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Abstract: Context recognition is a topic that has garnered considerable interest in the ubiquitous and pervasive
computing research community. A wide variety of Internet-of-things devices with micro-electromechanical system
(MEMS) sensors are used to obtain sensor data (e.g., acceleration, vibration, and sound) related to target contexts.
However, devices for context recognition also have limitations such as deployment cost, battery maintenance cost, and
the requirement for wearing/carrying the devices. To solve this problem, wireless sensing has attracted the attention
of many researchers because it enables device-free and/or maintenance-free context recognition. In this study, we will
comprehensively review studies on context recognition by wireless sensing, focusing on WiFi channel state informa-
tion (CSI), radio-frequency identification (RFID), and backscatter. We will also discuss the design choices of wireless
sensing with their pros and cons through a review of the state-of-the-art.
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1. Introduction

Wireless technologies have become indispensable to our daily
lives. We are surrounded by various radio frequency (RF) signals
such as TV, FM/AM radio, cellular signals, WiFi, and Bluetooth.
They are used for data transmission. However, recent research
efforts have discovered a new aspect of wireless technologies—
wireless sensing. Wireless sensing enables us to recognize var-
ious contexts by leveraging RF signals change due to contexts
such as human motions and object movements. Typical wire-
less sensing methods involve transmitters (Tx) for lighting up tar-
gets and receivers (Rx) for capturing RF change due to context.
WiFi base stations, laptops, smartphones, and RFID (radio fre-
quency identification) readers are often used as Tx and Rx. This
means that Tx and Rx in wireless sensing have plenty of energy
resources, such as large batteries and power outlets, compared
with small Internet-of-things (IoT) devices such as wearables. In
this sense, wireless sensing is one of the key enablers for context
sensing without the maintenance of batteries.

This paper comprehensively reviews studies on context recog-
nition by wireless sensing, focusing on WiFi CSI (channel state
information), RFID, and backscatter. Figure 1 illustrates the
overview of wireless sensing by WiFi CSI, RFID, and backscat-
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ter. The original purpose of WiFi CSI is multiple-input and
multiple-output (MIMO) communication to estimate the states of
signal propagation paths. Intuitively, WiFi CSI represents physi-
cal movements due to contexts because physical movements incur
state changes in signal propagation paths. RFID has also attracted
the attention of many researchers because RFID readers can di-
rectly recognize the precise movement of RFID tags attached to
targets. The other key feature of RFID tags is battery-free opera-
tion, as it is powered by the RF signal from an RFID reader. By
observing RF signals reflected from RFID tags, the RFID reader
can recognize the movement of RFID tags. Lastly, backscatter is
a technique for ultra-low power wireless communication wherein
communication is enabled by reflecting the carrier waves emit-
ted from external RF signal sources. Its basic principle is widely
used for low-power communication of RFID systems. In Ref. [1],
a novel concept of ambient backscatter was first proposed, which
leverages ambient RF signals such as TV as an external RF sig-
nal source for backscatter communication. The original purpose
of backscatter is data transmission, similar to other wireless tech-
nologies. However, recent studies have revealed the feasibility
of wireless sensing by directly converting physical motions and
phenomena (contexts) into changes in RF signals.

Many survey papers have already been published on wireless
sensing by WiFi CSI [2], [3], [4], [5]. In this study, we leave a
detailed review of wireless sensing by WiFi CSI to these survey
papers. Instead, we focus on reviewing the differences between
WiFi CSI, RFID, and backscatter along with the state-of-the-art
in each stream.

The main challenge to exploit WiFi CSI is noise mitigation.
WiFi CSI suffers from noise due to clock offsets between Tx and
Rx (carrier frequency offsets (CFO), sampling frequency offsets
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Fig. 1 Wireless sensing overview.

(SFO), and packet detection delay (PDD)). Many studies have
employed sophisticated methods to mitigate such noises. Some
methods apply additional processing to alleviate multipath ef-
fects. After CSI preprocessing, context recognition is performed
by signal propagation models or machine learning-based models
such as deep learning.

By contrast, RFID systems do not have clock offsets because
the RFID reader serves as both Tx and Rx. Instead, the effects
of multipath antenna orientation, and hardware imperfection are
the major sources of noise. Research efforts have been made to
deal with such effects. Because RFID phase information is more
reliable than the CSI phase, many approaches are based on ba-
sic physics, which include the relation between wavelength, dis-
tance, and phase. In this sense, wireless sensing by RFID is more
accurate and precise than WiFi-based wireless sensing. Another
advantage of RFID tags is their inherent ability to identify targets
(i.e., attached parts, subjects, or objects) by responding to their
presence with their identification.

Wireless sensing by backscatter is an emerging new classical

technique. Unlike other wireless sensing approaches, wireless
sensing by backscatter directly converts contexts (e.g., tempera-
ture, pressure, moisture, and audio) into changes in the backscat-
tered wireless signal. Backscatter communication is an ultra-low
power and promising building block for future IoTs. Neverthe-
less, it still requires digital modulation, which necessitates pro-
cessing by computation modules such as microcontroller units.
This leads to additional costs for additional components as well
as additional energy consumption, which can limit the application
design space. Wireless sensing by backscatter leverages analog
sensors or physical movements due to contexts (e.g., wind, wa-
ter flow, and acoustic vibration). Its design is simple, yet worth
exploring with the application space, opening up new vistas of
wireless sensing.

The remainder of this paper is as follows. Section 2 describes
the basic principle of WiFi CSI, followed by a review of the state-
of-the-art. Section 3 presents a review of RFID sensing with an
overview of RFID systems. Section 4 describes a review of wire-
less sensing by backscatter. In Section 5, we describe the design
choices of wireless sensing through a discussion on the pros and
cons of WiFi CSI, RFID, and backscatter. Finally, Section 6 con-
cludes the paper.

2. Channel State Information

2.1 Basic Principle of WiFi CSI
In wireless LAN standards IEEE 802.11n and later, MIMO is

adopted to improve the quality of communication. In addition,
orthogonal frequency-division multiplexing (OFDM) is used as
a modulation scheme that uses multiple orthogonal subcarriers.

MIMO leverages CSI for transmission signal control to improve
the quality of the signal at the receiver side. CSI provides the am-
plitude and phase differences for each subcarrier in this OFDM
modulation. Let X ( f , t) and Y ( f , t) be the frequency domain
representations of the transmitted and received signals, respec-
tively, with carrier frequency f at time t. The relationship be-
tween X ( f , t) and Y ( f , t) are written as

Y ( f , t) =H ( f , t) ·X ( f , t), (1)

where H ( f , t) is the complex-valued channel frequency response
(CFR).

Assuming that the number of subcarriers is S for NTx antennas
of the transmitter and NRx antennas of the receiver, we can obtain
NTx · NRx · S pairs of CFR values, which is called CSI. Using
commercial WiFi devices such as Intel 5300 NIC with a modi-
fied driver, we can obtain CSI samples. Compared to RSSI, CSI
contains richer information on the conditions of the radio propa-
gation paths. Because the channel states change due to dynamic
components such as human movement, CSI has been used to im-
prove communication quality and context recognition.

As the signal travels from a transmitter to a receiver through
multiple paths including the direct path, reflection from walls,
and human bodies, CSI is the superposition of components from
all the paths as follows.

H ( f , t) = e− j2π f t
∑
∀p

ap ( f , t) e− j2π f dp(t)/c, (2)

where ap( f , t) and dp(t) are the amplitude attenuation factor and
the length of the p-th path at time t, respectively. c is the speed of
light.

To extract signals due to object/human movements, many ap-
proaches model the CSI as a composition of static and dynamic
components as follows.

H ( f , t) =Hd( f , t) +Hs( f , t), (3)

where Hd( f , t) and Hd( f , t) are the CSI of the dynamic and static
components, respectively.

2.2 CSI Noise Factors
CSI is estimated by sending pilot signals from a transmitter to

a receiver. In practice, the estimated CSI is distorted by various
noise factors owing to hardware imperfection. The following fac-
tors have been mentioned in many existing works [6], [7], [8], [9],
[10].
• CFO: CFO is introduced because the oscillators of the trans-

mitter and the receiver are not exactly synchronized. This
means that there is an offset between the central frequencies
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Fig. 2 Typical CSI processing flow.

of the transmitter and receiver.
• SFO: Because pilot signals are processed by the receiver one

by one for each subcarrier, delays are accumulated linearly
with the processing order of the subcarriers.

• PDD: PDD stems from the symbol synchronization module
in the receiver after detecting the frame start.

• Quantization Error: Analog-to-digital (A/D) conversion in
the receiver introduces quantization error, which amplifies
the noise originally included in the CSI. The quantization
error becomes larger as the signal amplitude decreases.

Many existing works have introduced sophisticated methods to
overcome the aforementioned noise factors. Zhuo et al. [11] stud-
ied the CSI noise factors with other additional sources and pro-
posed a calibration method to compensate for nonlinear and lin-
ear CSI phase errors. In the following sections, we review the
primary preprocessing and feature extraction methods. Figure 2
shows the typical flow of WiFi CSI-based wireless sensing. For a
detailed review, interested readers may refer to surveys on WiFi
CSI sensing [2], [3], [4], [5].

2.3 Preprocessing for CSI Noise Mitigation
Before extracting features, smoothing can be applied to reduce

the random noise of CSI. For example, Refs. [12], [13], [14] em-
ploy Svitzky–Golay(SG)–filter for denoising. We note that some
methods [12], [15], [16], [17], [18], [19] perform denoising and
feature extraction simultaneously by principal component analy-
sis (PCA) and independent component analysis (ICA). Similarly,
others [20], [21], [22] use the MUSIC algorithm to extract signals
of interests without denoising directly. Therefore, the design of
preprocessing and feature extraction should be carefully consid-
ered depending on the target context.
2.3.1 Sanitization

A common noise mitigation method is phase sanitization [10],
[23], [24], [25], that alleviates SFO and PDD. Because SFO and
PDD are linear with sub-carrier indexes, the offset can be esti-
mated by computing its gradient over all subcarriers, as shown in
Eq. (4).

If the phase difference between adjacent subcarriers due to
SFO and PDD is δ, the CFR of the kth subcarrier is represented
as follows:

H ( fk, t) = a( fk, t)e
−2 jπ fk(t+δ(k−1)), (4)

where fk is the frequency of the k-th subcarrier and a( fk, t) is the
complex attenuation of the k-th subcarrier. As can be seen from
Eq. (4), the phase part of the CSI is a function of time. Owing
to the linearity of the SFO and PDD phase error on the subcarri-
ers, we can mitigate the error by subtracting the phase difference

due to δ(k − 1) for the k-th subcarrier. For simplicity, we define
θ = fk(t + δ(k − 1)). Then, we can apply the least square method
to estimate the phase delay yk of the k-th subcarrier due to SFO
and PDD as follows:

a =
S∑

k=1

(
k − S

2

)
(θk − θ̄)

/ S∑
k=1

(
k − S

2

)2

, (5)

b = θ̄ − a ∗ S
2
, (6)

yk = a ∗ k + b, (7)

where θ̄ is the average of θ of all the subcarriers.
2.3.2 CSI Ratio

In a real environment, a random offset θo f f set due to CFO is
added, which is represented as

H( f , t) = e− jθo f f set H( f , t) (8)

To remove the random offset due to CFO, the ratio of CSI be-
tween a pair of antennas on the transceiver is used, which cancels
out the phase offsets [8], [9]. This is because the antennas of a
wireless device (i.e., the transmitter or receiver) are connected to
the same oscillator, which results in the same CFO. The CSI ratio
Hn,m between antennas m and n is defined as follows:

Hn,m( f , t) =
e− jθo f f set Hn( f , t)
e− jθo f f set Hm( f , t)

=
Hn( f , t)
Hm( f , t)

(9)

We note that the CSI ratio can be defined between the antenna
pairs of the receiver and transmitter. Therefore, the CSI ratio is
(NTx ∗NRx

C2 ∗ S )-dimensional data with respect to the number of
transmitter antennas NTx , the number of receiver antennas NRx ,
and the number of subcarriers S . Note that NTx ∗NRx

C2 is the num-
ber of Tx and Rx pairs. The CSI ratio still retains the other fea-
tures, canceling out CFO.

2.4 Feature Extraction
2.4.1 Principal Component Analysis

Reference [26] used PCA to decompose the mixed RF signals
into signal changes due to noises and target movements. As
studied in Ref. [26], the third component of PCA has the high-
est human-movement signal-to-noise-ratio (SNR). In this sense,
PCA is a method for feature extraction as well as noise filtering.
2.4.2 Independent Component Analysis

Similar to PCA, ICA can be used to separate mixed signals
from multiple reflection sources and direct paths. Reference [27]
leverages ICA to extract the effect of signals reflected by objects
with state change (e.g., opening a door).
2.4.3 Angle-of-Arrival (AoA) Estimation

WiFi-based AoA estimation has been actively studied because
AoA is the vital information that provides a real-world context.
AoA estimation leverages multiple antennas on the receiver to
extract features of interests depending on the targets. MUSIC al-
gorithm is widely used for this purpose [20], [21], [22]. Because
the MUSIC algorithm outputs a spatial spectrum function repre-
senting the signal amplitude for each arrival angle, it works as a
decomposer in terms of signal paths.

Interestingly, FreeSense [21] leverages the MUSIC algorithm
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to detect human movement, which is observed as the CSI phase
differences at the receiver antennas. Because the MUSIC algo-
rithm has strong anti-interference ability against random noise,
FreeSense does not employ any denoising scheme. Array-
Track [28] is a CSI-based indoor positioning system that utilizes
the MUSIC algorithm to estimate AoA with multiple antennas.
SpotFi [29] is also a CSI-based indoor positioning system; it cal-
culates both AoA and time-of-flight (ToF) at the same time with
the MUSIC algorithm. ROArray [30] is a CSI-based indoor po-
sitioning system that employs sparse recovery to retrieve AoA
information even under a low SNR.
2.4.4 Doppler Frequency Shift

Doppler frequency shift (DFS) is one of the key features for
human context recognition because it can infer the moving speed
of the target. After signal selection (e.g., MUSIC algorithm), the
DFS of the signal is extracted based on its phase change. This
may work well for sensing contexts such as breathing and ges-
tures of relatively static (e.g., sitting and sleeping) targets. WiPo-
lar [31] proposed a simultaneous estimation of the direction of the
target (i.e., signal selection) and DFS to overcome the challenge
when the target is moving.
2.4.5 Deep Neural Network

Deep neural networks (DNNs) such as convolutional neural
networks (CNNs) are another trend for feature extraction, sim-
ilar to other research domains [13], [27], [32], [33], [34]. Us-
ing a large amount of training data, a DNN has the capability to
learn models that are difficult for humans to explain. However, a
major concern is that learned models are often environment- and
subject-dependent, which creates new challenges for practical ap-
plications.
2.4.6 Transfer Learning

To reduce the cost of collecting training data, several studies
used transfer learning for CSI-based context recognition. For ex-
ample, Rao et al. [35] employed transfer learning for CSI-based
indoor positioning to learn feature representations such as finger-
prints by minimizing the distribution differences between a fin-
gerprint database and test samples. Bu et al. [36] converted CSI
data into image data and pre-trained an activity recognition model
using a public image dataset for object recognition (ImageNet).
Arshad et al. [37] also employed pre-trained image-based neural
networks for multiple human activity recognition. Jiang et al. [38]
employed domain-adversarial training for activity recognition,
whereas Wang et al. [39] employed domain-adversarial training
for in-car activity recognition.

2.5 Tools to Obtain CSI
The use of special customized hardware such as USRP [40]

and WARP [41] enables the extraction of more detailed physical
space information than CSI. However, the use of commercially
available equipment such as IEEE 802.11n is advantageous for
deployment and the reproducibility of research results. In particu-
lar, the emergence of CSI tools [42], [43], [44], [45] has been par-
ticularly significant for the wireless sensing research community.
Commercially available IEEE 802.11n devices not only produce
various research results, but they have also opened up possibili-
ties for the deployment of wireless sensing. However, at present,

research using IEEE 802.11n faces the problem that only one sec-
tion of IEEE 802.11n devices, Intel 5300 NIC, Atheros AR9390,
AR9580, AR9590, AR9344, or QCA9558, can obtain CSI. One
of the promising options is the IEEE 802.11ac [46], [47] com-
pressed CSI. The IEEE 802.11ac compressed CSI is standard-
ized to reduce the overhead of CSI feedback. Compressed CSI
can be acquired from any device that supports IEEE 802.11ac
or IEEE 802.11ax. Furthermore, the ESP32 CSI Toolkit [48] is
another option to obtain CSI directly from the ESP32 microcon-
troller, enabling CSI data collection from a large number of tiny
IoT devices.

2.6 Applications
In this section, we briefly describe the recent literature on wire-

less sensing by WiFi CSI. Table 1 summarizes our review.
2.6.1 Activity Recognition

In Ref. [26], the authors proposed two models for quantita-
tively correlating CSI dynamics and human activities: a CSI-
speed model that correlates CSI dynamics with the movement
speed and a CSI-activity model that correlates the movement
speed of different body parts with a specific activity. Gao
et al. [59] converted CSI measurements from multiple channels
into an image and then recognized human activities by extract-
ing color and texture features from the image. Chen et al. [60]
recognized human activities by feeding CSI measurements into
a neural network with a bidirectional long short-term memory
(LSTM) layer. WiStep [57] counted steps based on the CSI en-
ergy of the frequency components. For this purpose, WiStep con-
verts CSI to time-domain channel impulse response by inverse
fast Fourier transform (IFFT) to remove non-relevant multipath
signals. CARIN [50] recognized driver activities using average
Doppler shift power with a hidden Markov model-based classifi-
cation.
2.6.2 Fall Detection

Device-free fall detection for elder care support is another typ-
ical application of WiFi CSI. For example, the WiFall system
proposed in Ref. [61] employed the time variability and spatial
diversity of CSI to detect falls in residential settings, whereas
Anti-Fall [62] employed the CSI phase difference over two anten-
nas and used amplitude information to distinguish the fall activity
from fall-like activities. FallDeFi [56] extracted the spectrogram
of CSI by short-time Fourier transform (STFT) combined with
noise filtering by PCA and discrete wavelet transform (DWT) for
accurate fall detection.
2.6.3 Vital Sensing

In Ref. [63], the authors attempted to capture user sleep in-
formation such as respiration based on WiFi CSI by extracting
rhythmic patterns associated with respiration. MultiSense [15]
achieved the respiration monitoring of multiple persons using
ICA to separate mixed signals. It also employed time-varying
phase offset cancellation, background static signal removal, and
subcarrier selection. FarSense [9] used the CSI ratio for noise
cancellation and achieves the respiration monitoring of the tar-
get. For robust respiration monitoring, FullBreathe [14] pro-
posed complementarity of CSI amplitude and phase, which are
extracted as the conjugate multiplication of CSI between two an-
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Table 1 Summary of wireless sensing by WiFi CSI.

Method Features Algorithm Context Performance
Widar3.0 [32] Velocity profiles of gestures Model-based feature extraction

and DNN for recognition
Gesture 82.6%-92.4% for cross-

domain recognition
WiBorder [49] DCM-CSI Model-based Boundary crossing 99.4% detection rate
MultiSense [15] ICA Matching algorithm Respiration of multiple per-

sons
Error rate of 0.73 bpm (breaths
per minute)

WiPolar [31] AoA, ToF, and DFS pSAGE algorithm Multi-person tracking Median tracking error of 56cm
(up to 5 people)

CARIN [50] Average Doppler shift power HMM-based classification Driver activities under interfer-
ence of passengers (e.g. con-
tinuous head nodding)

F1 score of 90.9%

LiquidSense [16] PCA and resonance frequen-
cies

SVM classification for discrete
liquid level. Curvilinear re-
gression for continuous liquid
level.

Liquid level 97% accuracy

FingerDraw [51] CSI quotient CSI-quotient model Sub-wavelength level finger
motion tracking

Median tracking accuracy
of 1.27cm, 93% accuracy in
recognition of drawing ten
digits

FarSense [9] CSI ratio Model-based Respiration Mean absolute error of
0.34bpm in through-wall
respiration sensing

WiDetect [52] ACF of the CSI power re-
sponse

Hypothesis testing Motion detection covering
whole house/office floor

99.5% detection rate with 0.1%
false alarm

WIO [12] Acceleration and CSI PCA
(SG-filter for denoising)

Fusion by Kalman filter Indoor odometer (traversed
distance)

6.87% relative odometer error

Zhang et al. [13] CSI amplitude denoised by
SG-filter

CNN; FFZ Diffraction model Repetitive activities in FFZ 95+% precision and recall for
push-up, sit-up, and walkout

Guo et al. [33] CSI autocorrelation DNN models for individual
identification and exercise
recognition. Spectrogram-
based workout detection
algorithm

Device-free individual identi-
fication and workout assess-
ment (repetition tempo ratio
and work-to-rest ratio)

93% accuracy on workout
recognition and 97% accuracy
for individual detection (20
subjects, 10 exercises)

WiVit [20] CSI phase change and path-
length change speed

Model-based speed estimation Training-free vitality sensing 98+% precision of activity de-
tection and almost 100% of
area detection accuracy

WiID [17] Spectrogram of CSI denoised
by PCA

Machine-learning based model
for gesture and user classifica-
tion

User authentication by gesture 92.8% accuracy for 5 users

FreeSense [21] Phase difference Peak detection Indoor human detection False positive rate of 0.53%,
false negative rate of 1.4%

FullBreathe [14] Conjugate multiplication of
CSI

FFT Respiration 100% detection rate if a subject
faces the transceivers

SiFi [53] Time of Arrival (ToA) Hankel matrix decomposition
and clustering

Localization Median accuracy of 0.93m

SignFi [34] Sanitized CSI amplitude and
phase

CNN 276 gestures of sign language 94+% accuracy for 276 ges-
tures by a single user; 86.66%
for 150 sign gestures by 5 users

Zhang et al. [54] Phase change FFZ diffraction model Respiration 98+% accuracy
QGesture [55] Sanitized CSI phase; PCI for

subcarrier selection; PCA for
phase information recovery

Model-based Gesture distance and direction 3.7 cm moving distance error,
15 degrees moving direction
error

FallDeFi [56] CSI spectrogram; Discrete
Wavelet Transform (DWT) for
denoising

SVM classifier Fall detection 93% accuracy for pre-trained
environment, 80% accuracy for
different environment

WiStep [57] CSI energy of frequency com-
ponents

Model-based Step count 87.59%-90.2% counting accu-
racies

Rapid [58] CSI and acoustic information Machine learning with hand-
crafted features

Person identification 92% to 82 % accuracy from a
group of 2 to 6 subjects

Ohara et al. [18] ICA and DNN Hiden Markov Model State changes of in-
door objects (open/close
door/window/shade, etc.)

85% accuracy

WiMu [19] PCA-based denoising; Fre-
quency feature by STFT

Database matching Multi-user gesture recognition 90+% accuracy for 2-6 simul-
taneous gestures

Strobe [22] Relative Time of Flight (ToF);
AoA estimation by MUSIC

Model-based Soil moisture and electrical
conductivity (EC)

Comparable accuracy with ex-
pensive soil sensors

tennas. Zhang et al. [54] proposed respiration sensing by phase
change based on a first Fresnel zone (FFZ) diffraction model.
2.6.4 Localization and Tracking

WiPolar [31] proposed multi-person tracking by simultane-
ously estimating AoA, ToF, and DFS using the extended

space-alternating generalized expectation-maximization algo-
rithm called pSAGE. WIO [12] estimated indoor odometry by fu-
sion of acceleration and CSI. SiFi [53] estimated the ToA from
CSI by using Hankel matrix decomposition.
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2.6.5 Human Detection
Lv et al. [64] detected an intruder using WiFi CSI by extract-

ing a robust feature with continuous wavelet transform. WiBor-
der [49] detected boundary crossing based on DCM-CSI: CSI
conjugate multiplication between two antennas. WiDetect [52]
succeeded in motion detection covering a whole house and of-
fice floor using the autocorrelation function of the power response
of CSI. WiVit [20] is a method for training-free vitality sensing
(i.e., whether a target is still or not, moving speed, and its area).
It employed CSI phase change of dynamic path signals for ac-
tivity detection and path-length change speed for area detection.
FreeSense [21] leveraged the MUSIC algorithm to estimate the
phase difference due to human movement for indoor human de-
tection. It performs peak detection for a spatial spectrum function
output using MUSIC.
2.6.6 Human Identification/Authentication

WiID [17] proposed user authentication by gestures using CSI
based on machine learning with a CSI spectrogram (i.e., fre-
quency spectrum over time) obtained by STFT. Rapid [58] com-
bines CSI and acoustic signals to achieve accurate person identi-
fication. IFFT is employed to remove the multipath effect.
2.6.7 Gesture Recognition

Widar3.0 [32] recognized gestures by extracting body-
coordinate velocity profiles based on estimated body orientation
to achieve cross-domain recognition. FingerDraw [51] achieved
sub-wavelength-level finger motion tracking without attaching
any sensor to the finger. It leveraged the CSI quotient between
two antennas of a receiver to cancel out the noise and offsets. The
CSI-quotient model was used to describe the connection between
the motion displacement and CSI variations. SignFi [34] recog-
nized 276 gestures of a sign language using sanitized CSI input
to the CNN. For recognition of gesture distance and direction,
QGesture [55] employed principal component identification for
subcarrier selection and PCA for phase information recovery.
WiMu [19] succeeded in multi-user gesture recognition using
frequency features extracted by STFT.
2.6.8 Fitness Monitoring

Zhang et al. [13] recognized repetitive activities such as
pushups by focusing on the model of the FFZ. The FFZ model
was used to guide system deployment. Guo et al. [33] achieved
individual identification and workout assessment using CSI auto-
correlation and DNN.
2.6.9 Object Event Detection

Ohara et al. [18] employed WiFi CSI to recognize events of ev-
eryday objects, including door open/close events. A deep learn-
ing model was used to automatically extract efficient classifica-
tion features. Xu et al. [65] employed WiFi CSI to recognize door
events based on features extracted from CFR and a classifier us-
ing dynamic time warping.
2.6.10 Material/Moisture Sensing

LiquidSense [16] estimated the liquid level in a container us-
ing a transducer attached to the surface of a cup. It captured
the liquid-level dependent vibration generated by a transducer on
the surface of a cup using CSI. WiFi CSI is also capable of soil
moisture sensing as presented in Strobe [22], which exploits the
relative ToF. The multipath signals were removed using the MU-

Fig. 3 Basic principle of RFID sensing.

SIC algorithm. Because Strobe used multiple Rx antennas, PDD,
SFO, and CFO were canceled out.

3. RFID Sensing

3.1 Overview of Wireless Sensing by RFID
The RFID system is composed of a reader and battery-less

tags *1. The RFID reader emits a continuous wave (CW) signal to
provide passive tags with energy. The tags send back data such
as their identification by backscatter communication. Backscatter
communication is ultra-low power because it leverages CW from
the reader without generating a high-frequency active RF signal,
which requires a large amount of energy in many devices.

Commercial RFID systems such as the ImpinJ Speedway RFID
reader provide information on the received signal strength (RSS)
and phase of the received signal from tags. Although the APIs of
the commodity RFID systems provide RSS information, they are
usually unstable and unreliable. For this reason, many approaches
rely mainly on phase measurement. However, some methods also
leverage RSS.

Based on basic physics, the following equation holds between
the observed phase θ and distance d between a reader antenna and
a tag (see Fig. 3).

θ =

(
2π

2d
λ
+ θn

)
mod 2π, (10)

where θn is the noise. By observing the phase change over time,
we can infer contexts related to the movements of objects.

3.2 Noise Sources and Countermeasures
The primary sources of RFID system noise are tag hardware

imperfection, tag antenna orientation, and multipath effect. Fur-
thermore, some countries’ regulations, including the U.S., require
frequency hopping, which affects the phase-angle measurements.

Tag hardware imperfection is mitigated by calibration, for ex-
ample, measuring the distance between an antenna and a tag. We
note that some methods assume a constant noise for the hardware
imperfection without calibration, which can be mitigated by sam-
pling over time and multiple measurements of tags and receiver
antennas.

The phase difference between multiple tags is introduced in
RF-Kinect [66] to overcome the effect of the antenna orientation.
Similarly, the phase difference between multiple reader antennas
(i.e., an antenna array) can be used.

Because the multipath effect is more like random noise, Yang
and Cao [67] employed a matched filter to separate a known sig-
nal template (e.g., repetitive pattern of respiration) from the mul-
tipath signals. Furthermore, similar to CSI, TagFree [68] per-
forms AoA estimation by the MUSIC algorithm to identify the

*1 We focus on passive RFID tags owing to its unique nature of battery-free
operation, although other types of active RFID tags are also available.
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Table 2 Summary of wireless sensing by RFID.

Method Features Algorithm Reader Tag Context Performance
RF-Kinect [66] Phase Difference

Between Tags
(PDT)

Model-based 1 reader with 2
antennas

Multiple Tags on
body

3D body move-
ment

8.7 degree limb angle error
and 4.4cm relative joint po-
sition error

TagFree [68] AoA change over
time (AoA spec-
trum)

Deep learning
(CNN+LSTM)

1 reader with 4
antennas

6 tags on furni-
ture

7 activities:
stand, sit, wave,
bow, walk, run,
work

91%-97% average accu-
racy, depends on activity
speed and multipath envi-
ronment

EUIGR [70] Phase and RSS Deep learning
(CNN+LSTM)

1 reader with 1
antenna

2 tags attached
on each arm

8 traffic com-
mand gestures

96% precision and recall
with unseen users; 88.6%
precision and 86.7% recall
in untrained positions

Yang and Cao [67] Phase Matched filtering 1 reader with 1
antenna

1 tag on chest Respiration mon-
itoring

0.5 bpm error for respira-
tion rate; 5.3% error for ap-
nea detection

Tagtag [71] Material-
dependent
phase change

Dynamic Time
Warping

1 reader with 1
antenna

2 tags on con-
tainer

Material Sensing 90+% accuracy even for
similar materials like Pepsi
and Coke

Li et al. [72] RSS CNN 2 readers, 8 an-
tennas

12 tags on 12 ob-
jects

11 Medical and
6 lab activity
recognition

80.4% accuracy for medi-
cal activities, 90.8% for lab
activities

ShopMiner [73] Phase Model-based 1 reader with 4
antennas

One tag on each
item

Turn item over,
pick item up

87+% accuracy

FEMO [74] Phase (Doppler
shifts)

Fingerprint
matching by
Dynamic Time
Warping

1 reader with
1 directional
antenna

2 tags on dumb-
bells

10 free-weight
activities

90% precision and 91% re-
call

RFID Tattoo [75] RSS and phase
(impedance
change due to
stretch of tags)

Classification by
machine learning
(Random Forest)

1 reader with 1
antenna on user
窶冱 waist

4 stretchable
customized tags
around mouth

Speech recogni-
tion

86% accuracy in recon-
structing the top-100 words
in English

ER-Rhythm [76] Phase Model-based 1 reader with 1 or
2 antennas

tags on the limbs
and front and
back chest

LRC ratio Accurate estimation up to
92%-95% of the exercise
duration

LungTrack [77] RSS and phase Fresnel diffrac-
tion and reflec-
tion models

1 reader with 1
antenna

5 tags near the
subject

Respiration mon-
itoring

98% accuracy for a single
target, 93% accuracy for
two subjects separated by
at least 10cm

TagSleep [78] Phase; time-
domain,
frequency-
domain and
sample entropy
features

Classification by
machine learning

1 reader with 1
antenna

3 tags near the
subject

Respiration and
snore, cough,
and somniloquy

96.58+% accuracy in rec-
ognizing snore, cough, and
somniloquy

AdaRF [79] Phase (sim-
ulation and
experiment)

CNN with trans-
fer learning

1 reader with 1
moving antenna

1 tag on each ob-
ject

Localization cm-level positioning

Au-Id [80] Phase and RSSI CNN and LSTM 1 reader with 1
antenna

3x3 tag array on
the door

User identi-
fication and
authentication

94.2% identification accu-
racy (15 users), 96.11%
authentication accuracy
(8 legitimate users and 7
spoofers)

RF-Focus [69] Phase, RSSI, and
images

Model-based dis-
tance estimation
and matching

1 reader with 2
antennas

1 tag on each ob-
ject

Tag locations in
Region of Inter-
est (ROI)

True positive rates of
91.6% and false positive
rates of 10%

TACT [81] Moving speed,
moving distance,
activity duration
estimated by
phase, and phase
waveform

Machine-
learning based
classifier

1 reader with 1
antenna

4 tags near the
subject (Reader-
tag distance=2m-
4m)

8 human activ-
ities (stand, sit,
raisehand, drop-
hand, walk, fall,
rotation, get-up)

93.5% precision

RF-ECG [82] Chest movement
estimation by
phase change

Model-based;
DWT-based
denoising

1 reader with 1
antenna in front
of the subject

tag array on the
chest

Heart rate vari-
ability

Median error of 3% of
Inter-Beat Interval (IBI)

RF-Copybook [83] Phase; random
noise filtering by
Kalman filter

Model-based dis-
tance estimation

1 reader with 3
antennas

2 tags on a brush Chinese calligra-
phy monitoring

4.8mm-7.5mm distance es-
timation errors depending
on multipath environment

RF-Wear [84] Phase Model-based 1 reader with
1 antenna in a
pocket

tag arrays (ma-
trixes) on each
joint

Body pose Mean error of 8-21 degrees
in tracking angles at joints

Wang et al. [85] Differential Min-
imum Response
Threshold
(DMRT)

Model-based 1 reader with 1
antenna over pots

2 tags on each
pot

Soil moisture 90-percentile moisture esti-
mation errors of 5%
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signal reflected from the human body. Such signal path selection
methods are useful to focus on the signals of interests.

3.3 Applications
Wireless sensing by RFID systems is roughly classified into

tagged approaches and device-free approaches. In the tagged ap-
proaches, RFID tags are attached to the subjects/objects of inter-
est to directly sense the movement of the tagged parts. This is
the major difference between RFID and WiFi CSI: RFID tags are
attached to the targets, and the reader can distinguish the source
tag of the received signal from other tags. Some studies have also
proposed device-free approaches where tags are deployed in the
proximity of the targets (e.g., doors and beds). The nature of the
identification capability of RFID systems provides a clear separa-
tion of the signal sources (i.e., tags), which enables us to capture
more precise movement than WiFi CSI-based wireless sensing.

Table 2 summarizes our review on the recent RFID-based
wireless sensing. We note that a fusion of RFID with other sen-
sors is another option for enhancing its capability. One of such
methods is RF-Focus [69], which combined RFID and a camera
to precisely estimate tag locations in the region of interest.
3.3.1 Tagged Approach

RF-Kinect [66] recognized three-dimensional (3D) body
movements by attaching multiple tags to the subject’s body. It
employed a phase difference between tags (PDT) to track the
body movement, which is robust to antenna orientation change.
RF-Wear [84] recognized body pose with tag arrays on each joint
by observing the phase difference between the signals from the
tags.

To achieve real-time gesture recognition, EUIGR [70] pro-
posed an LSTM-based sequence labeling classifier that predicts
gestures before its completion using two tags attached to each
arm. RFID Tattoo [75] proposed the design of stretchable cus-
tomized tags; the tags were attached to the upper and lower jaws
and two sides of the mouth for speech recognition. The tag an-
tenna impedance changes due to the stretch of tags related to the
movement of the mouth.

ShopMiner [73] tracked customer behavior such as turning the
item over and picking the item up by tags attached to each
item. AdaRF [79] used a CNN with transfer learning for lo-
calization of tagged targets, achieving cm-level positioning. Li
et al. [72] employed a CNN to recognize 11 medical and 6
lab activities (e.g., oxygen preparation, blood pressure mea-
surement, and lab-meeting.) by tags attached to objects. RF-
Copybook [83] achieved millimeter-level antenna-tag distance es-
timation for Chinese calligraphy monitoring by two tags on a
brush. RF-Copybook used a Kalman filter to filter random noise.
In addition, the phase shift due to tag imperfection was calibrated
by measuring the distance between the antenna and tag.

Yang and Cao [67] proposed respiration monitoring with a
tag attached to the chest by finding continuous breathing pat-
terns from a signal with a multipath effect by matched filter-
ing. ER-Rhythm [76] estimated the locomotor–respiratory cou-
pling (LRC) ratio, which is the correlation between exercise lo-
comotion and respiration rhythm. RF-ECG [82] estimated heart
rate variability with a tag array attached to the chest by separating

chest movement due to respiration and heartbeat. FEMO [74] rec-
ognized ten free-weight activities by two tags attached to dumb-
bells.

Interestingly, Tagtag [71] is a method for material sensing us-
ing two tags on a container, leveraging material-dependent phase
change (i.e., antenna impedance changes). In addition, soil mois-
ture sensing is possible by attaching two tags on each pot based
on the signal change due to soil moisture [85].
3.3.2 Device-Free Approach

TagFree [68] attached multiple tags on furniture to recog-
nize seven human activities using deep learning. It used AoA
change over time (AoA spectrum), representing the change of
backscattered signal paths related to target activities. Lung-
Track [77] employed Fresnel diffraction and reflection models
for respiration monitoring with five tags deployed near the sub-
ject. TagSleep [78] is a device-free approach for the recogni-
tion of respiration and snoring, cough, and somniloquy. It also
employed a wavelet filter to remove high-frequency noise. Au-
Id [80] achieved user identification and authentication with CNN
and LSTM using a 3×3 tag array on the door. TACT [81] recog-
nized eight activities with four tags near the subject by extracting
various features such as moving speed, distance, activity duration,
and phase waveform.

4. Backscatter Sensing

Backscatter sensing is a novel yet classical concept of battery-
free or ultra-low-power sensing by direct conversion of contexts
into backscattered signal changes. The basic concept is similar to
some classic devices such as the Great Seal Bug [86] and a laser
microphone [87]—backscattering signals from an external source
in a passive manner.

Printed WiFi [88] is one of the emerging concepts of recent
backscatter sensing. It directly converts contexts such as wind
speed, liquid flow, the moving distance of a slider bar, and the
amount of knob rotation into the variation of backscattered WiFi
signals without any digital modulation. LiveTag [89] is a printed
tag composed of two antennas and resonators. The resonator ab-
sorbs the WiFi signal of a specific frequency, which is used for
the identification of the resonators. Based on this principle, Live-
Tag [89] leveraged the cancellation of the resonator effect by fin-
ger touch and liquid to enable battery-less touchpads and liquid-
level sensing.

The aforementioned two approaches are entirely battery-free,
without any silicon chips. On the contrary, a tiny amount of
energy (e.g., harvested from ambient light) broadens the capa-
bility of backscatter sensing. BARNET [90] proposed backscat-
ter channel state information between backscatter tags to obtain
activity-related signal change information similar to WiFi CSI.
Because backscatter tags can be deployed anywhere without the
limitation of batteries, the number of backscatter tag-to-tag links
is expected to be much higher than that of WiFi CSI. There-
fore, we can expect wide area coverage and more robust context
recognition. RF Bandaid [91] proposed an RF sensing platform
that consists of an energy harvester, an antenna, an oscillator, an
RF switch, and a resistive or capacitive sensor. The resistive or
capacitive sensor changes its resistance or capacitance according
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to its sensing target. For example, the capabilities of tempera-
ture, force, and stress measurements have been demonstrated in
Ref. [91]. RF Bandaid employed a micropower precision pro-
grammable oscillator from Linear Technology LTC6906. This
oscillator converts the resistance or capacitance of the sensor to
a specific frequency. The RF switch changes its state accord-
ing to the oscillator frequency, resulting in a frequency shift in
the backscattered signal. The concept of a touchpad using FM
backscatter was presented in UbiquiTouch [92], which modulates
a touch point on a surface to its corresponding time-series pat-
tern of the frequency shift. OFDMA backscatter localization with
ultra-low power was also proposed in Ref. [93] using an extended
MUSIC algorithm.

5. Design Choice of Wireless Sensing

As we reviewed, wireless sensing by WiFi CSI is the main-
stream of the research because of its wide availability. RFID sens-
ing has also been attracting the attention of many researchers ow-
ing to its nature of identification and ubiquitous tags. Backscatter
sensing is similar to RFID sensing; however, customized tags are
used to more directly recognize contexts.

The design choice of wireless sensing depends on various re-
quirements such as deployment cost, target context, and required
performance. WiFi sensing has a great advantage in deployment
cost, whereas the target environment and performance may be
limited. By contrast, RFID sensing can typically achieve higher
accuracy than WiFi CSI because it provides signals from many
tags that are even attachable to the targets. Backscatter sensing
further enhances the capability of wireless sensing by directly
converting context into ambient RF signal change such as WiFi
and BLE; however it requires careful design of customized tags.

6. Conclusion

In this study, we comprehensively reviewed wireless sensing
by WiFi CSI, RFID, and backscatter. Wireless sensing has a wide
variety of applications owing to its pervasive and ubiquitous na-
ture. We also provided the design choice of wireless sensing, de-
pending on the requirements. We hope that this review will help
researchers open up new research directions for wireless sensing.
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