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Abstract: In wheelchair basketball (WB), players are constantly trying to improve their wheelchair maneuvering tech-
niques since these are the most basic and important actions in all situations. However, assessing maneuvering quality
is difficult due to the lack of quantitative metrics. In this paper, we propose two classification methods for maneuvering
actions and turns by focusing on the specific wheelchair movement. For this purpose, inertial sensors are fixed to the
left and right wheels of the wheelchair. In maneuver classification, the occurrence of maneuvers is detected using the
angular velocity. Major maneuver activities in WB are classified into 2 types: PUSH and PULL. First, our method
segments candidates of maneuver periods by the local maximum/minimum of the angular velocity since the rotation of
the wheel generated by maneuvering that leads to sharp changes in the angular velocity. We then classify maneuvering
actions based on thresholds. As for the turn classification, we first detect turns by calculating the amount of wheelchair
rotation from the angular velocities of both wheels. We then classify the detected turns into PIVOT and TURN by
using thresholds based on the typical movement of both wheels during each turn. To evaluate the performance of the
proposed maneuver classification method, we collected real data from 6 players. From the result, we confirmed our
method achieves an average recall and precision of 91.9% and 84.6% for maneuver classification, respectively. The
results also show that our turn classification achieves an average recall and precision of 99.7% and 99.7%, respectively.
Furthermore, we confirmed the effectiveness of the classification results for the assessment of maneuver quality.
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1. Introduction

Emerging developments in sensing technology have focused
the attention of athletes, coaches and fans on applying it to data
analysis in sports training, strategies and entertainment [1]. One
of major challenges in sports data analysis is to design sophisti-
cated methods suitable for target sports for useful data collection.
In major sports such as football, basketball, and baseball, data
analysis is already essential since many engineers and researchers
have developed practical systems to apply it. However, data anal-
ysis in wheelchair basketball (WB) still requires further effort to
establish building blocks essential for data analysis.

Therefore, we have been working on the development of a sys-
tem to support WB data analysis in cooperation with athletes
and coaches. In WB, players constantly strive to improve their
wheelchair movement techniques since it is important to be able
to move the wheelchair quickly and efficiently depending on the
time and position. In particular, the wheelchair maneuvering,
which is movement of the wheel, is the most basic and important
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action in all situations. However, the assessment of maneuver-
ing quality is difficult due to the lack of quantitative metrics. To
support quantitative analysis of the maneuver quality in this pa-
per, we propose a method to detect and classify maneuver actions
using inertial sensors. We define the target maneuver actions as
PUSH and PULL through discussion with experts because statis-
tics such as strength and interval of these actions are closely re-
lated to the quality of the maneuver. PUSH is the maneuver of
grabbing the rim and pushing it forward to accelerate the wheel,
while PULL is the maneuver of grabbing the rim and stopping the
wheel or pulling it backwards to decelerate it. Although camera-
based approaches are widely used for sports data analysis, they
cannot measure such precise motions. To deal with this prob-
lem we first of all clamped two inertial sensors to the left and
right wheels of the wheelchair to measure the angular velocity of
each wheel. Even using inertial sensors, the classification of ma-
neuver actions is still challenging because of various movements
of wheels with different speeds and directions. To clarify the ma-
neuvering actions concealed within such complicated movements
we employ a segmentation algorithm followed by classification.
First, we segment candidates of maneuver periods by the local
maximum/minimum of the angular velocity since the rotation of
the wheel generated by maneuvering leads to sharp changes in
the angular velocity. Then, we classify maneuver actions in each
segment based on thresholds.

In addition to the maneuver, wheelchair behavior is also impor-
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tant. In this paper, we design a method to classify types of turns
into PIVOT and TURN. This is because the pivot turn is one of
the most important techniques in WB to push an opponent away
by applying power efficiently. For this purpose, similarly to the
maneuver classification, we detect any turns by calculating the
amount of wheelchair rotation from the angular velocities of the
both wheels. We then identify PIVOT turns based on thresholds
for each wheel based on the typical movement of the pivot turns.

In order to evaluate the performance of the proposed maneu-
ver classification method, we collected data from six players in
a WB practice game containing 1,005 PUSH and 152 PULL ac-
tions. From the results, we confirmed that the precision and recall
of both maneuver classifications are more than 84.6%. We also
collected data from 172 pivots and 192 turns to evaluate our turn
classification. The result shows our method successfully classi-
fies PIVOT and TURN with an F-measure of 99.7%. Furthermore,
we show the effectiveness of our classification results in assess-
ing maneuver quality through maneuver analysis combined with
other information such as player positions.

Our contributions are summarized as follows.
• We developed a system to support the data analysis in

wheelchair basketball by using inertial sensors and a cam-
era.

• We designed methods to classify maneuver actions and turns
in wheelchair basketball by focusing on specific movement
of wheels.

• We evaluated the performance of our methods by collecting
data from athletes.

• We showed the potential of the classification results through
the analysis of data collected in a practice game.

2. Related Work

There have been several studies on WB. For example,
Refs. [2], [3], [4] study the relationship between the level of dis-
abilities and the performance. This relationship must be deter-
mined in order to harmonize players with different level of dis-
abilities, so a classification system is used to evaluate the func-
tional abilities of players on a point scale of 1 to 4.5. Refer-
ence [2] reports the level of disability and the number of success-
ful shots and passes are correlated for professional female WB
players. These studies do not investigate the design of data anal-
ysis in WB because they focus on the medical aspect of WB rather
than sports. Also, other studies from a medical perspective inves-
tigate the risk of heatstroke [5] or injury [6] during training and
games.

Some research work on quantifying athletic performance is
carried out by investigating the relationship between moving
speeds and wheelchair configurations [7], [8], [9]. Such studies
reveal the effectiveness of data analysis in WB although they rely
on the measured raw data of acceleration and angular velocity
in controlled environment. However, it is important for players
and coaches to collect useful data related to performance in un-
controlled environment (i.e., games and training). Therefore, our
goal is to extract meaningful data from WB players in actual sit-
uations. Towards this goal, we focus on the detection and classi-
fication of maneuver actions and turns as the building blocks of

WB data analysis.

3. System Overview

Figure 1 illustrates an overview of our system. Instead of
manual video analysis currently used by many teams, we ex-
tract statistics from videos and inertial sensors. Figure 2 shows
a snapshot of our system developed for players and coaches. Our
system provides player tracking and visualization of statistics on
wheelchair movement. For player tracking, we have implemented
DeePSORT [10], [11] combined with YOLOv3 [12] for object
detection. Since YOLOv3 itself cannot detect wheelchairs, we
trained the model by using 602 images of wheelchairs cropped
from videos of WB.

On the other hand, precise motions such as maneuver of
wheelchairs are extracted from inertial sensors. In this paper, we
aim at designing a method to detect and classify PUSH and PULL

actions of wheelchair maneuvering. We also design a method to
detect and classify PIVOT and TURN. This leads to the quan-
tification of the maneuver quality by analyzing statistics related
to the detected actions. Furthermore, the detection results can be
used for the analysis of strategies and performance assessment in
combination with other information such as players positions. In
WB, the basic strategy is to screen and block the defending op-
ponent and help a team member with making shots. This is very
effective because a wheelchair needs a large area to turn. There-
fore, it is important to analyze how the wheelchair is manipulated
to move to the proper position to allow shooting and blocking.
Figure 3 illustrates an example situation in which a pivot turn
is more efficient than a spin turn. When the position in front of a
player is blocked by an opponent, a pivot turn is more efficient for

Fig. 1 System overview.

Fig. 2 Snapshot of support system.
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Fig. 3 Effectiveness of pivot turn.

Fig. 4 Sensor equipment.

Fig. 5 9-axis motion sensor.

Table 1 Sensor measurement range.

Sensor Unit Range
Acceleration G [−16, +16]

Angular Velocity dps [−1500, +1500]
Magnetic Field Gauss [−10, +10]

moving forward because the player can move along a straighter
path toward the target position by changing the direction of the
opponent. If the player changes direction without a pivot turn,
the opponent can easily screen that player by moving back and
forth.

As shown in Fig. 4, inertial sensors are fixed to the axles of the
left and right wheels. We use DSP wireless 9-axis motion sensors
manufactured by SPORTS SENSING Co., LTD *1 (Fig. 5). The
sensor is capable of measuring 3-axis acceleration, 3-axis angu-
lar velocity, and 3-axis geomagnetic data at a sampling rate of
200 Hz. The measurement ranges of the sensor are shown in Ta-
ble 1. Hereafter, we use [radians/second] as the unit of angular
velocity unless otherwise stated.

4. Maneuver Classification

4.1 Overview
The overview of the proposed method is illustrated in Fig. 6.

The maneuver actions in WB are instantaneous movements con-
sisting of independent movements of left and right wheels. This
means we need an approach different from activity recognition
for continuous motions such as walking. Therefore, our method
firstly segments the time series of the angular velocity to extract

*1 https://www.sports-sensing.com/products/sensor/dspmotion/dspms.html

Fig. 6 Method overview.

Fig. 7 Example of filtered angular velocity.

candidate periods of PUSH and PULL motions without any fixed
window size. We then classify the maneuver actions for each
segment. Our target actions are PUSH and PULL since they are
frequently observed in WB. PUSH is the motion to apply force
the wheel to the forward direction while the PULL is the motion
to apply force in the reverse (backward) direction. Since the seg-
mented periods are still the candidates of PUSH and PULL, there
is a possibility of other actions. We define the other actions as
OTHERS and design a classification method for the three maneu-
ver actions. The classification is performed by thresholds for the
angular velocity. Finally, we remove the segment classified PULL

when wheelchairs collide with each other because the change in
angular velocity is greatly affected by collision rather than PULL.

4.2 Preprocessing
Since the raw sensor data contains noise, we apply a Cheby-

shev type I filter [13] which is a low pass filter using the Cheby-
shev polynomials. The Chebyshev polynomials of the first kind
are defined by the recurrence relation.

T0(x) = 1 (1)

T1(x) = x (2)

Tn+1(x) = 2xTn(x) − Tn−1(x) (3)

The ordinary generating function for Tn is

∞∑
n=0

Tn(x)tn =
1 − tx

1 − 2tx + t2
(4)

We let Gn(Ω) be a function of the angular frequency Ω of the n-th
order low-pass filter as below.

Gn(Ω) =
1√√

1 + ε2T 2
n

⎛⎜⎜⎜⎜⎜⎜⎝ ΩΩ0

⎞⎟⎟⎟⎟⎟⎟⎠
(5)

Where ε, Ω0, and Tn are a ripple factor, a cutoff frequency, and a
Chebyshev polynomial of the n-th order, respectively. We empir-
ically set the above parameters as ε = 1.0, Ω0 = 0.03, and n = 6.
Figure 7 illustrates an example of the filtering. We see that the
raw data is smoothed by filtering the noise.
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Fig. 8 Example of prominence.

4.3 Segmentation
Each maneuver action consists of grip, move, and release. The

time from the grip to the release widely varies even for the same
action, which means that a sliding window with a fixed size
does not work well. Therefore, we apply peak/valley detection
in order to extract candidate segments of the maneuver actions
from the time series of the angular velocity. We remove small
peaks/valleys due to noise in addition to peaks/valleys detected
within an extremely short interval.

The peak detection is performed as follows. We denote the an-
gular velocity at time t as ω(t). We then determine the time t that
satisfies the following condition (6) of a local maximum (peak).

ω(t − 1) < ω(t) > ω(t + 1) (6)

Similarly, we also find the time t that satisfies the condition (7) of
a local minimum (valley).

ω(t − 1) > ω(t) < ω(t + 1) (7)

To remove the peaks and valleys due to noise, we further apply
noise filtering based on a prominence [14]. The prominence is
used in signal processing to measure how much the peak is promi-
nent considering the relative height to its surrounding peaks. An
example of prominence is shown in Fig. 8. Vertical arrows show
the prominence of three peaks on a prominence island which is
the reference level of the prominence illustrated by the dashed
horizontal lines in Fig. 8. The prominence island is defined as
follows. First, we extend a horizontal line from a peak to the left
and right until the line crosses the signal due to a higher peak
or the end of the signal. Then, we find the minimum of the sig-
nal in each of the two intervals. Finally, the higher of the two
intervals minimal specifies the reference level. The height of the
peak above the reference level is its prominence. We analyzed the
characteristics of the prominence of angular velocity peaks. Fig-
ure 9 shows the prominence during practice and Fig. 10 shows the
height distribution of the prominence. We found there are many
peaks with low prominence due to noise. We therefore chose to
exclude peaks with a prominence of less than 20. If there are
multiple peaks/valleys within Tmin, all peaks/valleys except for
the one with the largest/smallest value have also been removed
since such extremely fast actions are impossible. Table 2 shows
the minimum interval between PUSH and PULL for six players
during the game. From this result, the threshold of the minimum
interval Tmin was set to 0.3.

Finally, we segment the time series of the angular velocity by

Fig. 9 Prominence of angular velocity peaks during practice.

Fig. 10 Distribution of the prominence.

Table 2 Minimum maneuver interval [s] of players.

PUSH PULL
Player ID # of PULL Min. Interval # ofPULL Min. Interval

1 113 0.33 40 1.13
2 72 0.30 31 0.86
3 63 0.33 35 0.90
4 90 0.33 32 1.53
5 105 0.30 36 1.00
6 80 0.40 38 1.06

the detected peaks and valleys. We let di denote the i-th detected
peak or valley for the time series of the detected peaks and val-
leys. Then, the i-th segment si (i > 0) is defined as (t(di−1), t(di)]
where t(di) is the time when di is observed. Since there is no
zero-th peak or valley, t(d0) is defined as 0 which is the start of
the measurement.

4.4 Classification
We classify each segment into PUSH, PUSH, or OTHERS.

However, the waveform greatly differs depending on the speed
of the wheelchair even for the same PUSH actions. For exam-
ple, Fig. 11 shows the waveform of the angular velocity during
a sprint. The first PUSH segment and the following PUSH seg-
ments are clearly different. A large velocity change occurs at the
first PUSH while the velocity change in the following PUSH is
not as large as the change in the first PUSH. This is due to the
player’s own ability and the speed just before PUSH.

The classification is performed as follows based on the above
observation. Each segment si is classified into PUSH if the fol-
lowing three conditions (8), (10), and (11) are satisfied. The
PUSH action maximizes the speed in the short term. Therefore,
the first condition is that si ends at a peak. This is expressed as.

ω(t(di) − 1) < ω(t(di)) > ω(t(di) + 1) (8)

c© 2021 Information Processing Society of Japan
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Fig. 11 Example of PUSH angular velocity.

The second condition is that there is a large speed change within
the segment period. Since the degree of the speed change depends
on the player’s ability, we determine the threshold Theight for the
amount of speed change considering the player’s ability and the
speed before the action. We consider the player’s ability as the
highest speed in a game or practice. When the maximum speed is
ωmax and the angular velocity at the end of the previous segment
is ω(t(di−1)), the threshold Theight of the speed change is defined
as given below.

Theight=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωmax/16 (ω(t(di−1)) >= ωmax/4)
(ωmax−3ω(t(di−1)))/4 (ωmax/4 > ω(t(di−1)) > 0)
ωmax/4 (0 >= ω(t(di−1)))

(9)

Since the amount of speed change within the segment periods
must exceed this threshold, the second condition is given below.∣∣∣∣∣∣ max

t∈(t(di−1),t(di)]
ω(t) − min

t∈(t(di−1),t(di)]
ω(t)

∣∣∣∣∣∣ ≥ Theight (10)

The third condition is the rapid speed increase. The increase in
speed occurs due to not only PUSH but also weight shifting and
movement of the opposite wheel. On the other hand, in a PUSH

action, it is necessary to grab the rim, leading to a slight instanta-
neous decrease in speed, before the speed increase. This leads to
a significantly rapid increase of the angular velocity. Therefore,
by using the threshold for the rapid speed increase T PUS H

δ , the
third condition is represented as follows:

max
t∈(t(di−1),t(di)]

ω′(t) ≥ T PUS H
δ , (11)

where ω′(t) is the time derivative of ω(t). When the above three
conditions (8), (10), and (11) are satisfied, segment si is classified
into PUSH.

On the other hand, each segment si is classified into PULL

if conditions (10), (12), and (14) are satisfied. Contrary to the
PUSH action, the PULL action minimizes the speed in the short
term. Therefore, the first condition is that si ends at a valley. This
is expressed as below.

ω(t(di) − 1) > ω(t(di)) < ω(t(di) + 1) (12)

The second condition is that there is a large speed change
within the segment period. This is same as the condition (10)
in PUSH. However, the threshold Theight of the speed change is
defined as given below.

Fig. 12 Example of classification result.

Fig. 13 Example of acceleration during sprint and collision.

Theight =

⎧⎪⎪⎨⎪⎪⎩ ω(t(di−1)) − ωmax/4 (ω(t(di−1)) > ωmax/2)
ωmax/4 (ωmax/2 >= ω(t(di−1)))

(13)

The third condition is the rapid speed decrease occurs. The de-
crease in speed occurs due to not only PULL but also to friction
and weight shifting. On the other hand, a PULL action needs to
grab the rim, resulting in a rapid decrease in speed. Therefore, by
using the threshold for the rapid speed decrease T PULL

δ , the third
condition is represented as follows.

min
t∈(t(di−1),t(di)]

ω′(t) ≥ −T PULL
δ (14)

Finally, all of the other segments are classified as OTHERS. An
example of the classification result using the proposed method is
shown in Fig. 12.

4.5 Remove Noise by Collision
Wheelchair collisions frequently occur during games. At that

moment, a maneuver to stabilize the wheelchair may be per-
formed. However, the wheel angular velocity decreases rapidly
regardless of the occurrence of maneuvers. Such rapid decreases
of the angular velocity are wrongly classified as PULL. To solve
this problem, we detect collisions and change PULL labels within
a fixed period from the collisions to OTHERS. We use accelera-
tion to detect collisions. We also determined the threshold for
collision detection and the duration of the period causing wrong
PULL labels based on the statistics as follows.

The magnitude of 3 axis acceleration a[G] can be expressed by
the following equation.

a =
√

a2
x + a2

y + a2
z [G] (15)

The waveforms of the acceleration in sprint and collision are
shown in Fig. 13. We see that the acceleration is obviously higher
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Fig. 14 Distribution of maximum acceleration at collisions.

Fig. 15 Number of peaks around collisions.

during the collision than the other cases. Figure 14 shows the
range of the maximum acceleration for 24 collisions observed
during one minute of the preliminary experiment. The minimum
value of the maximum acceleration was 10.17. Therefore, we de-
tect a collision when a exceeds 10 [G]. Figure 13 shows there
are several peaks in addition to the maximum peak at collisions.
In order to investigate the effect of the vibration caused by the
collisions, the number of peaks that exceed 5 [G], which is half
of the acceleration threshold of 10, is analyzed within 0.1 to 0.6
seconds from the maximum peaks. As shown in Fig. 15, the num-
ber of peaks around the maximum peak increases as the range of
time is expanded. We also found the increase is small around
0.5 seconds. Therefore, we determined the duration of the period
causing wrong PULL labels as 0.5 seconds.

We note that the speed of the wheelchair does not increase upon
collision. This means that collisions do not cause wrong PUSH

labeling. Therefore, PUSH actions are not filtered since PUSH

soon after the collisions typically shows a significant increase in
the angular velocity which is totally different from wrong PULL

labels due to collisions.

5. Turn Classification

5.1 Detection
We also classify turns of wheelchairs into PIVOT and TURN

(the other turns). As Fig. 16 shows, PIVOT is a change of direc-
tion with one fixed wheel while TURN is any other change in di-
rection. TURN has two types of motions, curve and spin. A curve
is an action where both wheels move in the same direction when
changing the direction of the wheelchair, while spin moves the
wheels in the opposite directions. From observations and discus-
sions with players and coaches, we define turns as the movement
with the rotation of wheelchairs of more than 60 degrees within
1.5 seconds.

To extract periods that meet the above definition, we calculate
the rotation degree of the wheelchair based on the model of the
two-differential wheeled robot [15]. From the inertial sensors, the

Fig. 16 Type of rotation.

Fig. 17 Wheelchair in turn.

angular velocities ωrightandωle f t around the axles of the left and
right wheels are obtained. Let r denote the length of the radius of
the wheel. The speeds of the left and right wheels vright and vle f t

are then respectively expressed as below.

vright = r ∗ ωright (16)

vle f t = r ∗ ωle f t (17)

Next, we assume that the wheelchair is making a motion around
the center of the rotation. As shown in Fig. 17, if the angular
speed of turning is ωturn and the radius of the turn is ρ, the speed
at the center of the wheelchair v is represented as shown below.

v = ρωturn (18)

On the other hand, if the distance from the center to the wheel is
d, the turn radii of each wheel increase or decrease by d, and the
speeds of the left and right wheels are as follows.

vright = (ρ + d)ωturn (19)

vle f t = (ρ − d)ωturn (20)

Solving for the above formulas yields the following formula:

ωturn = (vright − vle f t)/2d (21)

v = (vright + vle f t)/2 (22)

ρ = d(vright + vle f t)/(vright − vle f t), (23)

where ωturn, v and ρ denote the rotation speed, forward speed and
radius of rotation of the wheelchair, respectively. We use ωturn to
detect turns as we defined. The center of the rotation is on the left
side of the direction of movement when ρ is positive, and vice
versa.

5.2 Classification
Next, for each detected turn, we classify whether it is a pivot

c© 2021 Information Processing Society of Japan
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or not. During a pivot, one of the wheels is stationary. How-
ever, it is difficult to completely stop the wheel. We therefore use
the amount of rotation of the wheel with lower speed during the
turn. We represent the amount of rotation of the wheel with lower
speed during the i-th turn as θilower defined as:

θilower = min

⎡⎢⎢⎢⎢⎢⎢⎣ ∑
t∈turni

ωright(t),
∑

t∈turni

ωle f t(t)

⎤⎥⎥⎥⎥⎥⎥⎦ , (24)

where turni denotes the period of the i-th turn. If θilower is less
than π/4, it is classified as PIVOT . In addition, if θilower exceeds
π/4, the i-th turn is classified as TURN.

6. Evaluation

6.1 Maneuver Classification
6.1.1 Settings

We collected real data in a practice game for evaluation. The
game duration was 317 seconds. We attached inertial sensors to
wheelchairs of six players. The maximum speed observed by
each player during the game is listed in the Table 3. We manually
labeled the maneuver actions by recording a video. However, due
to occlusion and image quality, the labeling was sometimes diffi-
cult. To deal with such ambiguity in manual labeling, we estab-
lished the criteria of ground truth. We judged that the wheel was
pushed when it was obvious that the player gripped the rim with
the movement going forward based on the player’s arm motion.
We also identified PULL when it was obvious that the wheel sud-
denly decelerated or moving backward while the player gripped
the rim based on the player’s arm motion.

After labeling, a total of 1,157 maneuver actions were per-
formed, consisting of 1,005 PUSH and 152 PULL. Since the
ground-truth is labeled manually, we allow 1.5 seconds differ-
ence for the detection time or in other words the detected class
is regarded as correct if the same ground-truth label exists within
1.5 seconds.
6.1.2 Results
6.1.2.1 Threshold Configuration

In our method, we need to configure the thresholds appropri-
ately. To see the difference in the thresholds for different play-
ers, we conducted a leave-one-person-out cross validation. The
thresholds T PUS H

δ and T PULL
δ are set from 1.0 to 3.5 with incre-

ments of 0.25 as below.

(T PUS H
δ ,T PULL

δ ) ∈ [(1.0, 1.0), (1.0, 1.25), . . . (3.5, 3.5)] (25)

From the result shown in Table 4, we confirm the optimal
threshold setting is the same among 5 of the 6 cases in the cross
validation. However, we found that the F-measure of the player
3 is slightly worse than the others. This is mainly because the
wheel size of the player 3 was larger than the others due to the

Table 3 Max speed [degree/s] of players.

Player ID Max Speed (Left) Max Speed (Right)
1 675.7 667.8
2 764.4 725.7
3 630.6 624.6
4 779.3 802.7
5 640.3 693.0
6 636.8 678.6

wheelchair configuration. Therefore, we may adjust the thresh-
olds according to the wheelchair configuration to improve the
performance. In the following evaluation, the thresholds are set
as T PUS H

δ = 1.5 and T PULL
δ = 1.5.

6.1.2.2 Maneuver Classification Performance
Figure 18 shows the result of maneuver classification. From

the results, we confirm precision and recall of PUSH are more
than 87.1%. We also confirm the precision and recall of PULL are
more than 74.8%. Figures 19 and 20 show the maneuver classi-
fication performance of the left and right hand for each player.

Table 4 Leave-one-person-out cross validation.

Threshold Setting F-measure
ID T PUS H

δ T PULL
δ PUSH PULL Both

1 1.5 1.5 0.90 0.80 0.89
2 1.5 1.5 0.88 0.81 0.86
3 1.5 1.5 0.83 0.77 0.82
4 1.5 1.5 0.92 0.81 0.90
5 1.5 1.5 0.92 0.86 0.91
6 1.5 2.0 0.91 0.75 0.88

All - - 0.87 0.85 0.88

Fig. 18 Average maneuver classification result.

Fig. 19 Classification performance of left and right hands for each player
(PUSH).

Fig. 20 Classification performance of left and right hands for each player
(PULL).
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Fig. 21 Performance when Theight is fixed.

Table 5 Turn dataset.

Condition Angle[degree] # of PIVOT # of TURN
Moving 180 27 33

−180 25 39
Stationary 270 20 20

180 20 20
90 20 20
−90 20 20
−180 20 20
−270 20 20

Total 172 192

From the results, we see that the PUSH classification perfor-
mance is independent of hands in most cases. However, we also
see the PULL classification performance is different between the
left and right hands for players 2 and 6. Furthermore, as for player
4, recall of the left side is the lowest in all the players. Conversely,
the precision of player 4’s right side is the highest among the other
players. This implies that the characteristics of the maneuver ac-
tions may differ slightly depending on hands and/or players. The
results also mean our method can potentially assess the quality of
maneuver. To improve the performance, in addition to the maxi-
mum speed, we may investigate the factors that can estimate the
ability of individual players.

Figure 21 shows the result when the threshold Theight is fixed.
When the threshold Theight is low, the recall is high because it can
detect small PUSH and PULL. However, the peaks and valleys
due to noises are wrongly recognized as maneuvers, leading to
low precision. On the other hand, when the threshold Theight is
high, precision becomes high while recall becomes low. This is
because only maneuver actions with large movement are recog-
nized. Our method achieves the highest F-measure, which means
adjusting the threshold Theight based on the speed works well.

6.2 Turn Classification
6.2.1 Settings

In order to measure the turns while moving, we collected the
data by repeating a turn after moving forward. We asked the
player to make either a pivot turn or a spin turn in a specified
direction (i.e., left or right). Also, in order to evaluate turns while
stationary, we asked the player to make a turn with a specified
angle from −270 to 270 [degree]. The leftward rotation is con-
sidered positive and the rightward rotation is considered negative.
The summary of the collected data is as shown in Table 5. We
observed 172 PIVOT and 192 TURN.

Table 6 Turn classification result.

Predicted Class
PIVOT TURN Recall

True PIVOT 172 0 1
Class TURN 1 191 0.9947

Precision 0.9942 1

Fig. 22 The amount of rotation of a low-speed wheel during a turn.

6.2.2 Turn Classification Result
The results are shown in Table 6. The results show almost all

the turns were correctly classified except only one TURN which
is a spin turn during forward movement. To investigate the reason
for the wrong classification, Fig. 22 shows the amount of rotation
of a low-speed wheel during a turn. This figure shows that it is
difficult to change the moving direction of the wheel suddenly.
As a result, the minimum amount of rotation of TURN during
forward movement becomes closer to the maximum amount of
rotation of PIVOT during stop. This leads to a wrong classifica-
tion. This problem may be solved by considering the speed before
a turn.

6.3 Use Cases on Data Analysis
6.3.1 Difference between left and right hands

To see the difference between the left and right hands, we de-
fine the power of PUSH action in segment si as the difference
in the angular velocity (i.e., maxt∈si ω(t)−mint∈si ω(t)). Then, we
calculate the difference in the power between the left and the right
wheels when PUSH is recognized for both of the wheels simul-
taneously. We assume the left and the right wheels are pushed
simultaneously if both of the peaks at the end of the segments are
detected within 0.5 seconds. Figure 23 shows the distributions of
the difference in power between the left and the right wheels. It
is clear that 3 out of 6 players (players 1, 4, and 5) push the right
wheel more strongly than the left wheel. This result implies that
some players tend to rely on their dominant hands and to make
turns in the same direction.
6.3.2 Relationship between Maneuver Motions and Posi-

tions
We analyzed the relationship between the recognized maneu-

ver actions and the positions. The players’ positions are obtained
from the video. For the analysis, the basketball court is divided
into four areas by the foul lines and the center line as shown in
Fig. 24. In this analysis, PUSH is categorized into two types de-
pending on whether the angular velocity of the previous segment

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 23 Power difference of left and right hands.

Fig. 24 Basketball court divided into 4 areas.

Table 7 Percentage of maneuver actions in each area [%].

Area\Action PUSH (Low) PUSH (High) STOP
0 30.1 38.6 31.3
1 16.2 68.7 15.1
2 13.5 71.3 15.1
3 25.7 44.6 29.8

is above the threshold ωmax/4 (high speed) or not (low speed).
Table 7 shows the percentage of the maneuver types in each

area. We see that high-speed PUSH exceeds 68.7% around the
areas 1 and 2 which are the center of the areas. In particular, the
percentage of STOP is extremely low in area 2 which is the first
area of the opponent’s court. This is because the players tend to
accelerate rapidly for good movements when they are attacking.
In addition, the result indicates that various maneuver types are
mixed near the goals (i.e., the areas 0 and 3) because sophisticated
movements are required to avoid or to interfere with opponents.
6.3.3 Sprint Comparison

In training, sprints are often practiced. Figure 25 shows the
speeds of two players over time in three trials of sprints at differ-
ent distances. The left side is the speed of the left wheel and the
right side is the speed of the right wheel. The x-axis is the num-
ber of PUSH actions. For example, the upper right figure shows
player A reached 3.5 m/s at the fifth right hand PUSH for all the
trials.

As seen from Fig. 25, in the short and long distance sprints,
both players achieved almost the same speed with the same num-
ber of pushes. However, in the middle distance sprint shown in

Fig. 25 Speeds of 2 players over time in sprints at 3 different distances.

the red color, player B after the third PUSH shows a smaller in-
crease in speed than yellow, which is long-distance sprint. This
means that player A always achieved high performance in terms
of speed regardless of distance.

7. Discussion

In this paper, we classify maneuver actions and turns for the
purpose of assessing maneuvering quality. Our system allows
confirming whether the players to confirm whether the players
moved quickly and/or efficiently. It also helps them to improve
their handling technique. For example, if a player tries to push
a wheel with a strong force, that player can greatly accelerate
all at once. At the same time, the force to grip the rim can be-
come stronger, leading to larger deceleration of the wheel. By
collecting practice data for sprints, players can understand how
to efficiently reach the maximum speed without wasting force.
Furthermore, we are planning to analyze the relation between the
degree of disability and maneuver statistics measured by our sys-
tem.

We note that, “better” actions often depend on situations. This
means maneuver actions and turns recognized by our system may
be not enough for analysis in games. To enable game analysis, we
may integrate a video tracking system to use player positions that
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reflect situations in a game. Such information about player posi-
tions enables us to consider what the best action is at the moment.
For example, a player should conduct a pivot turn if an opponent
is blocking the player’s forward movement.

We assume our system will be used in training and practice
games. In official games, the current rules for wheelchair bas-
ketball do not allow the use of sensors [16]. However, since
data analysis in sports is becoming more common, the rules may
change in the future.

8. Conclusion

In this paper, we propose two methods to detect and classify
maneuver actions and turns of wheelchair basketball by using in-
ertial sensors. Our design of the proposed method focuses on
the specific movement of wheels. The evaluation results showed
that our method achieves an F-measure of 88.1% for classification
of maneuver actions. Also, our method achieves an F-measure
of 99.7% for the classification of turns. Furthermore, we have
shown usage cases for data analysis by using the classification
results combined with other information such as player positions.

One topic for future work is applying in order to support tech-
nical improvement of maneuvering. For example, it is possible to
achieve efficient training by quantifying the wheelchair maneuver
actions through feedback to the players. In addition, visualization
of changes in the maneuver actions over time may motivate the
players. Furthermore, in cooperation with athletes and coaches,
we are planning to develop a system to support data analysis in
wheelchair basketball.
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[6] Hollander, K., Kluge, S., Glöer, F., Riepenhof, H., Zech, A. and Junge,
A.: Epidemiology of injuries during the Wheelchair Basketball World
Championships 2018: A prospective cohort study, Scandinavian Jour-
nal of Medicine& Science in Sports, Vol.30, No.1, pp.199–207 (2020).

[7] Van Der Slikke, R., De Witte, A., Berger, M., Bregman, D. and
Veeger, D.: Wheelchair mobility performance enhancement by chang-
ing wheelchair properties: What is the effect of grip, seat height, and
mass?, International Journal of Sports Physiology and Performance,
Vol.13, No.8, pp.1050–1058 (online), DOI: 10.1123/ijspp.2017-0641
(2018).

[8] de Witte, A.M., Sjaarda, F.S., Helleman, J., Berger, M.A., Van Der
Woude, L.H. and Hoozemans, M.J.: Sensitivity to change of the field-
based Wheelchair Mobility Performance Test in wheelchair basket-
ball, Journal of Rehabilitation Medicine, Vol.50, No.6, pp.556–562

(2018).
[9] Mason, B.S., Lemstra, M., van der Woude, L.H., Vegter, R. and

Goosey-Tolfrey, V.L.: Influence of wheel configuration on wheelchair
basketball performance: Wheel stiffness, tyre type and tyre orien-
tation, Medical Engineering & Physics, Vol.37, No.4, pp.392–399
(2015).

[10] Wojke, N., Bewley, A. and Paulus, D.: Simple Online and Realtime
Tracking with a Deep Association Metric, 2017 IEEE International
Conference on Image Processing (ICIP), pp.3645–3649, IEEE (on-
line), DOI: 10.1109/ICIP.2017.8296962 (2017).

[11] Wojke, N. and Bewley, A.: Deep Cosine Metric Learning for Per-
son Re-identification, 2018 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), pp.748–756, IEEE (online), DOI:
10.1109/WACV.2018.00087 (2018).

[12] Redmon, J. and Farhadi, A.: YOLOv3: An Incremental Improvement,
ArXiv, Vol.abs/1804.02767 (2018).

[13] Rabiner, L.R., McClellan, J.H. and Parks, T.W.: FIR digital filter
design techniques using weighted Chebyshev approximation, Proc.
IEEE, Vol.63, No.4, pp.595–610 (1975).

[14] The MathWorks, I.: Prominence (online), available from 〈https://
www.mathworks.com/help/signal/ug/prominence.html〉 (accessed
2020-07-23).

[15] Rodrı́guez, N.E.N.: Advanced Mechanics in Robotic Systems,
Springer Science & Business Media (2011).

[16] International Wheelchair Basketball Federation: 2018 OFFICIAL
WHEELCHAIR BASKETBALL RULES (online), available from
〈https://iwbf.org/wp-content/uploads/2019/03/2018 IWBF rules-Ver-
2 Final.pdf〉 (accessed 2020-07-23).

Ryosuke Hasegawa received his M.E.
degree in Information and Computer Sci-
ence from Osaka University, Japan in
2019. He is Ph.D. student at Graduate
School of Information Science and Tech-
nology, Osaka University, Japan. His cur-
rent research interests include sensing and
data analytics for sports. He is a member

of Information Processing Society of Japan (IPSJ).

Akira Uchiyama received his M.E. and
Ph.D. degrees in Information and Com-
puter Science from the Osaka University
in 2005 and 2008, respectively. He is
an Assistant Professor at Graduate School
of Information Science and Technology,
Osaka University. He was a visiting
scholar in the University of Illinois at

Urbana-Champaign in 2008 and a research fellow of the Japan
Society for the Promotion of Science from 2007 to 2009. His cur-
rent research interests include mobile sensing and applications in
pervasive and ubiquitous computing. He is a member of IEEE,
ACM, IEICE and IPSJ.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Takuya Magome received his Ph.D. de-
gree in Osaka University, United Grad-
uate School of Child Department in
2014. He was an Endowed Chair Assis-
tant Professor in Osaka University, Grad-
uate School of Medicine, Department
of Anatomy, Molecular Neuroscience
(Sumitomo Dainippon Pharma Co., Ltd.)

in 2014. He was an Assistant Professor in Osaka University,
Graduate School of Medicine, Department of Anatomy, Neuro-
science and Cell Biology from 2014 to 2015. He was Assistant
Professor in Osaka University, Graduate School of Medicine, De-
partment of Health and Sport Sciences, Sports Medicine from
2015 to 2018. He is Associate Professor in Otemon Gakuin Uni-
versity, Faculty of Sociology and Guest Associate Professor in
Osaka University, Graduate School of Medicine, Department of
Health and Sport Sciences, Sports Medicine from 2018. He is
engaged in the Sports Research Innovation Project (SRIP) spon-
sored by Japan Sports Agency, and supports athletes in charge of
“performance analysis”.

Juri Tatsumi received her Master’s de-
gree of Sport Science, Osaka University
of Sport and Health Sciences in 2015. She
was a Specially Appointed Assistant Pro-
fessor, Otemon Gakuin Univeristy, Insti-
tute of Liberal Arts in 2015. She was an
Assistant Professor, Otemon Gakuin Uni-
versity, Institute of Liberal Arts from 2016

to 2018. She is Associate Professor in Otemon Gakuin Univer-
sity, Faculty of Sociology from 2019. She also is actively engaged
in instructing artistic swimming.

Teruo Higashino received his B.S., M.S.
and Ph.D. degrees in Information and
Computer Sciences from Osaka Univer-
sity, Japan in 1979, 1981 and 1984, re-
spectively. He joined the faculty of Osaka
University in 1984. Since 2002, he has
been a Professor in Graduate School of
Information Science and Technology at

Osaka University. His current research interests include design
and analysis of distributed systems, communication protocol and
mobile computing. He is a senior member of IEEE, a fellow of
Information Processing Society of Japan (IPSJ), and a member of
ACM and IEICE of Japan.

c© 2021 Information Processing Society of Japan


