qw2 occupies -1000000~-1111111, 
and +1000000~+1111111. When processing data, we can judge 
whether they belong to qw1 or qw2 through the most significant 
bit. In the subsequent processing, reset the highest bit of qw2 to 0. 
 
If we use thresh to represent the split position, the quantize and 

dequantize operations can be expressed by the following formula: 

 

 
where the offset means how much the difference led by the most 

significant bit. 

 

 
Figure 6: Piece-wise quantization 

 
Another problem is that, this is equivalent to two 7-bit linear 

quantization, so they have different scales. This brings trouble to 
the subsequent matrix multiplication and addition operations. 
Different scales make the final multiplication and addition 
incorrect, and cannot be dequantized and mapped back to FP32 
values.  
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Table 1: The results of original Q8BERT and after Clipping on different Benchmarks and bis

 qw1 and qw2 are distinguished by the most significant bit, so 
the quantized matrix qw can actually be decomposed into two 
matrices qw1 and qw2 (extract the part of qw1, and the rest fill 
with 0; extract the part of qw2, the rest Add 0). Therefore, the 
multiplication and addition operations are equivalent to two parts: 
sum(x*qw1), sum(x*qw2). But these two parts cannot be added 
directly, because their different scales make the scale of the 
product impossible to calculate and lead to incorrect results. 
Because the scale of the product is equal to scale_x * scale_w. 
But there are two different scale_w here. Should it be scale1 or 
scale2? Both are wrong. Let’s see some mathematical operations. 
Since qw1 = w*scale1, qw2 = w*scale2, if you want to get the 
correct result at the end, you only need to do an extra 
multiplication before the final accumulation. That is, 
 

 

The qthresh means the quantized thresh, which represents the 
position of dividing. scale1 is the scale of qw1, and scale2 is the 
scale of qw2. In this way, the scale of the output activations can 
be calculated. 

 

A remained problem is that if we implement on hardware, 
scale1 and scale2 are both floating-point numbers, which are not 
easy to calculate. This also has a corresponding solution. We can 
convert scale1 and scale2 in the additional multiplications into 
integer multiplications according to their ratios. The principle is 
very simple, just find the common multiple of scale1 and scale2, 
and then divide to get their ratio. For example, if we select 10% 
of the entire range as the split point, it means scale1 = 9 * scale2. 
Therefore, the formula can be changed into: 

 

 
Through the above operations, we can apply this method to the 

experiment and compare with the results of clipping. In addition, 
we can combine piece-wise and clipping together. 
 
The final thing we would like to do is to find proper split 

positions, which can lead to the highest accuracy. One possible 
way is similar to the method in the clipping, which is to divide 
the range of weights into n pieces and choose one which leads to 
the minimum MSE. 

5. Experiment 
We conducted clipping and non-linear experiments respectively. 

Experiments show that the clipping is effective in the BERT 
quantization model, and improvements have been made in most 
of the results of the experiments. In the experiments for 
non-linear quantization, we tested and compared the relative error 
generated by Non-linear and the linear quantization for different 
bits. However, in the experiment applying the non-linear to the 
BERT model, we did not achieve the ideal results. We will 
analyze about this in section 5.2, and improve this part of the 
experiment in future work. 
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Table 2: The results of original 4bit-linear quantization and out 5bit-non-linear on different Benchmarks and bits

5.1 Clipping Experiment 
In the clipping experiment, in order to retain the same 

conditions, we used pre-trained BERT model released by Google, 
and Glue Benchmark, same as the Q8BERT. Glue contains 
several different training and test data. 
 
The experimental results show that the model after clipping has 

results better than the original Q8BERT in most cases. Among 
them, the precision improvement produced by 7bit, 6bit and 5bit 
quantization is particularly obvious. 
 
But in the 4bit of RTE, the results of clipping have dropped 

significantly. We analyzed the reasons for such results. Because 
in RTE, 5bit and 4bit have almost reached the prediction result of 
all "1" (the correct prediction answer has about 52.7% of "1"). 
This means that there are too many "0"s in the quantized model, 
which leads to poor model performance and almost no 
classification ability. After the clipping, more parameters in the 
model have non-zero values, which makes the prediction results 
no longer all "1". 
In short, clipping at 5bit, 6bit and 7bit can effectively improve 

the prediction accuracy. But in the 4bit, it is very unstable. We 
think this is because even if we do the clipping, 4bit still can only 
have 16 quantized values available for mapping, so the resolution 
is still too low. If we want to further ensure accuracy with lower 
bit, we need further improvements. 

5.2 Non-linear Experiment 
In order to verify the feasibility of non-linear, we did some 

comparative experiments to judge the error performance of 
non-linear quantization.  
 
Because the range of 5bit Log quantization can reach [ , 

], which covers all the weight values, we conduct experiments 
on 5-bit Log quantization. The first figure is the relative error 
produced by different quantization methods on the weights. It can 
be seen that as the relative error increases, the frequency 
gradually decreases, but there is an abnormal protrusion at the 
place where the relative error is 100%. This is because some of 
the smaller values are quantized to 0, so the relative error 
becomes 100%. 4bit linear quantization has 70% of the values 
with a relative error of 100%, meaning that these values are 
almost all quantized to 0, and 6-bit is less, but even with 8-bit 
linear quantization, there are still many relative errors with 
weight values reaching 100%. Non-linear quantization does not 
decrease in frequency like linear quantization under a small 

relative error, because the quantized value and error distribution 
of non-linear quantization are not uniform. But there is no 
relative error of 100%, which is one of the advantages of 
non-linear quantization. Overall, nonlinear quantization seems to 
be more stable than linear quantization, with most values low 
error. 
 
Because BERT does not have a traditional CNN convolutional 

layer, the Attention calculation method is similar to the FC 
(full-connection) layer, which is a General Matrix Multiply 
operation (GEMM). Therefore, we did another experiment to 
compare the relative errors generated after GEMM. The 4-bit 
linear quantization has a peak at 1.0 because the frequency of 0 is 
too high, and other quantization methods are similar decline 
curves. 5bit non-linear is slightly better than 6bit linear 
quantization. This looks not as good as expected. The reason for 
this is still because of the non-uniformity of the log function, the 
error generated on the larger value is larger. But in general, 
non-linear should be feasible and can get relatively good results. 
 
In addition, we also applied non-linear quantization to the BERT, 

but there is some trouble in the experiment, resulting in poor 
results, which does not meet our expectations. The 
5bit-Non-linear is the same as 4bit-Linear, while 4bit-linear has 
no classification ability because all the predictions of 4bit-linear 
is “0”. 

 

2−15
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Figure 7: Weight relative error (Up) and GEMM relative error (Down) of 

different methods 

 
At present, we suspect that the STE used in the backward 

propagation of linear quantization is not suitable for nonlinear 
quantization. We need more information about it.  

5.3 Piece-wise Experiment 
We are currently conducting the experiments of piece-wise 

quantization and combination of the clipping and piece-wise 
quantization. 

6. Conclusion 

In this work, we implemented Clipping, none-linear 
quantization and Piece-wise quantization to the original 
quantization. The results show that under the same bit, Clipping 
has higher accuracy in most cases. This confirms that clipping 
has an improvement in the current quantization of the BERT 
model. But there are still some bad results. Reducing the error 
caused by clipping [12] and also clipping on quantized 
activations [13] may make further improvements. We conducted 
some non-linear experiments and obtained some intermediate 
results, which showing non-linear is potentially a good method 
for improvement. And we are conducting the experiments for the 
piece-wise quantization. 
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