
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Fast Algorithm for Attributed Community Search

ShoheiMatsugu1,a) Hiroaki Shiokawa1,b) Hiroyuki Kitagawa1,c)

Received: June 9, 2020, Accepted: September 24, 2020

Abstract: Searching communities on attributed graphs has attracted much attention in recent years. The community
search algorithm is currently an essential graph data management tool to find a community suited to a user-specified
query node. Although community search algorithms are useful in various web-based applications and services, they
have trouble handling attributed graphs due to the strict topological constraints of traditional algorithms. In this paper,
we propose an accurate community search algorithm for attributed graphs. To relax the topological constraints, we
proposed a new model of the community. And we defined the problem of finding them in an attributed graph class
called the Flexible Attributed Truss Community (F-ATC). The F-ATC problem has the advantage of being applica-
ble in many situations because it can explore diverse communities. Consequently, the community search accuracy is
enhanced compared to traditional community search algorithms. Additionally, we present a novel heuristic algorithm
to solve the F-ATC problem. This effective algorithm detects more accurate communities from attributed graphs than
the traditional algorithms. For further optimization, we pre-processed the query response to make it faster. Finally,
we conducted extensive experiments with real-world attributed graphs to demonstrate that our approach outperforms
state-of-the-art methods.

Keywords: graphs, community search, clustering

1. Introduction

Given an attributed graph, how can we efficiently find the most
suitable (or relevant) community to a user-specified query node
among all possible communities? Recent advances in informa-
tion and social sciences have shown that attributed graphs are be-
coming increasingly important as they represent complicated and
schema-less data. For example, in the case of a friendship net-
work (e.g., Facebook), each user node has several attributes such
as affiliation, residential area, and topics of interests.

To understand such complicated graphs, community search al-
gorithms [2], [4], [18] play an important role in various appli-
cations. Once they receive a query node from a user, the com-
munity search algorithms explore a single community (cluster)
that has dense inner-community connections with the largest rel-
evance to the query node. Unlike traditional community detection
algorithms (e.g., modularity-based methods [1], [14] and density-
based methods [16], [17]), community search algorithms can re-
turn a search result within a short computation time since they do
not need to compute the entire graph. Due to their efficiency, such
algorithms have been applied to various applications, including
social analysis and protein analysis.

Although community search algorithms are useful in vari-
ous applications, they have a serious weakness when handling
real-world attributed graphs. Traditional community search al-
gorithms [2], [4], [18] cannot find accurate communities on at-
tributed graphs. Many real-world graphs consist of relationships

1 University of Tsukuba, Tsukuba, Ibaraki, 305–8577, Japan
a) matsugu@kde.cs.tsukuba.ac.jp
b) shiokawa@cs.tsukuba.ac.jp
c) kitagawa@cs.tsukuba.ac.jp

among various attributes [13], [22]. However, traditional algo-
rithms attempt to detect a dense subgraph such as k-core [18]
or k-truss [2], [4], which is the most relevant to the query node
without measuring attribute similarities between the query and
the community. That is why traditional algorithms fail to capture
attributed-driven communities [3].

1.1 Existing Approaches and Challenges
To address the above issue, Huang et al. recently proposed

LocATC [3], which is a novel community search algorithm for
attributed graphs. Once parameters k and d are specified, Lo-
cATC searches a (k, d)-truss [3] that yields the largest attribute
similarity for the query node. In this study, (k, d)-truss is a sub-
graph (1) whose nodes are at least d-hop reachable from the
query node and (2) whose edges have at least (k − 2) triangles
(a.k.a., 3-cliques). Although LocATC successfully handles at-
tributed graphs, its community search accuracy is limited for real-
world graphs because LocATC searches (k, d)-trusses under the
assumption that each community contains a sufficient number of
triangles. However, this assumption is not suitable for real-world
graphs since they have very diverse topological structures. For
example, as Leskovec and Krevl reported in Ref. [6], the average
fraction of triangles is only 5.68% in various real-world graphs.
In addition, Shiokawa et al. reported that real-world graphs show
a wide range of clustering coefficient values [16]; that is, real-
world graphs may not contain many triangles. Consequently, Lo-
cATC fails to detect precise communities in various real-world
graphs, which makes it difficult to efficiently find accurate com-
munities in attributed graphs.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

1.2 Our Approaches and Contributions
Our goal is to achieve fast and accurate community searches

on large-scale attributed graphs. In this paper, we define a novel
community search problem called the flexible attributed truss

community (F-ATC) problem and present novel heuristic com-
munity search algorithms to efficiently solve it. To overcome
the aforementioned limitations, the F-ATC problem finds a (k, d)-
truss that maximizes the attribute similarity under all possible k

settings, whereas LocATC explores communities only for a spe-
cific k value. Although such a relaxation increases the com-
putational cost compared to LocATC, the F-ATC problem al-
lows community search algorithms to explore diverse subgraphs
regardless of the actual topological structures included in real-
world graphs. To moderate the computational costs incurred by
the F-ATC problem, herein we propose two heuristic community
search algorithms based on the well-known beam-search algo-
rithm [12].

In our previous method [9], [10], we presented an accurate al-
gorithm design compared to LocATC, however it consumes large
computation time. In this paper, we extend [9], [10] to propose
more efficient search methods based on [9], [10]. We also pro-
pose a preprocessing method for faster query response. In ad-
dition, we conducted further extensive experiments to assess the
effectiveness of the proposed approaches.

Consequently, our proposed methods achieves the following
attractive characteristics:
• Accurate: Our proposed method can identify more accu-

rate communities than those obtained by the state-of-the-art
method LocATC because parameter k of (k, d)-truss is re-
laxed (Section 4.2).

• Fast: Compared with the state-of-the-art method LocATC,
our proposal achieves high-speed community searches on at-
tributed graphs (Section 4.3). That is, our proposed method
can find accurate communities without sacrificing the com-
munity search efficiency (Section 4.5).

• Easy to deploy: Our proposed method does not require
parameter k, which determines the number of triangles in-
cluded in each community (Algorithm 1). Therefore, our
proposal provides a simple solution for diverse applications.

Our extensive experiments showed that our proposed algo-
rithms run up to 50 times faster than LocATC without sacrificing
the community search accuracy. For example, our algorithm can
compute an attributed graph with 1.1 million nodes and 3 million
edges in 0.1 seconds. Although previous community search al-
gorithms have effectively enhanced application quality, they are
difficult to apply to large-scale attributed graphs due to their ac-
curacy and efficiency limitations. On the other hand, our propose
method should improve the effectiveness of a wide range of ap-
plications and realize a fast and accurate approach appropriate to
real-world graphs.
Organization: This paper is organized as follows. Section 2 in-
troduces basic notations and definitions of this work. Section 3
defines the F-ATC problem, and presents two greedy algorithms;
baseline algorithm and fast enumeration algorithm. Section 4
describes the experiments to verify the effectiveness of our ap-
proaches. Related works are briefly reviewed in Section 5. Fi-

nally, Section 6 concludes this paper.

2. Basic Notations and Definitions

Here, we formally define basic notations and definitions used
in this paper. Let G = (V, E, A) be a connected attributed graph,
where V , E, and A are sets of nodes, undirected edges, and at-
tributes, respectively. Each node u ∈ V has a set of attributes de-
noted by attr(u) ⊆ A. To simplify the representaions, each node
is assumed to have one or two attributes (i.e., 1 ≤ |attr(u)| ≤ 2).
Without loss of generality, other types of attributed graphs can be
handled even if each node has more than two attributes. For con-
venience, V(H) and E(H) are denoted as sets of nodes and edges
included in subgraph H, respectively. Furthermore, given a set of
nodes S ⊆ V , G[S] = (V ′, E′, A) is an induced subgraph by S .
Here, V ′ = S and E′ is all the edges in E that have both nodes
are in S . In addition, a ∈ A, Va(H) is a set of nodes with attribute
a in subgraph H. Similarly, we define a user-specified query as
q = (vq, Aq), where vq is a query node included in V(G), and Aq

is a set of query attributes such that Aq ⊆ A. Table 1 summarizes
symbols and their corresponding definitions used in this paper.
The following basic definitions are necessary to discuss the new
community search algorithms in the next section:
Definition 1 (Query distance) Let dist(u, v) be the shortest
path distance between nodes u and v on graph G. Given subgraph
H ⊆ G and query node vq, the query distance between query node
vq and subgraph H is defined as dist(vq,H) = maxv∈V(H) dist(vq, v).
Definition 2 ((k, d)-truss) Let sup(e) be the number of trian-
gles containing the edge e ∈ E. Given query node vq and param-
eters k and d, a set of (k, d)-trusses is defined as

Δk,d = {H ⊆ G|∀e ∈ E(H),min{sup(e)} = k−2, dist(vq,H) ≤ d}.

Definition 2 indicates that a (k, d)-truss is a subgraph such that
(1) the nodes are d-hop reachable from the query node vq and (2)
each edge has more than k − 2 triangles, (i.e., sup(e) ≥ k − 2
for each e ∈ E(V)). By controlling the values of k and d, we
can determine the density and the size of (k, d)-trusses. Figure 1
shows examples of (k, 1)-trusses for various k settings. For in-
stance, as shown in Fig. 1, all (k, 1)-trusses are 1-hop reachable

Table 1 Definition of main symbols.

Symbol Definition
G Connected attributed graph
V Set of nodes in G
E Set of edges in G
A Set of attributes in G

attr(u) Set of attributes attached on node u ∈ V
V(H) Set of nodes in a subgraph H
Va(H) Set of nodes having an attribute a ∈ A in a subgraph H
E(H) Set of edges in a subgraph H
G[S] An induced subgraph by a set of nodes S

q User-specified query
vq User-specified query node such that vq ∈ V
Aq User-specified query attributes such that Aq ⊆ A

dist(vq,H) Query distance between a query node vq and a subgraph H
(Definition 1)

sup(e) Number of triangles (3-cliques) with an edge e ∈ E in G
Δk,d Set of (k, d)-trusses in G (Definition 2)

f (H, Aq) Attribute score function (Definition 3)
N(H) Set of 1-hop neighbor nodes of a subgraph H (Definition 5)
C(H) Set of candidate communities obtained from a subgraph H

(Definition 6)

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 Examples of (k, 1)-truss.

from the query node vq. If k = 2, each edge in (2, 1)-truss does
not need to have any triangles. By contrast, in the case of k = 5,
(5, 1)-truss should contain at least three triangles for each edge.
Finally, we introduce an attribute score function [3] that evaluates
the attribute similarity between the query and a community.
Definition 3 (Attribute score function [3]) Given subgraph H

and set of query attributes Aq, attribute score function f (H, Aq) is
defined as

f (H, Aq) =
∑
a∈Aq

|Va(H)|2
|V(H)| .

Definition 3 implies that attribute score function f (H, Aq) in-
creases as the subgraph contains more attributes in query at-
tributes Aq.

3. Proposed Method

Our goal is to efficiently find an accurate community in G that
corresponds to the user-specified query. To achieve a highly ac-
curate community search, we first present a novel class of the
community search problem, called the F-ATC problem, in Sec-
tion 3.1. In Sections 3.2 and 3.3, we propose two heuristic search
algorithms to efficiently solve the F-ATC problem.

3.1 The F-ATC Problem
LocATC imposes strict topological constraints such that each

community should contain a sufficient number of triangles based
on user-specified parameter k. However, this assumption is not
suitable for real-world graphs, which generally have diverse topo-
logical structures and may not contain triangles [6]. Thus, we in-
troduce a new class of the community search problem that relaxes
the strict k setting in LocATC.
Definition 4 (the F-ATC problem) Given graph G = (V, E, A),
query q = (vq, Aq), and parameter d, the F-ATC problem finds
subgraph H ∈ ⋃k≥2 Δk,d that yields the largest value of f (H, Aq).

Unlike LocATC [3], the F-ATC problem does not require pa-
rameter k. It attempts to find (k, d)-truss maximizing the attribute
score function under all possible k settings. For example, if d = 1,
the F-ATC problem explores all (k, 1)-trusses shown in Fig. 1 and
returns a single (k, 1)-truss that yields the largest score of the at-
tribute score function.

By relaxing user-specified parameter k, the F-ATC problem can
handle diverse typologies of real-world graphs. However, the F-
ATC problem requires exhaustive subgraph searches to obtain a
subgraph that maximizes the attribute score function. Let k be
the maximum k setting for a given graph. We can reduce the F-
ATC problem to the (k, d)-truss search problem in the polynomial
time by performing LocATC [3] for k = 2 to k = k. As discussed
in Ref. [3], the (k, d)-truss search problem is NP-hard. There-
fore, the F-ATC problem is also NP-hard. Below, we present two

heuristic search algorithms to efficiently solve the F-ATC prob-
lem.

3.2 Baseline Algorithm
We refine [9] as our baseline algorithm, which is an algorithm

to improve the accuracy of LocATC [3]. The baseline algorithm
is based on the well-known beam search technique [12]. By let-
ting β represent the beam width that controls a number of search
results, a beam search explores graphs maintaining top-β search
results under an objective function. Based on this search strat-
egy, the baseline algorithm greedily explores top-β (k, d)-trusses
by the attribute score function.

Before providing detailed descriptions of the baseline algo-
rithm, we introduce the following definitions:
Definition 5 (1-hop neighbor nodes) Given subgraph H ⊆ G,
N(H) is 1-hop neighbor nodes of H defined as

N(H) = {v ∈ V(G)|(u, v) ∈ E(G) for u ∈ V(H) and v � V(H)}.

Definition 6 (Candidate communities) Given subgraph H ⊆
G and beam width β, we denote a set of candidate communities
as C(H), which is defined as

C(H) = {C1(H),C2(H), . . . ,Cβ(H)} ⊆ 2|V(H)∪N(H)|,

where Ci(H) is a (k, d)-truss composed of nodes in V(H) ∪ N(H)
such that f (C1(H), Aq) ≥ f (C2(H), Aq) ≥ · · · ≥ f (Cβ(H), Aq) ≥
f (Cβ+ j(H), Aq) for all j ∈ N.
Definition 6 indicates that (1) C(H) expands subgraph H as
V(H) ∪ N(H) and (2) C(H) lists the top-β (k, d)-trusses from
V(H) ∪ N(H) so that C(H) maximizes the attribute score func-
tion among all possible (k, d)-trusses.
3.2.1 Algorithm

Based on the above definitions, we present the baseline algo-
rithm to solve the F-ATC problem. Given graph G = (V, E, A),
query q = (vq, Aq), parameter d, and beam width β, we initially
set a subgraph as H = {vq}. Afterwards, the baseline algorithm
performs the following three steps:

(Step 1) Obtain N(H) from subgraph H by Definition 5.
(Step 2) Construct C(H) from V(H) ∪ N(H) by Definition 6.
(Step 3) Select a (k, d)-truss Ci(H) from C(H), and set H =

Ci(H).
The baseline algorithm iterates the above steps until all the d-
hop reachable nodes of vq are computed. After the terminating,
it returns a (k, d)-truss that yields the largest score of the attribute
score function in C(H).

By iteratively enumerating C(H) in (Step 2), the baseline al-
gorithm explores (k, d)-trusses for various k settings so that the
trusses increase the attribute score function. However, (Step 2)
requires Ω(2|V(H)∪N(H)| |E(G[N(H)])|1.5) time to find top-β candi-
date communities from Definition 6. This is because (1) (k, d)-
trusses need to be explored from all possible subgraph in |V(H)∪
N(H)| and (2) (k, d)-truss detection requires Ω(|E(G[N(H)])|1.5)
time [7]. If a given graph is large, the size of V(H)∪N(H) clearly
increases. To improve the efficiency, it is important to reduce the
computational cost of (Step 2).

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

3.3 Fast Enumeration Algorithm
To solve the F-ATC problem on large attributed graphs, we

present a fast enumeration algorithm to search the candidate com-
munities in the baseline algorithm. Instead of enumerating all
possible candidates, the fast enumeration algorithm directly lists
the top-β candidates using attribute-aware candidate selection
techniques.

For simplicity, we denote the query attributes as Aq = {a1, a2}
without loss of generality. To achieve fast top-β candidate enu-
meration, we have the following properties from Definition 3.
Lemma 1 Given subgraph H and node v ∈ N(H), f (H ∪
{v}, Aq) > f (H, Aq) holds, if a1, a2 ∈ attr(v) holds.
Proof Since a1, a2 ∈ attr(v), the following equation is derived
from Definition 3,

f (H ∪ {v}, Aq) − f (H, Aq) =
∑
a∈Aq

{
(|Va(H)| + 1)2

|V(H)| + 1
− |Va(H)|2
|V(H)|

}

=

∑
a∈Aq

{
|V(H)|(|Va(H)| + 1)2 − (|V(H)| + 1)|Va(H)|2

}
|V(H)|(|V(H)| + 1)

.

Clearly, |V(H)| ≥ |Va(H)| for all attribute a ∈ Aq. Hence,

|V(H)|(|Va(H)| + 1)2 − (|V(H)| + 1)|Va(H)|2 > 0.

Therefore, we have f (H ∪ {v}, Aq) − f (H, Aq) > 0, which com-
pletes the proof. �
Lemma 2 Given subgraph H and node v ∈ N(H), f (H ∪
{v}, Aq) < f (H, Aq) holds, if a1, a2 � attr(v) holds.
Proof Due to a1, a2 � attr(v), |Va(H ∪ {v})| = |Va(H)| clearly
holds for all attribute a ∈ Aq. That is, from Definition 3,

f (H ∪ {v}, Aq) − f (H, Aq) =
∑
a∈Aq

{ |Va(H ∪ {v})|2
|V(H)| + 1

− |Va(H)|2
|V(H)|

}

=
∑
a∈Aq

{ |Va(H)|2
|V(H)| + 1

− |Va(H)|2
|V(H)|

}
< 0,

which completes the proof of Lemma 2. �
For a given subgraph H and its 1-hop neighbor node v, Lemma 1
and Lemma 2 imply that (1) if node v has all query attributes in
Aq, (k, d)-trusses composed of H∪{v} always increase the attribute
score function, and (2) if node v has no query attributes in Aq, the
(k, d)-trusses decreases the function. We also identify the follow-
ing properties, which play essential roles in our fast enumeration
algorithm.
Lemma 3 Given subgraph H and node v ∈ N(H) such that
a1 ∈ attr(v) and a2 � attr(v), f (H ∪ {v}, Aq) > f (H, Aq) if and
only if |V(H)|(2|Va1 (H)| + 1) > |Va1 (H)|2 + |Va2 (H)|2 holds.
Proof We first prove the sufficient condition. From Definition 3,

f (H ∪ {v}, Aq) − f (H, Aq) =
2|Va1 (H)| + 1

|Va1 (H)|2 + |Va2 (H)|2 −
1

|V(H)| .

Since we clearly have f (H ∪ {v}, Aq) − f (H, Aq) > 0, we can de-
rive |V(H)|(2|Va1 (H)| + 1) > |Va1 (H)|2 + |Va2 (H)|2 from the above
equation, which completes the proof.

Next, we prove the necessary condition. From
|V(H)|(2|Va1 (H)| + 1) > |Va1 (H)|2 + |Va2 (H)|2, the following
condition is derived;

Algorithm 1 Fast enumeration
Require: A subgraph H, a parameter β, and a parameter d

Ensure: A set of candidate communities C(H)

1: Obtain a subgraph H′ from V(H) ∪ N(H) by Theorem 1;

2: while |C(H)| < β do

3: k ← maxe∈E(H′) sup(e);

4: for k = k to 2 do

5: Add all (k, d)-trusses in H′ into C(H);

6: if |C(H)| ≥ β then

7: break;

8: end if

9: end for

10: Obtain a node v ∈ V(H′)∩N(H) decreasing f (H′, Aq) by Corollary 1;

11: H′ ← H′\{v};
12: end while

0<
2|Va1 (H)| + 1

|Va1 (H)|2 + |Va2 (H)|2 −
1

|V(H)| = f (H ∪ {v}, Aq) − f (H, Aq).

Thus, f (H ∪ {v}, Aq) > f (H, Aq) holds. �
Lemma 3 leads the following corollary for given subgraph H

and node v ∈ N(H) such that a1 ∈ attr(v) and a2 � attr(v).
Corollary 1. f (H ∪ {v}, Aq) ≤ f (H, Aq) holds if and only if

|V(H)|(2|Va1 (H)| + 1) ≤ |Va1 (H)|2 + |Va2 (H)|2 holds.
Proof We can clearly prove Corollary 1 from Lemma 3, �
From Lemma 3 and Corollary 1, several nodes in N(H) can in-
crease the attribute score function, even if the nodes have only a
subset of Aq. Consequently, from Lemmas 1, 2, and 3, Theorem 1
can be theoretically derived.
Theorem 1 Given subgraph H and its 1-hop neighbor node set
N(H), f (H, Aq) shows the largest score among all possible com-
munities in H ∪ N(H) if the subgraph H is marged with all nodes
satisfying Lemmas 1 and 3 in N(H).
Proof We can clearly prove Theorem 1 from Lemmas 1, 2, and
3 and Corollary 1. �
Theorem 1 implies that a set of nodes that maximizes the attribute
score function can be directly found from a given H ∪ N(H).
3.3.1 Algorithm

Based on the above properties, we design a fast enumeration
algorithm for (Step 2) in Section 3.2. Algorithm 1 shows details
of our algorithm. First, the fast enumeration algorithm obtains
subgraph H′ from V(H) ∪ N(H) so that f (H′, Aq) is maximized
(line 1). As we proved in Theorem 1, such subgraph H′ can be
obtained by adding nodes in N(H) into H if the nodes satisfy
Lemma 1 or Lemma 3. Then the algorithm adds all (k, d)-trusses
composed of H′ into C(H) (lines 4–9). Afterwards that the algo-
rithm removes node v ∈ V(H′) ∩ N(H) from H′ so that remov-
ing node v decreases f (H′, Aq) based on Corollary 1 (lines 10–
11). Finally, the algorithm terminates if |C(H)| reaches β (lines 2
and 6–8).
3.3.2 Theoretical analysis

Finally, we theoretically assess the time complexity of the fast
enumeration algorithm.
Theorem 2 Given H and β, the enumeration algorithm requires
Ω(|N(H)| + β|E(G[N(H)])|1.5) time to find the top-β candidates
from V(H) ∪ N(H).
Proof As shown in Algorithm 1 (line 1), the algorithm obtains
subgraph H′ by Theorem 1 before starting the while loop. This

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 2 Statistics of real-world datasets.

Name |V | |E| |A| Number of triangles Fraction of triangles |attr(V)|
Cornell 195 304 1,588 59 0.04 18,496
Texas 187 328 1,501 67 0.03 15,437

Amazon 335 K 926 K 157 667 K 0.08 1,804,419
YouTube 1.10 M 3.00 M 5,327 3.0 K 0.002 2,163,290

procedure requires Ω(|N(H)|) time since all nodes in V(H) must
be checked using Theorem 1. Afterwards, that our algorithm ex-
plores (k, d)-trusses that yield large scores of the attribute score
function. In the worst case, the algorithm adds only a single
(k, d)-truss to C(H) in each while loop. That is, the while loop
(lines 2–12) must be iterated Ω(β) time. In each while loop,
the algorithm can find a (k, d)-truss, which incurs Ω(|N(H)|1.5)
time [7], and it removes node v from H′ in O(1) time. Hence,
the algorithm requires Ω(β|N(H)|) time. Therefore, Algorithm 1
incurs Ω(|N(H)| + β|E(G[N(H)])|1.5) time. �
Recall that the baseline algorithm requires
Ω(2|V(H)∪N(H)| |E(G[N(H)])|1.5) time for each (Step 2). By
contrast, our enumeration algorithm consumes Ω(|N(H)| +
β|E(G[N(H)])|1.5) time which is clearly a smaller cost than
the baseline. Thus, our enumeration algorithm can reduce the
computational cost for the F-ATC problem.

3.4 Optimization by Preprocessing Phase
Here, we discuss a preprocessing optimization for further

speeding up the query time of the proposed method. As shown in
Algorithm 1, our fast enumeration method dynamically explores
all (∗, d)-trusses in the subgraph. Specifically, the (k, d)-truss
search requires finding all the k-trusses in a subgraph and check-
ing whether they are (k, d)-trusses or not. However, this is not
efficient to enumerate the k-trusses located around the query node
for each query. To avoid this expensive costs, we employ a simple
preprocessing phase that enumerates all of the k-trusses included
in the graph. By using state-of-the-art methods [20], we can per-
form all k-trusses enumeration in O(|V |1.5) on a graph G(V, E)
even in k ≥ 3. Once we perform this preprocessing phase, we can
check whether a subgraph H is k-truss in O(1) for any queries.

4. Experimental Analysis

In this section, we experimentally discuss the effectiveness
of our proposed algorithms. We designed our experiments to
demonstrate that:
• High accuracy: Our proposed algorithms achieve higher

community search accuracy than those of the state-of-the-art
algorithm (LocATC) on real-world graphs.

• High efficiency: Although our fast enumeration algorithm
outputs more accurate communities than LocATC, it outper-
forms LocATC and the baseline algorithm in terms of com-
munity search time on real-world graphs.

4.1 Experimental Setup
4.1.1 Methods:

We compared our proposed algorithms (the baseline algorithm,
the fast enumeration algorithm, and the fast enumeration algo-
rithm with preprocessing) with the state-of-the-art algorithm Lo-
cATC [3]. As we described in Section 1, LocATC is the state-of-

the-art community search method for attributed graphs. Given a
user-specified query and parameters k and d, LocATC finds a sin-
gle (k, d)-truss that maximizes the attribute score function shown
in Definition 3. In our experimental analysis, we used the k = 4,
which is the default parameter in the original paper [3].

All algorithms were implemented in C++ and compiled with
gcc-8.2.0 using the -O3 option. All experiments were conducted
on a server with an Intel Xeon CPU (3.50 GHz) and 128 GiB
RAM. Here we report the average results of 100 queries.
4.1.2 Datasets:

We used four real-world graphs, which were published in a
previous study [3] and the SNAP repository [6]. Table 2 shows
their statistics. Since all datasets have ground-truth communi-
ties, they were used to evaluate the community search accuracy.
Each node in Cornell and Texas has at least two node attributes.
Because Amazon and YouTube do not provide node attributes to
their nodes, we assigned synthetic attributes for each node by fol-
lowing the same method as the previous study [3]. Specifically,
we assigned the synthetic attributes as follows:
• For each graph, we generated |A| = 0.005|V | synthetic at-

tributes.
• For each ground-truth community, we randomly selected

three attributes in A, and assigned each one to 80% nodes
in the community.

• To model noise attributes, we assigned randomly selected at-
tributes to each node.

4.1.3 Queries:
We generated 100 queries for each dataset by following the set-

tings in the previous work [3]. Specifically, we randomly selected
100 query nodes from each graph. For each query node vq, we set
two attributes as query attributes Aq using the most frequent at-
tributes in the ground-truth community, including node vq.

4.2 Accuracy
To assess whether the F-ATC problem achieves higher accu-

racy than LocATC, we evaluated the community search accuracy
on real-world graphs. We compared the community search results
with the ground-truth through F1-measure [8]. Figure 2 shows
the community search accuracy of each algorithm by varying the
size of d from 2 to 5. We also varied β for our proposed al-
gorithms since they require the beam width size β for the beam
searches. Note that the results of our baseline algorithm are omit-
ted from Fig. 2 because it did not return any results within one
hour on Amazon or YouTube.

Figure 2 shows that our proposed algorithms outperform Lo-
cATC in terms of the F1-score if the beam width sizes are large.
Moreover, our proposed algorithms show higher accuracies than
LocATC, except for Texas, even if the β values are small. As we
described in Section 1, LocATC assumes that real-world graphs
contain a sufficient number of triangles although they can con-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 2 F1-scores by varying β.

tain very diverse topological structures. Hence, LocATC fails to
capture the ground-truth communities if those communities have
a small number of triangles. By contrast, the F-ATC problem
allows more diverse typologies along with the maximization of
the attribute score function to be explored. Hence, our proposed
method can achieve higher accuracy on a wider range of real-
world graphs than LocATC. Specifically, our proposed method
maintains higher accuracy than that of LocATC on YouTube even
though the datasets have relatively smaller fractions of triangles
than the others. These results imply that the F-ATC problem suc-
cessfully captures diverse typologies in real-world graphs.

Figure 2 also indicates that the fast enumeration algorithm does
not sacrifice the community search accuracy compared with the
baseline algorithm. As theoretically discussed in Section 3.3,
the fast enumeration algorithm can directly find a subgraph that
maximizes the attribute score function (Theorem 1). Therefore,
the fast enumeration algorithm does not degrade the community
search accuracy compared with the baseline algorithm, which
performs exhaustive searches.

4.3 Efficiency
We evaluated the community search time of each algorithm on

four real-world datasets. Similar to the previous section, we var-
ied beam width β of our proposed methods for each d setting.
In this experiment, we also evaluated the effect of preprocessing
(Section 3.4). Figure 3 shows the community search time on the

real-world datasets. The results for the baseline algorithm are
omitted since it did not finish the community search on Amazon
or YouTube within one hour.

The fast enumeration algorithm outperforms LocATC and the
baseline algorithm under all examined conditions (Fig. 3). Al-
though the baseline algorithm is 10 times slower than the query
processing time of LocATC, the fast enumeration algorithm suc-
cessfully mitigates the expensive enumeration cost in the base-
line algorithm. In our experimental results, the fast enumeration
algorithm has an improved speed up to three orders of magni-
tude higher than the baseline algorithm. Furthermore, the fast
enumeration algorithm has up to 50 times faster query process-
ing time than the state-of-the-art method LocATC. By comparing
the running time among different parameter settings, the fast enu-
meration algorithm gradually increases the running time as the
sizes of β and d increase. This is because the F-ATC problem re-
quires a large number of community candidates to be searched if
those parameters are large. However, the community search ac-
curacy reaches a plateau on the real-world graphs, even if β and
d are small (Fig. 2). For instance, our proposed method shows
an almost constant accuracy on Amazon and YouTube at β = 50
and d = 3. Hence, the fast enumeration algorithm can reduce the
running time while keeping its highly accurate community search
results. In addition, the proposed method using preprocessing is
up to 14 times faster than the original method. This is because
fast enumeration with preprocessing does not need to compute

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 3 Query processing time by varying β.

Table 3 Performance of preprocessing.

Name Preprocessing time [s] Query time ratio
Cornell 0.1 x4.3
Texas 0.1 x5.6

Amazon 28 x9.2
YouTube 101 x14.3

each subgraph dynamically is (k, d)-truss.

4.4 Performance of preprocessing
As discussed in Section 3.4, we focused on speeding up the

query response and extended the proposed method by preprocess-
ing. Table 3 shows preprocessing time for enumerating k-truss.
Query time ratio in Table 3 shows how many times faster the
speed is compared to the fast enumeration algorithm without pre-
processing. As we can see from the Table 3, the computation
time required for preprocessing increases with graph size, but the
benefit to query time also increases.

4.5 Peak Performance Analysis
The fast enumeration algorithm shows a trade-off between the

community search accuracy and processing time. Thus, we dis-
cuss the peak query processing performance. In this evaluation,
we compared the running time of our proposed algorithms with
the best β value, which returns the highest F1-score among all
possible β settings. Figure 4 shows that our fast enumeration al-
gorithm outperforms the community search time of LocATC for

all settings. Specifically, our proposed method provides a com-
munity search that is up to 50 times faster than LocATC. Further-
more, by using preprocessing, our proposed method is up to 270
times faster than LocATC. Additionally, the fast enumeration al-
gorithm outputs more accurate communities than LocATC in the
case of the best β settings. That is, these results imply that our
proposed method achieves higher peak performances than Lo-
cATC on real-world graphs.

4.6 Comparison with the best k in LocATC
In this evaluation, we discuss accuracy and efficiency by vary-

ing k in LocATC. We compared the performance of proposed
method with LocATC (k = 2, 3, 4, and 5). Because the number
of (k, d)-trusses in the dataset is significantlly small, we omitted
the results of k > 5 from Fig. 5. We set d = 3, and β is equal
to the value at the peak size shown in Section 4.5. Figure 5 (a)
demonstrates that our fast enumeration algorithm outperforms the
LocATC in all k settings. LocATC reaches the best accuracy if
k = 3 or 4. However, as shown in Fig. 5 (b), it requires the largest
running time. By contrast, our algorithm achieves faster search
while keeping higher accuracy than LocATC (k = 3, 4). Specif-
ically, our fast enumeration algorithm results at most 100 times
faster than the most accurate setting of LocATC, which is about
10 points higher than the most accurate setting of LocATC.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 4 Query processing time at best beam width size β.

Fig. 5 Comparison of the performance of LocATC for all k and the proposed method.

5. Related Work

Community search algorithms are fundamental tools to an-
alyze complex data structures obtained from various applica-
tions [5], [18], [19]. Unlike traditional community detection al-
gorithms [11], [15], [21], community search algorithms do not
compute the entire given graph. Consequently, they efficiently
find a community for the user-specified query. Here, we briefly
review some of the more successful community algorithms.

Traditionally, community search algorithms are considered as
a problem to detect cohesive communities that contain user-
specified query nodes on non-attributed graphs. For example,
Sozio and Gionis [18] designed a community search problem to
find k-core that includes query nodes. Similarly, Huang et al.
proposed the k-truss search algorithm to reveal the most relevant
communities against a given query. Because these algorithms as-
sume that the community has dense and robust inner-community
connections, they perform local search methods to retrieve dense
subgraphs (i.e., k-core and k-truss). However, these methods are
designed for non-attributed graphs. Hence, they are unsuited to
extract attribute-driven communities.

To overcome the above issue, Huang et al. recently proposed
another class of the community search problem, namely the ATC
problem [3]. The ATC problem is designed to find the (k, d)-truss,
which is shown in Definition 2 that yields the largest attribute
similarity with the query. Since the ATC problem is NP-hard,
Huang et al. proposed the LocATC algorithm. This is the state-
of-the-art algorithm to solve such a problem within a short run-
ning time. By introducing the ATC problem, LocATC can effi-
ciently extract communities while ensuring a high cohesiveness
and a high attribute similarity. However, LocATC assumes that
each community has a sufficient number of triangles. This is un-
realistic because real-world graphs have very diverse topological
structures [6]. In this paper, we experimentally confirm that the
accuracy of LocATC reaches a plateau if a given graph is sparse
and has a small fraction of triangles. By contrast, our proposed
algorithms overcome these performance limitations by relaxing
the topological constraints. Consequently, our proposed method
achieves faster community searches and higher accuracies than
LocATC.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

6. Conclusion

Herein we propose a novel community search problem called
the F-ATC problem for attributed graphs. By relaxing the topo-
logical constraints of the community search, the F-ATC prob-
lem can explore divergent community structures included in real-
world graphs. Because the F-ATC problem is NP-hard, we also
present two heuristic algorithms based on the beam search to
solve the F-ATC problem efficiently. Our experiments on real-
world graphs demonstrate the advantages of our proposed algo-
rithms compared to the state-of-the-art method.

Acknowledgments This work was supported by JSPS
KAKENHI Early-Carrer Scientists Grant Number JP18K18057,
and JST ACT-I.

References

[1] Blondel, V., Guillaume, J., Lambiotte, R. and Mech, E.: Fast Unfold-
ing of Communities in Large Networks, Journal of Statistical Mechan-
ics: Theory and Experiment, Vol.2008, No.10, p.P10008 (2008).

[2] Huang, X., Cheng, H., Qin, L., Tian, W. and Yu, J.X.: Querying
K-truss Community in Large and Dynamic Graphs, Proc. SIGMOD
2014, pp.1311–1322 (2014).

[3] Huang, X. and Lakshmanan, L.: Attribute-Driven Community Search,
PVLDB, Vol.10, No.9, pp.949–960 (2017).

[4] Huang, X., Lakshmanan, L., Yu, J.X. and Cheng, H.: Approxi-
mate Closest Community Search in Networks, PVLDB, Vol.9, No.4,
pp.276–287 (2015).

[5] King, A.D., Pržulj, N. and Jurisica, I.: Protein complex prediction via
cost-based clustering, Bioinformatics, Vol.20, No.17, pp.3013–3020
(2004).

[6] Leskovec, J. and Krevl, A.: SNAP Datasets: Stanford Large Network
Dataset Collection (2014), available from 〈http://snap.stanford.edu/
data〉.

[7] Li, Z., Lu, Y., Zhang, W., Li, R., Guo, J., Huang, X. and Mao, R.: Dis-
covering Hierarchical Subgraphs of K-Core-Truss, Data Science and
Engineering, Vol.3, No.2, pp.136–149 (2018).

[8] Manning, C.D., Raghavan, P. and Schütze, H.: Introduction to Infor-
mation Retrieval, Cambridge University Press (2008).

[9] Matsugu, S., Shiokawa, H. and Kitagawa, H.: Flexible Community
Search Algorithm on Attributed Graphs, Proc. 21st International Con-
ference on Information Integration and Web-based Applications &
Services, iiWAS 2019, pp.103–109, ACM (2019).

[10] Matsugu, S., Shiokawa, H. and Kitagawa, H.: Fast and Accurate Com-
munity Search Algorithm for Attributed Graphs, International Con-
ference on Database and Expert Systems Applications, DEXA 2020,
pp.233–249, Springer (2020).

[11] Onizuka, M., Fujimori, T. and Shiokawa, H.: Graph Partitioning for
Distributed Graph Processing, Data Science and Engineering, Vol.2,
No.1, pp.94–105 (2017).

[12] Reddy, D.R.: Speech Understanding Systems: A Summary of Results
of the Five-Year Research Effort, Department of Computer Science,
Technical Report, Carnegie-Mellon University (1977).

[13] Sato, T., Shiokawa, H., Yamaguchi, Y. and Kitagawa, H.: FORank:
Fast ObjectRank for Large Heterogeneous Graphs, Companion Proc.
Web Conference 2018, WWW ’18, Republic and Canton of Geneva,
CHE, International World Wide Web Conferences Steering Commit-
tee, pp.103–104 (2018).

[14] Shiokawa, H., Amagasa, T. and Kitagawa, H.: Scaling Fine-grained
Modularity Clustering for Massive Graphs, Proc. 28th International
Joint Conference on Artificial Intelligence, IJCAI-19, pp.4597–4604
(2019).

[15] Shiokawa, H., Fujiwara, Y. and Onizuka, M.: Fast Algorithm for
Modularity-Based Graph Clustering, Proc. 27th AAAI Conference on
Artificial Intelligence (AAAI 2013), pp.1170–1176 (2013).

[16] Shiokawa, H., Fujiwara, Y. and Onizuka, M.: SCAN++: Efficient
Algorithm for Finding Clusters, Hubs and Outliers on Large-scale
Graphs, PVLDB, Vol.8, No.11, pp.1178–1189 (2015).

[17] Shiokawa, H., Takahashi, T. and Kitagawa, H.: ScaleSCAN: Scalable
Density-based Graph Clustering, Proc. 29th International Confer-
ence on Database and Expert Systems Applications, pp.18–34, DEXA
(2018).

[18] Sozio, M. and Gionis, A.: The Community-Search Problem and How
to Plan a Successful Cocktail Party, Proc. KDD 2010, pp.939–948

(2010).
[19] Takahashi, T., Shiokawa, H. and Kitagawa, H.: SCAN-XP: Parallel

Structural Graph Clustering Algorithm on Intel Xeon Phi Coproces-
sors, Proc. 2nd International Workshop on Network Data Analytics
(NDA), pp.6:1–6:7 (2017).

[20] Wang, J. and Cheng, J.: Truss Decomposition in Massive Networks,
Proc. VLDB Endowment, Vol.5 (2012).

[21] Zhang, X. and Newman, M.E.J.: Multiway Spectral Community De-
tection in Networks, Physical Review E, Vol.92, p.052808 (2015).

[22] Zhou, Y., Cheng, H. and Yu, J.X.: Graph Clustering Based on Struc-
tural/Attribute Similarities, PVLDB, Vol.2, No.1, pp.718–729 (2009).

Shohei Matsugu received B.S. in engi-
neering from University of Tsukuba in
2019. He is currently a Master student in
University of Tsukuba. His research inter-
ests include large-scale graph data analy-
sis.

Hiroaki Shiokawa is an Associate Pro-
fessor at University of Tsukuba. He re-
ceived B.S., M.E., and Ph.D. in engineer-
ing from University of Tsukuba in 2009,
2011 and 2015, respectively. From 2011
to 2015, he was a research scientist at
Nippon Telegraph and Telephone Corpo-
ration, and he joined Center for Computa-

tional Sciences at University of Tsukuba in Nov. 2015. His cur-
rent research interests include database systems, data engineer-
ing, data mining, and graph data management.

Hiroyuki Kitagawa received his B.Sc.
degree in physics and his M.Sc. and Dr.Sc.
degrees in computer science, all from the
University of Tokyo. He is currently a
full professor at Center for Computational
Sciences and Center for Artificial Intelli-
gence Research, University of Tsukuba.
His research interests include databases,

data integration, data mining, information retrieval, and data en-
gineering applications. He served as President of the Database
Society of Japan from 2014 to 2016. He is an IEICE Fellow,
an IPSJ Fellow, an Associate Member of the Science Council of
Japan, and a member of ACM, IEEE, JSST.

(Editor in Charge: Minoru Sasaki)

c© 2021 Information Processing Society of Japan

