

 1

Quantization Techniques for Small Number of Bits
in Transformer based Natural Language

Processing

YI DING1 MASAHIRO FUJITA1,2
SHIN-ICHI O’UCHI2

Abstract: After decades of development, natural language processing is widely used in life and research. In recent years,
the Transformer-based NLP model has achieved good results on many tasks, in which a model called BERT is a major
progress in recent years. However, the BERT model is really large, which requires a lot of storage and computing resources.
In order to implement the BERT model on hardware, Intel has built a project named Q8BERT to quantize the model
parameters to save memory space and computing resources. This paper implements the Q8BERT, and makes some
improvements by proposing clipping, which is to limit the range of weights, and piece-wise quantization, which is to divide
the range of weights into several pieces to get higher resolutions. We show experimentally that the clipping can get higher
accuracy while inference, which is better than the Q8BERT. And we get some intermedium results of non-linear
experiments. Experiments for piece-wise quantization are in progress.

Keywords: NLP, Transformer, BERT, Quantization

1. Introduction

With the development of artificial intelligence, many NLP
models based on neural networks like GPT [1] have been
proposed. Many of them have good performance, show good
results on many tasks, and are widely used in many places, such
as automatic translation, AI voice, even medical care. But at the
same time, in order to meet these performance requirements, the
size of the model is getting larger and larger, taking up a lot of
memory and computing resources, requiring GPUs or TPUs. In
order to allow these models to operate on hardware such as
FPGAs-ASICs with fixed point integer calculations, quantization
techniques are proposed.

2. Background

2.1 Natural Language Processing
Natural language processing (NLP) usually refers to making

computers understand and process languages that humans can
understand, such as English, Chinese, Japanese, and even
artificial languages. NLP has been developed for decades, and
now with the rise of neural networks, many NLP models based on
neural networks have been proposed, such as models based on
RNN or LSTM [2] in the last several years. NLP has now been
applied to a plenty of fields, providing many conveniences for
our lives and work, such as automatic translation tools, AI speech
recognition and so on.

2.2 Attention Mechanism
NLP tasks are usually processing a sequence of unknown length.

It is different from image processing. Image processing can

 1 Graduate School of Engineering, The University of Tokyo, Bunkyo,
Tokyo 113-8654, Japan
 2 AIST-UTokyo AI Chip Design Open Innovation Laboratory (AIDL),
National Institute of Advanced Industrial Science and Technology,
Bunkyo, Tokyo 113-8654, Japan

transmit an entire image to CNN as input at the same time, and
perform parallel processing to obtain the results. However, the
input of NLP is usually related to each other. Sequence to
sequence architecture is one of the structures to solve this kind of
sequence input. In the structure, Encoder translates the input
sequence into intermediate semantic C, and Decoder decodes
semantic C into the target text sequence. RNNs are often used for
this mapping with their recursion mechanism.

Although RNN has some memory properties, in

Encoder-Decoder architecture, no matter how the input changes,
the encoder gives a vector of fixed dimensions, and in the
decoder, the semantic vector C which is used to generate each
target text. This is obviously not good, because for each target
text, the weight of each word in the input sequence is different.

Figure 1: Encoder-Decoder model (Up) and with Attention (Down)

A mechanism called Attention [3] makes some optimization on

such problems. The attention mechanism, as its name, is inspired
by human attention. Imagine when we look at a portrait, although

IPSJ SIG Technical Report

ⓒ 2021 Information Processing Society of Japan

Vol.2021-ARC-243 No.32
Vol.2021-SLDM-193 No.32

2021/1/26

 2

we can see the whole painting, our attention is first attracted by
the portrait, and secondly the landscape behind the portrait, which
means the weight of the portrait is larger than the weight of the
background. The same is true for the Attention mechanism, and
when generating each word, it gives different weights for
different input words. Through the self-attention mechanism, we
can also obtain the internal relationship among the input sentence
itself.

2.3 BERT
With the introduction of Attention, researchers have proposed a

new NLP model, completely abandoning the traditional RNN or
LSTM structure, and only consisting of Attention., which is
called Transformer [5]. Transformer divides the model into
encoder and decoder. Each contains several layers of Attention
structure.

BERT (Bidirectional Encoder Representations from
Transformers) [4] is an improved and optimized model based on
Transformer. Transformer [5] is a unidirectional connection.
BERT uses a bidirectional architecture to improve the
performance of the model and has achieved SOTA results on
many NLP tasks.

3. Related Works

3.1 Linear quantization
Linear quantization [6] is a kind of uniform quantization.

Symmetric linear quantization meanly maps 32-bit floating-point
numbers to linear integer space of 8-bit integers ([-127, 127]).
The symmetrical linear quantization calculation is simpler
because there is no need to consider the offset caused by the
position of 0. The quantization calculation can be simply
represented by the following formula:

Where the scale is the quantization conversion ratio, and thresh

is the maximum allowable value after quantization, which in this
case is 127. The round function obtains the nearest integer by
rounding. clamp is to prevent data overflow. The quantized
integer data can be restored to FP32 data by the following
formula:

Figure 2: 8bit symmetric linear quantization

3.2 Post-training quantization
Post-training quantization is a relatively simple quantization

method. After the training of the original floating-point number
model is completed to obtain the FP32 model, the weights in the
FP32 model can be directly quantized into integers by the above
formula. By this, quantization can reduce the size of the model
several times in a short time. However, in the inference process,
we still need to use FP32 format for calculation. This is because
the range of the input variable is not known, so it is still
necessary to dequantize the quantized weight to FP32 for
calculation.

Therefore, quantization after training is suitable to reduce the

size of the model, but it cannot reduce the amount of calculation,
and it is difficult to apply it to hardware. In addition, this method
also brings some precision loss due to rounding when quantized
to an integer.

3.3 Quantization-aware training [7]
In order to obtain higher precision, and can also perform

calculations using only quantized integers during inference to
reduce computing resources and be suitable for hardware
implementation, it is necessary to perform quantization during
training to continuously obtain and update the input range and
quantization scale.

3.4 Q8BERT
Intel's AI laboratory combines Linear quantization and

Quantization-aware training and implements it on the BERT
model. It completes the 8-bit linear quantization for the BERT
model, which is called Q8BERT [8].

As we introduced in 2.1, Q8BERT uses symmetric linear

quantization. In the formula, scale determines the range and
resolution after quantization, so Q8BERT learns the range and
scale of input through fake-quantization training, so that all scale
and thresh parameters of the quantization model after training can
be fixed in order to use these fixed parameters to perform
inference with only integers.

Fake-quantization is a training process that includes forward and

backward propagation.

In this process, because the round function is not derivable, in

order to obtain gradient, STE [9] was introduced instead of the
gradient calculation function. STE (straight-through estimator) is
a method commonly used in neural network gradient calculations.
It can replace some underivable functions in the training process
to generate gradients so that the model can be trained and learned
normally. After the training is completed, the inference can be
performed using only integers.

4. Proposed Improvements

Q8BERT has achieved good results in 8bit quantization, but it
still requires a lot of storage and computing resources. Once it is
less than 8bit, the result becomes much worse. We hope to make
some improvements and make comparisons to further reduce the
number of bits while maintaining accuracy.

IPSJ SIG Technical Report

ⓒ 2021 Information Processing Society of Japan

Vol.2021-ARC-243 No.32
Vol.2021-SLDM-193 No.32

2021/1/26

 3

4.1 Clipping
We analyzed the reason why the accuracy is greatly reduced

when directly quantizing into lower bits. 8bit means there are 256
quantized integers which can be mapped, while there are only 16
integers for 4bit, the number is only 1/16 of 8bit. This means that
the interval between the two numbers has increased by 16 times
and the resolution has dropped by 16 times. The weights of BERT
follow a normal distribution, so smaller weights have higher
frequencies, but too large intervals make these small weights all
quantized to the same value (such as 0), and too many values are
quantized to 0, the performance of the model becomes terrible.
This is because in the Attention structure, the output passed to the
next layer is the matrix multiplication of the input and weights.
As shown in the figure, in the 4-bit model, 75% of the weights
are quantized to integer 0, which is only 12% in 8bit model.
Therefore, as the results show, the performance descending of the
low-bit model is very serious.

As mentioned above, when the number of bits is determined, the

resolution is determined by the maximum value. If the maximum
value is quite large, most weights can only obtain very low
resolution, which greatly reduces the accuracy. At the same time,
the greater the weights, the lower the frequency. If the errors
generated by ignoring these low-frequency large values are small
enough, then we can reduce the maximum by ignoring them, and
the resolution can be greatly improved, resulting in higher
accuracy. This is the idea of clipping [10].

Figure 3: Weight frequency of 8bit-linear (Up) and 4bit-linear quantization

(Down)

But we need to find a suitable clipping position. If the value of

the position is too large, it has little effect on improving the
resolution. If this value is too small, the accuracy may be reduced
because of limiting too many large values. A very popular but

effective method is to calculate the MSE (Mean Squared Error) of
quantization after clipping [12].

Figure 4: Weights in one layer of BERT showing clipping shortens the

interval and increases the resolution

We divide the area of weights [0, maximum] into several parts,

set the clipping value as the point in the end of each part, then do
the quantization and compare the MSE generated after clipped
quantization, and select the point with the smallest MSE as the
clipping position. Through this method, the MSE generated by
quantization can be significantly reduced, and the resolution can
be improved several times, thereby obtaining higher accuracy.

4.2 Non-linear quantization
As we analyzed in section 4.1, the normal distribution of

weights results in smaller weights having higher frequencies,
while larger weights have lower frequencies. The Clipping result
validates the importance of the resolution with a smaller weight
to a certain extent. The demand for resolution with small weights
is far larger than that with large weights. Therefore, we associate
the Log function in the non-linear function [11].

!"# = 1
&'()*! −*!)"

#

$

IPSJ SIG Technical Report

ⓒ 2021 Information Processing Society of Japan

Vol.2021-ARC-243 No.32
Vol.2021-SLDM-193 No.32

2021/1/26

 4

Figure 5: Log function

As shown in the figure, the gradient of the log function quickly
becomes smaller as the input becomes larger. This just meets our
needs. With the same number of bits, the Log function has higher
resolution, and has a larger representation range due to its
non-linearity. Therefore, Log scale quantization may be a good
solution.

After the above transformation, the matrix multiplication of the

original linear space becomes the following operation.

The reason why 2 is selected as the bottom of the log function is

that it can change the exponential operation into a simple shift
operation. For hardware, the complex multiply-add operation is
simplified for addition and shift operations, which should save a
lot of hardware resources.

But the log function has a problem that it can only handle

positive numbers. This means that negative numbers must be
absolute values before they can be processed by the log function.
But in this case, there will be a problem that the original sign of
the variable cannot be restored during the dequantization process
and the inference process, which causes the result to be
completely wrong in the accumulation operation.

A simple solution is to create an additional sign matrix for each

weight matrix to store FP32 real number signs. In the experiment
of this article, in order to make the experiment easier and avoid
creating additional storage space, another similar method is
adopted. In order to retain both the signs before and after
quantization, an additional bit is used as the sign bit of original
FP32 value, but the specific implementation method is to add an
extra bit as the sign bit of the quantized data, which becomes 9bit
integers. During the operation, the sign of the original data is
restored by judging the state of this bit.

4.3 Piece-wise quantization
Piece-wise is a multi-segment linear quantization, which divides

the original data into two parts, we call them w1 and w2. w1 and
w2 both occupy 7 bits, which together occupy 8 bits in total. If it
is single quantization, then the split point of w1 and w2 is at the
midpoint of the range max(x)/2 (equivalent to a special

piece-wise). When we move the position of the segmentation
from the middle to the left, the range of w1 gradually shrinks.
Therefore, when it is quantized into a 7-bit integer, the data in w1
gets a greater resolution. At the same time, the data in w2 obtains
a smaller resolution. Since the weights of the neural network
conform to the normal distribution, more data near 0. Therefore,
moving the split point to the left effectively makes the resolution
of most data better.

It would be bad if we completely ignore the accuracy of the

right half, so we need to find a suitable split position. The
piece-wise quantization can be equivalent to a double linear
quantization problem, that is, w1 is mapped to a 7-bit integer qw1
through linear quantization, and w2 is mapped to a 7-bit integer
qw2 through linear quantization, and then they are combined to
occupy just 8 bits.

Since w1 and w2 are actually in the same matrix, they are the

results of 7bit quantization, so there may be duplication, so we
need to process to distinguish them.

An obvious way is to use the most significant bit. qw1 occupies

-0000000~+0111111, while qw2 occupies -1000000~-1111111,
and +1000000~+1111111. When processing data, we can judge
whether they belong to qw1 or qw2 through the most significant
bit. In the subsequent processing, reset the highest bit of qw2 to 0.

If we use thresh to represent the split position, the quantize and

dequantize operations can be expressed by the following formula:

where the offset means how much the difference led by the most

significant bit.

Figure 6: Piece-wise quantization

Another problem is that, this is equivalent to two 7-bit linear

quantization, so they have different scales. This brings trouble to
the subsequent matrix multiplication and addition operations.
Different scales make the final multiplication and addition
incorrect, and cannot be dequantized and mapped back to FP32
values.

IPSJ SIG Technical Report

ⓒ 2021 Information Processing Society of Japan

Vol.2021-ARC-243 No.32
Vol.2021-SLDM-193 No.32

2021/1/26

 5

Table 1: The results of original Q8BERT and after Clipping on different Benchmarks and bis

 qw1 and qw2 are distinguished by the most significant bit, so
the quantized matrix qw can actually be decomposed into two
matrices qw1 and qw2 (extract the part of qw1, and the rest fill
with 0; extract the part of qw2, the rest Add 0). Therefore, the
multiplication and addition operations are equivalent to two parts:
sum(x*qw1), sum(x*qw2). But these two parts cannot be added
directly, because their different scales make the scale of the
product impossible to calculate and lead to incorrect results.
Because the scale of the product is equal to scale_x * scale_w.
But there are two different scale_w here. Should it be scale1 or
scale2? Both are wrong. Let’s see some mathematical operations.
Since qw1 = w*scale1, qw2 = w*scale2, if you want to get the
correct result at the end, you only need to do an extra
multiplication before the final accumulation. That is,

The qthresh means the quantized thresh, which represents the
position of dividing. scale1 is the scale of qw1, and scale2 is the
scale of qw2. In this way, the scale of the output activations can
be calculated.

A remained problem is that if we implement on hardware,
scale1 and scale2 are both floating-point numbers, which are not
easy to calculate. This also has a corresponding solution. We can
convert scale1 and scale2 in the additional multiplications into
integer multiplications according to their ratios. The principle is
very simple, just find the common multiple of scale1 and scale2,
and then divide to get their ratio. For example, if we select 10%
of the entire range as the split point, it means scale1 = 9 * scale2.
Therefore, the formula can be changed into:

Through the above operations, we can apply this method to the

experiment and compare with the results of clipping. In addition,
we can combine piece-wise and clipping together.

The final thing we would like to do is to find proper split

positions, which can lead to the highest accuracy. One possible
way is similar to the method in the clipping, which is to divide
the range of weights into n pieces and choose one which leads to
the minimum MSE.

5. Experiment
We conducted clipping and non-linear experiments respectively.

Experiments show that the clipping is effective in the BERT
quantization model, and improvements have been made in most
of the results of the experiments. In the experiments for
non-linear quantization, we tested and compared the relative error
generated by Non-linear and the linear quantization for different
bits. However, in the experiment applying the non-linear to the
BERT model, we did not achieve the ideal results. We will
analyze about this in section 5.2, and improve this part of the
experiment in future work.

IPSJ SIG Technical Report

ⓒ 2021 Information Processing Society of Japan

Vol.2021-ARC-243 No.32
Vol.2021-SLDM-193 No.32

2021/1/26

 6

Table 2: The results of original 4bit-linear quantization and out 5bit-non-linear on different Benchmarks and bits

5.1 Clipping Experiment
In the clipping experiment, in order to retain the same

conditions, we used pre-trained BERT model released by Google,
and Glue Benchmark, same as the Q8BERT. Glue contains
several different training and test data.

The experimental results show that the model after clipping has

results better than the original Q8BERT in most cases. Among
them, the precision improvement produced by 7bit, 6bit and 5bit
quantization is particularly obvious.

But in the 4bit of RTE, the results of clipping have dropped

significantly. We analyzed the reasons for such results. Because
in RTE, 5bit and 4bit have almost reached the prediction result of
all "1" (the correct prediction answer has about 52.7% of "1").
This means that there are too many "0"s in the quantized model,
which leads to poor model performance and almost no
classification ability. After the clipping, more parameters in the
model have non-zero values, which makes the prediction results
no longer all "1".
In short, clipping at 5bit, 6bit and 7bit can effectively improve

the prediction accuracy. But in the 4bit, it is very unstable. We
think this is because even if we do the clipping, 4bit still can only
have 16 quantized values available for mapping, so the resolution
is still too low. If we want to further ensure accuracy with lower
bit, we need further improvements.

5.2 Non-linear Experiment
In order to verify the feasibility of non-linear, we did some

comparative experiments to judge the error performance of
non-linear quantization.

Because the range of 5bit Log quantization can reach [,

], which covers all the weight values, we conduct experiments
on 5-bit Log quantization. The first figure is the relative error
produced by different quantization methods on the weights. It can
be seen that as the relative error increases, the frequency
gradually decreases, but there is an abnormal protrusion at the
place where the relative error is 100%. This is because some of
the smaller values are quantized to 0, so the relative error
becomes 100%. 4bit linear quantization has 70% of the values
with a relative error of 100%, meaning that these values are
almost all quantized to 0, and 6-bit is less, but even with 8-bit
linear quantization, there are still many relative errors with
weight values reaching 100%. Non-linear quantization does not
decrease in frequency like linear quantization under a small

relative error, because the quantized value and error distribution
of non-linear quantization are not uniform. But there is no
relative error of 100%, which is one of the advantages of
non-linear quantization. Overall, nonlinear quantization seems to
be more stable than linear quantization, with most values low
error.

Because BERT does not have a traditional CNN convolutional

layer, the Attention calculation method is similar to the FC
(full-connection) layer, which is a General Matrix Multiply
operation (GEMM). Therefore, we did another experiment to
compare the relative errors generated after GEMM. The 4-bit
linear quantization has a peak at 1.0 because the frequency of 0 is
too high, and other quantization methods are similar decline
curves. 5bit non-linear is slightly better than 6bit linear
quantization. This looks not as good as expected. The reason for
this is still because of the non-uniformity of the log function, the
error generated on the larger value is larger. But in general,
non-linear should be feasible and can get relatively good results.

In addition, we also applied non-linear quantization to the BERT,

but there is some trouble in the experiment, resulting in poor
results, which does not meet our expectations. The
5bit-Non-linear is the same as 4bit-Linear, while 4bit-linear has
no classification ability because all the predictions of 4bit-linear
is “0”.

2−15

215

IPSJ SIG Technical Report

ⓒ 2021 Information Processing Society of Japan

Vol.2021-ARC-243 No.32
Vol.2021-SLDM-193 No.32

2021/1/26

 7

Figure 7: Weight relative error (Up) and GEMM relative error (Down) of

different methods

At present, we suspect that the STE used in the backward

propagation of linear quantization is not suitable for nonlinear
quantization. We need more information about it.

5.3 Piece-wise Experiment
We are currently conducting the experiments of piece-wise

quantization and combination of the clipping and piece-wise
quantization.

6. Conclusion

In this work, we implemented Clipping, none-linear
quantization and Piece-wise quantization to the original
quantization. The results show that under the same bit, Clipping
has higher accuracy in most cases. This confirms that clipping
has an improvement in the current quantization of the BERT
model. But there are still some bad results. Reducing the error
caused by clipping [12] and also clipping on quantized
activations [13] may make further improvements. We conducted
some non-linear experiments and obtained some intermediate
results, which showing non-linear is potentially a good method
for improvement. And we are conducting the experiments for the
piece-wise quantization.

Reference
[1] Radford, Alec, et al. "Improving language understanding by

generative pre-training." (2018): 12.
[2] Olah, Christopher. "Understanding lstm networks." (2015).
[3] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural

machine translation by jointly learning to align and translate." arXiv
preprint arXiv:1409.0473 (2014).

[4] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional
transformers for language understanding." arXiv preprint
arXiv:1810.04805 (2018).

[5] Vaswani, Ashish, et al. "Attention is all you need." Advances in
neural information processing systems 30 (2017): 5998-6008.

[6] Krishnamoorthi, Raghuraman. "Quantizing deep convolutional
networks for efficient inference: A whitepaper." arXiv preprint
arXiv:1806.08342 (2018).

[7] Jacob, Benoit, et al. "Quantization and training of neural networks
for efficient integer-arithmetic-only inference." Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.
2018.

[8] Zafrir, Ofir, et al. "Q8bert: Quantized 8bit bert." arXiv preprint
arXiv:1910.06188 (2019).

[9] Bengio, Yoshua, Nicholas Léonard, and Aaron Courville.
"Estimating or propagating gradients through stochastic neurons for
conditional computation." arXiv preprint arXiv:1308.3432 (2013).

[10] Shin, Sungho, Kyuyeon Hwang, and Wonyong Sung. "Fixed-point
performance analysis of recurrent neural networks." 2016 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2016.

[11] Miyashita, Daisuke, Edward H. Lee, and Boris Murmann.
"Convolutional neural networks using logarithmic data
representation." arXiv preprint arXiv:1603.01025 (2016).

[12] Zhao, Ritchie, et al. "Improving neural network quantization without
retraining using outlier channel splitting." arXiv preprint
arXiv:1901.09504 (2019).

[13] Choi, Jungwook, et al. "Pact: Parameterized clipping activation for
quantized neural networks." arXiv preprint
arXiv:1805.06085 (2018).

IPSJ SIG Technical Report

ⓒ 2021 Information Processing Society of Japan

Vol.2021-ARC-243 No.32
Vol.2021-SLDM-193 No.32

2021/1/26

