
IPSJ SIG Technical Report

Efficient GPU-Implementation for Integer Sorting
Based on Histogram and Prefix-Sums

SEIYA KOZAKAI1,a) NORIYUKI FUJIMOTO2,b) KOICHI WADA3,c)

Abstract: In this paper, we propose integer sorting algorithms based on histogram and prefix-sums and we show that
their GPU-implementations are faster than the fastest sorting GPU-implementations in Thrust and/or CUB library for
several input data. In particular, our algorithm is very useful in the cases that the maximum number of input data and/or
the number of kinds of input data are smaller than the number of input data.

1. Introduction
Sorting is one of the fundamental and well-studied problems

in various fields of computer science. The introduction of GPUs
has attracted remarkable attention for new challenges in design-
ing fast parallel sorting algorithms [1], [2].

This paper focuses on efficient GPU implementations of in-
teger sorting on GPU and evaluates their performance compar-
ing with the known fastest sorting GPU-implementations built-
in thrust and/or cub libraries on GPU [3], [4]. Integer sorting
is a sorting of n input data taken from integer values between
0 and maxVal − 1, where maxVal is known beforehand. There-
fore, integer sorting can be implemented by using characteristics
of the input like counting sort and radix sort[5], and these algo-
rithms are suitable for parallel implementation. There are several
research about GPU implementations of integer sorting such as
[5], [6], [7], [8], [9], [10].

In this paper, we have developed faster integer sorting algo-
rithms than the sorting one which is known to be the fastest im-
plemented on GPGPU[3], [4]. First, since Histogram and Prefix-
sums operations can be efficiently implemented on GPU[11], we
implemented an integer sorting algorithm (called H-P algorithm)
only with these operations[12] on GPU, and compared it with the
built-in fastest algorithms in Thrust and/or CUB libraries[3], [4].
We call these sorting algorithms Thrust-sort and CUB-sort, re-
spectively. This integer sorting algorithm was proposed as a
very fast time (O(log∗ n)) and cost-optimal one on a sum-CRCW
PRAM [12] and consists of repeating Histogram and Prefix-sums
twice. We show that this H-P algorithm can be changed into one
with one Histogram and one Prefix-sums in the case that all input
data are distinct. We call the modified algorithm 1-H-P algorithm.

1 Graduate school, Hosei University Koganei, Tokyo 184–8584, Japan
2 Graduate school, Osaka Prefecture University Sakai, Osaka 599–8531,

Japan
3 Hosei University Koganei, Tokyo 184–8584, Japan
a) seiya.kozakai.2q@stu.hosei.ac.jp
b) fujimoto@cs.osakafu-u.ac.jp
c) wada@hosei.ac.jp

We have mainly shown the followings; Let δ be defined as the ra-
tio of the number of data n to the maximum value of input data
maxVal (that is, δ = n

maxVal)

(1) In the case that input data are distinct, 1-H-P algorithm is
at most 2.0 times faster than Thrust-sort and CUB-sort*1 for
the case that n is between one hundred thousand (100k) and
one million (1M) and δ = 1. We have obtained the similar
results for δ = 0.5 and δ = 0.25.

(2) In general case, H-P algorithm is 2.77 ∼ 2.35 times faster
than Thrust-sort and CUB-sort for the case that n is between
one million (1M) and ten million (10M) and δ = 50.

Secondly, we have proposed a more efficient integer sorting
algorithm in the case that the number of kinds of input data (de-
noted as len) is smaller than maxVal. This algorithm is called
0-Compressed H-P algorithm because this is a variant of H-P al-
gorithm but we use an array of size len instead of that of size
maxVal to store the result of Histogram. We have mainly shown
the followings. Let σ be defined as the maximum value of input
data maxVal to len (that is, σ = maxVal

len)

(3) In the case that n is between one million (1M) and ten million
(10M) and δ = 50 and σ = 1, 0-Compressed H-P algorithm
is almost the same performance as H-P algorithm.

(4) We consider the two cases of input data. One is that in-
put data are arbitrary taken from the interval [maxVal −
len..maxVal − 1] (called the interval data), and the other is
that input data are arbitrary taken from [0..maxVal −1] such
that the number of kinds of input data is len (called the arbi-
trary data).

(4-1) Considering the interval data, in the case that n is between
one million (1M) and ten million (10M), 0-Compressed H-
P algorithm is 2.69 ∼ 1.99 times faster than Thrust-sort and
CUB-sort and faster than H-P algorithm for δ = 50 and

*1 It means the faster algorithm of the two.

1ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

IPSJ SIG Technical Report

σ = 100.
(4-2) Considering the arbitrary data, in the case that n is between

one million (1M) and ten million (10M), 0-Compressed H-
P algorithm is 2.72 ∼ 2.14 times faster than Thrust-sort and
CUB-sort and faster than H-P algorithm for δ = 50 and
σ = 100.

The paper is organized as follows. In Section 2, we present
proposed algorithms, H-P algorithm, 1-H-P algorithm, and 0-
Compressed H-P algorithm. Section 3 shows an implemetation
of our algorithms for GPGPU. Section 4, we report exprerimen-
tal results performed on GPGPU. We conclude in the last section.

2. Proposed Algorithms
2.1 H-P algorithm

We use an integer sorting algorithm based on histograms
and prefix-sums and call it H-P algorithm. This algorithm
was proposed as an O(log∗ n) time algorithm on a sum-CRCW
PRAM[12]. Histogram and Prefix-sums are shown in Algo-
rithm 1 and H-P algorithm is shown in Algorithm 2. Since this
algorithm is an integer sorting algorithm, the maximum value
among input data is predetermined and input data are taken from
values between 0 and maxVal − 1. An example of the execution
of Algorithm 2 is depicted in Fig. 1. In Fig. 1, array x is input,
A stores the Histogram of x, Ap is Prefix-sums of A, B stores the
Histogram of Ap, and the Prefix-sums of B is output y, which is
correctly sorted. Note that since the maximum value in Ap is n,
the size of B becomes n+ 1. However, the output is sufficient
to compute Prefix-sums of B[0],B[1], . . . ,B[n−1] and B[n] is not
used in the algorithm.
Lemma 1. [12] Let n and maxVal−1 be the number of input data
and the maximum value of input data, respectively. If 0 ≤ x[i] <
maxVal(0 ≤ i ≤ n), then Algorithm 2 sorts x[0],x[1], . . . ,x[n− 1]
correctly in O(max(n,maxVal)) time.

Algorithm 2 can be implemented on a PRAM (sum-CRCW
PRAM) in O(log∗ m) time by using O(m/ log∗ m) processors,
where m = max(n,maxVal). On the same PRAM Histogram can
be computed in constant time by using m processors*2 and Prefix-
sums can be computed in constant time by using O(m logm) pro-
cessors[13]. Thus, H-P algorithm can be computed in constant
time by using O(m logm) processors on sum-CRCW PRAM.
When considering the implementation on GPU, if Histogram and
Prefix-sums can be implemented on GPU efficiently, H-P algo-
rithm can be also implemented on GPU efficiently.

H-P algorithm can be simplified in the case that n ≥ maxVal
and the input data are different. That is, in that case it is sufficient
to perform Histogram and Prefix-sums once. If the input data are
different, after the first Prefix-sums for the Histogram of input,
if Ap[0] ̸= 0 then 0 is the smallest value in the input. Otherwise,
0 is not included in the input data and the smallest value is the
smallest i such that Ap[i] ̸= Ap[i− 1]. In general, the difference
between Ap[i] and Ap[i− 1] (1 ≤ i ≤ maxVal − 1) is at most one
and Ap[i]−Ap[i−1] = 1 if and only if i is the Ap[i−1]-th smallest
value. Therefore, Algorithm 3 can perform sorting correctly.

*2 On sum-CRCW PRAM Histogram is trivially computed in constant time
with O(m) processors.

Lemma 2. Let n and maxVal − 1 be the number of input data
and the maximum value of input data, respectively. If 0 ≤ x[i] <
maxVal(0 ≤ i ≤ n) and x[i] ̸= x[j](0 ≤ i < j ≤ n), then Algo-
rithm 3 sorts x[0],x[1], . . . ,x[n−1] correctly in O(maxVal) time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

０ 9 8 15 9 8 ０ 9 5 15 9 ０ 15 5 8 15 8 9 8 9x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 0 0 0 0 2 ０ 0 5 6 0 ０ 0 0 0 4A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3 3 3 3 5 5 5 10 16 16 16 16 16 16 20Ap

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

０ 0 0 5 0 3 0 0 0 0 1 ０ 0 0 0 0 6 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

０ 0 0 5 5 8 8 8 8 8 9 9 9 9 9 9 15 15 15 15

B

y

Fig. 1 An execution example of H-P algorithm (n = 20 and maxVal = 16).

Algorithm 1 Histogram and Prefix-Sums

subroutine Histogram(int data[],hist[],num,bins)
1: for (int i = 0; i < bins; i++)
2: hist[i] = 0;
3: for (int i = 1; i < n; i++)
4: hist[data[i]]++;

subroutine Prefix-Sums(int data[],datap[],num)
5: int sum = 0;
6: for (int i = 0; i < num; i++) {
7: sum+= data[i];
8: datap[i] = sum;
9: }

Algorithm 2 H-P algorithm
Assumptions:

maxVal −1: maximum value among input data.

input: x[0], . . . ,x[n−1], maxVal;
output: y[0],(≤)y[1],(≤) . . . ,(≤)y[n−2],(≤)y[n−1];

variables
int A[maxVal],Ap[maxVal],B[n+1];

Algorithm
1: Histogram(x,A,n,maxVal);
2: Prefix-Sums(A,Ap,maxVal);
3: Histogram(Ap,B,maxVal,n+1);
4: Prefix-Sums(B,y,n);

2.2 0-compressed H-P algorithms
H-P algorithm is an integer sorting algorithm and if maxVal

is smaller than n, it is computed in O(n) time. However, other-
wise, it is computed in O(maxVal) time. Therefore, we propose
a variant of the H-P algorithm which is an efficient sorting algo-
rithm in the case that the number of kinds of input data is small

2ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

IPSJ SIG Technical Report

Algorithm 3 1-H-P algorithm
Assumptions:

maxVal −1: maximum value among input data.
input data are different.

input: x[0], . . . ,x[n−1](x[i] ̸= x[j](i ̸= j), maxVal;
output: y[0],(≤)y[1],(≤) . . . ,(≤)y[n−2],(≤)y[n−1];

variables
int A[maxVal],Ap[maxVal];

Algorithm
1: Histogram(x,A,n,maxVal);
2: Prefix-Sums(A,Ap,maxVal);
3: ifAp[0] ̸= 0 then y[0] = 0;//The input has 0.
4: for(int i = 1; i < maxVal; i++)
5: if Ap[i] ̸= Ap[i−1] then y[Ap[i−1]] = i

even if maxVal is larger than n. The idea is that when comput-
ing Prefix-sums of the histogram A of input x, it is not computed
directly from A but instead creating a new array C whose size is
the number of kinds of input (denoted as len) and which consists
of non-zero elements of A, it is computed from C and some addi-
tional information. If C can be computed efficiently, Prefix-sums
of the histogram A of input x can be computed in O(len) time not
in O(maxVal) time.

The abstract level of the algorithm is shown in Algorithm 4,
where len is the number of kinds of input data, C[len + 1]
has non-zero elements in A (Histogram of input data) and let-
ting i1, i2, . . . , llen be these indices of non-zero elements, C[j] =
A[i j](1 ≤ j ≤ len) and iC[j] = i j(1 ≤ j ≤ len). iC[j] indicates the
index in A[maxVal] for C[j] and is used to compute Ap (Prefix-
sums of A) with C[j].

Let Ap[maxVal] be Prefix-sums of A[maxVal] (Histogram of
x[n]) and B[n+1] be its Histogram. And let Cp[len+1] be Prefix-
sums of C[len+1]. A01[maxVal] is defined as

A01[j](1 ≤ j ≤ len) =

{
0 (if A[j] = 0)

1 (if A[j] ̸= 0)
,

and its Prefix-sums is denoted as A01p[maxVal].
The following lemmas are used to implement Algorithm 4.

Lemma 3. For j(1 ≤ j ≤ len), C[j] = A[A01p[i]](if (j =

A01p[i]) and (A[A01p[i]]> 0)), and iC[j] = i(if (j = A01p[i]).
In the following we assume C[0] = 0 and iC[0] = 0.

Lemma 4. For i(0 ≤ i ≤ n−1),

B[i] =

{
iC[j+1]− iC[j] (if i =CP[j])

0 (otherwise).

We can implement Algorithm 4 as Algorithm 5 using Lem-
mas 3 and 4. An example of the execution of Algorithm 5 is
shown in Fig. 2. Fig. 2 shows Algorithm 5 works correctly. In
fact, we have the following lemma.
Lemma 5. Let n and maxVal − 1 be the number of input data
and the maximum value of input data, respectively. If 0 ≤ x[i] <
maxVal(0 ≤ i ≤ n), then Algorithm 5 sorts x[0],x[1], . . . ,x[n− 1]
correctly in O(max(n,maxVal)) time.

The time complexity of Algorithm 5 is the same as that of Al-

Algorithm 4 0-Compressed H-P algorithm (abstract)
Assumptions:

n: number of input.
maxVal −1: maximum value among input data.

Input: x[0], . . . ,x[n−1], maxVal;
Output: y[0],(≤)y[1],(≤) . . . ,(≤)y[n−2],(≤)y[n−1];

Variables
int A[maxVal],B[n+1],C[len+1], iC[len+1];

where len is the number of kinds of input data.

Algorithm
1: Histogram(x,A,n,maxVal);
2: Let i1, i2, . . . , ilen be increasing indices of A

such that A[i]> 0,
where len is the number of kinds of input data.

3: Let C[len+1] and iC[len+1] be defined as follows:

4: C[j] =

{
unused (if j = 0))
A[i j] (if 1 ≤ j ≤ len)

5: iC[j] =

{
unused (if j = 0))
i j (if 1 ≤ j ≤ len)

6: Compute Histogram B of Prefix-Sum Ap of A
by using C and iC;

7: Prefix-Sums(B,y,n);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

０ 9 8 15 9 8 ０ 9 5 15 9 ０ 15 5 8 15 8 9 8 9x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 0 0 0 0 2 ０ 0 5 6 0 ０ 0 0 0 4A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 1 ０ 0 1 1 0 ０ 0 0 0 1A01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 2 2 2 3 4 4 4 4 4 4 5A01p

0 1 2 3 4 5

0 3 5 10 16 20Cp

0 1 2 3 4 5

0 3 2 5 6 4C

0 1 2 3 4 5

0 0 5 8 9 15iC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

０ 0 0 5 0 3 0 0 0 0 1 ０ 0 0 0 0 6 0 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

０ 0 0 5 5 8 8 8 8 8 9 9 9 9 9 9 15 15 15 15

B

y

Fig. 2 An execution example of 0-compressed H-P algorithm (n = 20,
maxVal = 16 and len = 5).

gorithm 2. However, comparing these two algorithms closely,
the same parts are the first Histogram and Prefix-sums with size
maxVal*3, and the last Prefix-sums with size n. Then we should
compare the second Histogram with size maxVal to obtain B in
Algorithm 2 with computing C and iC with size maxVal and B
with size len in Algorithm 5. The big difference is that Algo-
rithm 5 does not need computing Histogram. Histogram opera-
tion is time-consuming on GPGPU [11], we have possibility that
Algorithm 5 can be faster than Algorithm 2 when implementing
them on GPGPU. In fact, we will show that Algorithm 5 is faster
than Algorithm 2 in Section 4.

*3 Although in Algorithm 2, computing A01 has a little bit extra time, but
these two are considered to be almost the same.

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

IPSJ SIG Technical Report

Algorithm 5 0-Compressed H-P algorithm (Implementation)
Assumptions:

n:number of input.
maxVal −1: maximum value among input data.

Input:x[0], . . . ,x[n−1], maxVal;
Output:y[0],(≤)y[1],(≤) . . . ,(≤)y[n−2],(≤)y[n−1];

Variables
int A[maxVal],Ap[maxVal],B[n+1],

A01[maxVal],A01p[maxVal],
C[len+1],Cp[len+1], iC[len+1];

Algorithm
1: Histogram(x,A,n,maxVal);
2: for(int i = 0; i < maxVal; i++)
3: A01[i] = (A[i]> 0)?1 : 0;
4: Prefix-Sums(A01,A01p,maxVal);
5: int len = A01p[maxVal −1];
6: int C[len+1],Cp]len+1], iC[len+1];
7: //where len is the number of kinds of input data.
8: C[0]=0;
9: iC[0]=0;
10: for(int i = 0; i < maxVal; i++)
11: if (A[i]> 0) {
12: C[A01p[i]] = A[i];
13: iC[A01p[i]] = i;
14: }
15: Prefix-Sums(C,Cp, len+1);
16: for(int i = 0; i < len; i++) B[i] = 0
17: for(int i = 0; i < len; i++) B[Cp[i]] = iC[i+1]− iC[i];
18: Prefix-Sums(B,y,n);

3. Implementation on GPU
We implement all of H-P algorithm (Algorithm 2), 1-H-P al-

gorithm (Algorithm 3), and 0-Compressed H-P algorithm (Al-
gorithm 5) in CUDA C/C++ language [14] partially with CUB
library.

Every algorithm uses subroutine Histogram and Prefix-Sums.
Subroutine Prefix-Sums is implemented just by calling CUB li-
brary function cub::DeviceScan::InclusiveSum(). The CUB im-
plementation is the fastest Prefix-Sums implementation as far as
we know. Subroutine Histogram is implemented using CUDA
atomic function atomicAdd(), as shown in Fig.3. In CUDA ker-
nel incCnt, we divide ”atomicAdd(&cnt[a[i]], 1);” into three steps
shown from lines 6 to 8 in Fig.3. This aims at separating co-
alescing access to array a[] and non-coalescing access to array
cnt[]. That is, our three step implementation intends not to over-
lap execution of the coalescing access with execution of the non-
coalescing access. In our preliminary experiments, our three step
implementation was faster than the naive single step implementa-
tion.

As shown in Algorithm 2, 3 and 5, every algorithm uses aux-
iliary arrays except input and output arrays. These arrays are dy-
namically allocated using CUDA library function cudaMalloc()
because their sizes are dynamically determined according to in-
put. If we call cudaMalloc() array by array, it takes long time

1 g l o b a l vo id i n c C n t (i n t n , i n t ∗a , i n t ∗c n t)

2 {
3 i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;

4 i f (i >= n) re turn ;

5
6 i n t pos = a [i] ;
7 s y n c t h r e a d s () ;

8 atomicAdd (& c n t [pos] , 1) ;

9 }
10
11 i n l i n e void His togram (i n t ∗da t a , i n t ∗h i s t , i n t num , i n t b i n s)

12 {
13 cudaMemset (h i s t , 0 , s i z e o f (i n t) ∗ b i n s) ;

14 incCnt<<< (num + 255) / 256 , 256 >>>(num , da t a , h i s t) ;

15 }

Fig. 3 Our Implementation of Subroutine Histogram

1 g l o b a l vo id OnePref ixSums (i n t maxVal , i n t∗ a , i n t∗ in , i n t∗ o u t)

2 {
3 i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;

4 i f (i >= maxVal) re turn ;

5
6 i f (i == 0) o u t [a [i]] = i ;
7 e l s e i f (a [i − 1] != a [i]) o u t [a [i]−1] = i ;

8 }

Fig. 4 Our Implementation of lines 3 to 5 in Algorithm 3

because cudaMalloc() is time-consuming. Therefore, in our im-
plementation of each algorithm, we call cudaMalloc() and cud-
aFree() only once to allocate and free a memory block of size
required for all auxiliary arrays in each algorithm. Each auxil-
iary array is manually allocated to a part of the memory block.
Auxiliary arrays C, Cp, and iC in Algorithm 5 have size len+ 1,
which depends on the content of input data. The size cannot be
determined until line 5 in Algorithm 5. If we allocate memory
for the three arrays after the size is determined, we must call cud-
aMalloc() twice, which makes the resultant implementation very
slow. However, we have len ≤ n where input array size n is inde-
pendent of the content of input data. Therefore, we allocate size
n+ 1 instead of len+ 1 for each array to realize a single call of
cudaMalloc() and cudaFree(). Note that at the start of each algo-
rithm we can determine the sizes of auxiliary arrays A, Ap, A01,
and A01p in Algorithm 2, 3 and 5 because maxVal is given as a
part of input of each algorithm.

As for Algorithm 3, lines 3 to 5 are implemented as a single
CUDA kernel as shown in Fig.4. Lines 6 to 7 are equivalent
to ”out[a[in[i]]-1] = in[i];”. However, in our preliminary experi-
ments, this single line implementation was slower.

As for Algorithm 5, lines 2 to 3, lines 10 to 14, and lines 16
to 17 are respectively implemented as a single CUDA kernel as
shown in Fig.5, 6, and 7. Due to lines 6 to 9 in Fig.7, in our imple-
mentation of Algorithm 5, line 9 in Algorithm 5 can be ignored.
In contrast, line 8 in Algorithm 5 is implemented just by calling
CUDA library function cudaMemset().

4. Experimental Results
This section describes the experimental environment, the ex-

perimental content, and the experimental results.

4.1 Experimental Environment
The experiments were performed in the environment shown in

4ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

IPSJ SIG Technical Report

1 g l o b a l vo id b i n a r i z e (i n t n , i n t∗ cn t , i n t∗ c n t 0 1)

2 {
3 i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;

4 i f (i >= n) re turn ;

5
6 c n t 0 1 [i] = (c n t [i] > 0) ? 1 : 0 ;
7 }

Fig. 5 Our Implementation of lines 2 to 3 in Algorithm 5

1 g l o b a l
2 void compressA01p (i n t maxVal , i n t∗ A, i n t∗ A01p , i n t∗ C , i n t∗ iC)

3 {
4 i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;

5 i f (i >= maxVal) re turn ;

6
7 i f (A[i]) {
8 i n t x = A01p [i] ;

9 i n t y = A[i] ;

10 s y n c t h r e a d s () ;

11 C[x] = y ;

12 iC [x] = i ;

13 }
14 }

Fig. 6 Our Implementation of lines 10 to 14 in Algorithm 5

1 g l o b a l vo id expandToB (i n t l en , i n t∗ Cp , i n t∗ iC , i n t∗ B)

2 {
3 i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;

4 i f (i >= l e n) re turn ;

5
6 i f (i == 0) {
7 B[Cp [0]] = iC [1] ;

8 re turn ;

9 }
10
11 i n t x = Cp [i] ;

12 s y n c t h r e a d s () ;

13 B[x] = iC [i + 1] − iC [i] ;

14 }

Fig. 7 Our Implementation of lines 16 to 17 in Algorithm 5

Table 1. The CPU was an Intel Xeon CPU E5-2620 v3 and the
GPU was an NVIDIA Tesla K40c. We used CUDA toolkit ver-
sion 10.0.130.

Table 1 Experimental Environment

CPU GPU
Cores 6 2880

Memory Size 768GB DDR4 12GB GDDR5
Memory Bandwidth 56 GB/s 288 GB/s

4.2 Experimental Content
In the experiments, we compare the fastest sorting algorithms

in the Thrust and CUB libraries (denoted as ”Thrust sort” and
”CUB sort”, respectively) and the three algorithms introduced in
Section 2. We denote the three algorithms to be compared im-
plemented on the GPU as follows: Sorting using the H-P algo-
rithm (Algorithm 2) is denoted as ”H-P sort”, using the 1-H-P
algorithm (Algorithm 3) is denoted as ”1-H-P sort”, and using
the 0-Compressed H-P algorithm (Algorithm 4-5) is denoted as
”0-Comp sort”.

For each algorithm, measurements were performed with n,
maxVal, and len (which imply δ and σ) as parameters.

Data used in the measurements can be characterized by the pa-
rameters. We used four kinds of data set. In the following, we

n Thrust CUB H-P 0-Comp 1-H-P
100k 0.336 0.578 0.332 0.392 0.306
200k 0.702 0.664 0.357 0.459 0.331
300k 0.836 0.732 0.410 0.533 0.371
400k 0.939 0.811 0.523 0.676 0.480
500k 1.096 0.915 0.681 0.831 0.606
600k 1.241 1.003 0.815 0.993 0.729
700k 1.292 1.091 0.942 1.153 0.860
800k 1.386 1.153 1.091 1.374 0.998
900k 1.486 1.220 1.228 1.513 1.127
1M 1.676 1.277 1.379 1.662 1.267

Fig. 8 Computing time for distinct data (δ = 1)

n Thrust CUB H-P 0-Comp 1-H-P
100k 0.340 0.588 0.344 0.417 0.322
200k 0.705 0.690 0.435 0.549 0.407
300k 0.827 0.730 0.579 0.718 0.549
400k 0.946 0.815 0.736 0.921 0.680
500k 1.088 0.905 0.900 1.107 0.850
600k 1.189 1.006 1.051 1.299 0.990
700k 1.290 1.075 1.211 1.494 1.151
800k 1.383 1.163 1.393 1.685 1.295
900k 1.485 1.219 1.552 1.883 1.449
1M 1.666 1.279 1.708 2.102 1.605

Fig. 9 Computing time for distinct data (δ = 0.5)

devote a sub-subsection to each kind of data set to describe the
experiments.　 In the following tables, time unit is measured by
millisecond (ms).
4.2.1 Distinct data

To evaluate 1-H-P sort, we compare the computing time of the
five algorithms for distinct data. The results are shown in Figs. 8
to 10. We see 1-H-P sort is the fastest with δ = 1 and n between
100k and 1M, with δ = 0.5 and n between 100k and 600k, and
with δ = 0.25 and n between 100k and 300k.
4.2.2 Data with maxVal kinds of values

We compare the computing time the four algorithms except 1-
H-P sort for non-distinct data. The results are shown in Figs. 11
to 13. We see that CUB sort is the fastest with σ = 1 and that H-P
sort and 0-Comp sort are faster with σ = 50. Smaller and smaller
maxVal is, faster and faster H-P sort is. The fastest one changes

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

IPSJ SIG Technical Report

n Thrust CUB H-P 0-Comp 1-H-P
100k 0.340 0.610 0.419 0.522 0.405
200k 0.705 0.654 0.563 0.715 0.528
300k 0.827 0.740 0.744 0.939 0.711
400k 0.946 0.815 0.950 1.177 0.888
500k 1.088 0.923 1.133 1.424 1.078
600k 1.189 1.002 1.340 1.670 1.260
700k 1.290 1.082 1.518 1.913 1.449
800k 1.383 1.167 1.706 2.153 1.632
900k 1.485 1.252 1.908 2.429 1.817
1M 1.666 1.296 2.090 2.642 2.020

Fig. 10 Computing time for distinct data (δ = 0.25)

n Thrust CUB H-P 0-Comp
1M 1.300 1.301 1.377 1.628
2M 1.960 1.961 2.896 3.366
3M 2.648 2.633 4.456 5.097
4M 3.310 3.305 5.989 6.868
5M 4.218 4.227 7.558 8.744
6M 4.920 4.921 9.175 10.425
7M 5.626 5.628 10.693 12.188
8M 6.291 6.271 12.266 13.949
9M 7.064 7.026 13.866 15.726
10M 7.713 7.709 15.439 17.514

Fig. 11 Computing time in case that δ = 1 and σ = 1

when σ is 10.
4.2.3 Data with larger σ

In this sub-subsection, we fix maxVal and decrease the number
of kinds of data. The results are shown in Figs. 14 to 17. We see
that 0-Comp sort is the slowest for arbitrary data. However, we
see also that 0-Comp sort is the fastest for interval data and larger
σ .
4.2.4 Data with σ = 100

The results are shown in Figs. 18 to 23. We see that 0-Comp
sort and H-P sort are the fastest for arbitrary data. We see also
that 0-Comp sort is the fastest for interval data although H-P sort
catches up with 0-Comp sort when maxVal becomes small.

5. Conclusion and Future Work
We have presented efficient integer sorting algorithms based on

n Thrust CUB H-P 0-Comp
1M 1.232 1.249 0.551 0.632
2M 1.968 1.953 0.800 0.945
3M 2.628 2.631 1.356 1.435
4M 3.279 3.268 2.289 2.509
5M 3.977 3.977 3.621 3.770
6M 4.703 4.644 4.993 5.133
7M 5.305 5.297 6.141 6.399
8M 5.928 5.930 7.325 7.773
9M 6.620 6.622 8.839 9.207
10M 7.281 7.267 10.283 10.673

Fig. 12 Computing time in case that δ = 10 and σ = 1

n Thrust CUB H-P 0-Comp
1M 1.237 1.240 0.526 0.591
2M 1.848 1.844 0.750 0.844
3M 2.470 2.467 0.993 1.085
4M 3.092 3.088 1.214 1.332
5M 3.741 3.744 1.432 1.618
6M 4.397 4.455 1.687 1.877
7M 5.286 5.274 1.902 2.113
8M 5.912 5.911 2.139 2.369
9M 6.614 6.597 2.392 2.623
10M 7.255 7.234 2.664 2.915

Fig. 13 Computing time in case that δ = 50 and σ = 1

Histogram and Prefix-sums and have shown that their implemen-
tations on GPGPU are faster than the sorting algorithms Thrust-
sort and CUB-sort which are known to be the fastest implemen-
tation on GPGPU.

Stable sorting algorithms maintain in the output the relative or-
der of input appearance in the case of equally valued data. This
property is important and interesting. In fact,in Radix sort each
digit sort must be stable in order for radix sort to work correctly.
Unfortunately, proposed algorithms in this paper are not stable.
Making these algorithms stable while preserving their efficiency
is one of the interesting future work.

Acknowledgments
This work was supported in part by JST SICORP Grant

Number JPMJSC1806, and by JSPS KAKENHI Grant Num-

6ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

IPSJ SIG Technical Report

n Thrust CUB H-P 0-Comp
1M 1.303 1.293 1.986 0.801
2M 1.950 1.945 3.678 1.324
3M 2.641 2.620 5.690 2.019
4M 3.277 3.283 8.040 3.272
5M 3.968 3.979 10.706 4.596
6M 4.646 4.645 13.474 6.121
7M 5.310 5.308 16.139 7.565
8M 5.923 5.980 18.879 9.180
9M 6.942 6.938 21.747 10.700
10M 7.269 7.309 24.454 12.256

Fig. 14 Computing time for interval data (δ = 1, σ = 10)

n Thrust CUB H-P 0-Comp
1M 1.338 1.241 2.113 0.776
2M 1.857 1.845 3.887 1.193
3M 2.484 2.468 5.683 1.588
4M 3.100 3.072 7.468 2.023
5M 3.967 3.941 9.261 2.471
6M 4.493 4.352 11.060 2.880
7M 5.294 5.255 12.851 3.310
8M 5.965 5.863 14.652 3.716
9M 6.617 6.569 16.455 4.132
10M 7.276 7.196 18.295 4.572

Fig. 15 Computing time for interval data (δ = 1, σ = 100)

ber 17K00171 20K11685 20K11842.

n Thrust CUB H-P 0-Comp
1M 1.741 1.303 1.426 1.551
2M 2.805 1.961 2.970 3.199
3M 3.953 2.638 4.564 4.843
4M 5.569 3.296 6.135 6.561
5M 6.698 4.207 7.746 8.263
6M 7.926 4.913 9.363 9.967
7M 9.369 5.620 10.972 11.624
8M 11.213 6.258 12.570 13.302
9M 12.445 6.987 14.224 15.055
10M 13.833 7.668 15.820 16.698

Fig. 16 Computing time for arbitrary data (δ = 1, σ = 10)

n Thrust CUB H-P 0-Comp
1M 1.732 1.337 0.929 1.024
2M 2.772 1.949 2.356 2.514
3M 3.904 2.630 3.941 4.056
4M 5.483 3.277 5.497 5.709
5M 6.601 4.158 7.113 7.333
6M 7.826 4.879 8.768 8.993
7M 9.241 5.581 10.350 10.660
8M 11.068 6.235 11.955 12.296
9M 12.269 6.952 13.614 13.994
10M 13.645 7.637 15.273 15.624

Fig. 17 Computing time for arbitrary data (δ = 1, σ = 100)

References
[1] Arkhipov, D. I., Wu, D., Li, K. and Regan, A. C.: Sorting with GPUs:

A survey, arXiv:1709.02520v1 (2017).
[2] Faujdar, N. and Ghrera, S.: Performance evaluation of parallel count

sort using GPU computing with CUDA, Indian Journal of Science and
Technoogy, Vol. 9, No. 15, pp. 1–12 (2016).

[3] NVIDIA Corp.: Thrust, , available from
⟨https://docs.nvidia.com/cuda/index.html⟩ (accessed 2020-11-18).

[4] NVIDIA Corp.: CUB, , available from ⟨https://nvlabs.github.io/cub/⟩
(accessed 2020-11-18).

[5] Kolonias, V., Voyiatzis, A. G., Goulas, G. and Housos, E.: Design
and implementation of an efficient integer count sort in CUDA GPUs,
Concurrency and Computation: Practice and Experience, Vol. 23, pp.
2365–2381 (2011).

[6] Svenningsson, J., Svensson, B. J. and Sheeran, M.: Counting and oc-
currence sort for GPUs using an embedded language, Proceedings of
the 2nd ACM SIGPLAN workshop on Functional high-performance
computing, FHPC’13, pp. 37–46 (2013).

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

IPSJ SIG Technical Report

n Thrust CUB H-P 0-Comp
1M 1.221 1.173 0.634 0.553
2M 1.743 1.736 1.014 0.828
3M 2.513 2.446 1.383 1.027
4M 3.073 3.063 1.728 1.282
5M 3.712 3.715 2.107 1.539
6M 4.349 4.346 2.449 1.781
7M 4.971 4.965 2.813 2.015
8M 5.549 5.556 3.200 2.289
9M 6.231 6.207 3.635 2.490
10M 6.814 6.820 3.916 2.731

Fig. 18 Computing time for interval data (δ = 10, σ = 100)

n Thrust CUB H-P 0-Comp
1M 1.164 1.182 0.547 0.583
2M 1.740 1.737 0.716 0.748
3M 2.317 2.310 0.954 0.944
4M 2.881 2.879 1.226 1.219
5M 3.484 3.548 1.442 1.388
6M 4.319 4.319 1.792 1.618
7M 4.917 4.929 1.941 1.839
8M 5.519 5.514 2.086 2.050
9M 5.837 5.841 2.511 2.287
10M 6.424 6.421 2.573 2.491

Fig. 19 Computing time for interval data (δ = 50, σ = 100)

[7] Faujdar, N. and Saraswat, S.: A roadmap of parallel sorting algorithms
using GPU computing, Proceedings of International Conference on
Computing, Communication and Automation, ICCCA2017, pp. 736–
741 (2017).

[8] Usmani, A. R.: A novel time and space complexity efficient variant
of counting-sort algorithm, Proceedings of 2019 IEEE International
Conference on Innovative Computing, ICIC (2019).

[9] Yokoyama, E., Yasuoka, K., Okabe, Y. and Kanazawa, M.: Imple-
mantation of a fast integer sorting algorithm for distributed-memory
parallel vector supercomputers, IPSJ SIG Technical Reports on High
Performance Computing, 42(3), pp. 45–53 (2001).

[10] Sum, W. and Ma, Z.: Count sort for GPU computing, Proceedings of
2009 15th ICPDS, pp. 919–924 (2009).

[11] Hellfritzsch, S.: Efficient Histogram Computation on GPGPUs, Mas-
ter’s Thesis, University of Copenhagen, pp. 1–98 (2018).

[12] Eisenstat, S. C.: O(log∗ n) algorithms on a Sum-CRCW PRAM, Com-
puting, Vol. 79, pp. 93–97 (2007).

[13] Frei, F. and Wada, K.: Efficient circuit simulation in MapReduce, Pro-
ceedings of ISAAC 2019, LIPIcs, Vol;. 149, pp. 55:1–55:22 (2019).

[14] NVIDIA Corp.: CUDA C++ Programming Guide, , avail-
able from ⟨https://docs.nvidia.com/cuda/cuda-c-programming-

n Thrust CUB H-P 0-Comp
1M 1.185 1.180 0.581 0.686
2M 1.740 1.734 0.753 0.821
3M 2.327 2.303 0.945 0.981
4M 2.889 2.877 1.075 1.121
5M 3.488 3.485 1.646 1.724
6M 4.092 4.082 1.479 1.832
7M 4.938 4.931 1.899 2.004
8M 5.205 5.210 2.041 2.117
9M 5.843 5.840 2.194 2.255
10M 6.417 6.417 2.344 2.448

Fig. 20 Computing time for interval data (δ = 100, σ = 100)

n Thrust CUB H-P 0-Comp
1M 1.681 1.239 0.519 0.590
2M 2.783 1.925 0.766 0.831
3M 3.915 2.581 0.987 1.075
4M 5.553 3.219 1.210 1.320
5M 6.621 3.912 1.451 1.631
6M 7.833 4.629 1.809 1.977
7M 9.243 5.214 2.639 2.544
8M 11.089 5.831 3.235 3.577
9M 12.311 6.522 3.915 4.201
10M 13.695 7.153 4.754 5.105

Fig. 21 Computing time for arbitrary data (δ = 10, σ = 100)

guide/index.html⟩ (accessed 2020-11-18).

8ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

IPSJ SIG Technical Report

n Thrust CUB H-P 0-Comp
1M 1.646 1.219 0.509 0.569
2M 2.684 1.821 0.702 0.809
3M 3.781 2.433 0.942 1.011
4M 5.308 3.049 1.134 1.230
5M 6.413 3.683 1.341 1.552
6M 7.590 4.310 1.551 1.712
7M 8.946 5.204 1.758 1.954
8M 10.689 5.837 1.972 2.158
9M 11.886 6.507 2.204 2.392
10M 13.247 7.145 2.411 2.685

Fig. 22 Computing time for arbitrary data (δ = 50, σ = 100)

n Thrust CUB H-P 0-Comp
1M 1.618 1.215 0.510 0.565
2M 2.661 1.825 0.700 0.845
3M 3.744 2.429 0.937 1.017
4M 5.244 3.036 1.133 1.243
5M 6.330 3.669 1.343 1.498
6M 7.483 4.290 1.553 1.700
7M 8.835 4.911 1.737 1.947
8M 10.561 5.500 1.955 2.151
9M 11.734 6.142 2.181 2.388
10M 13.062 6.723 2.390 2.584

Fig. 23 Computing time for arbitrary data (δ = 100, σ = 100)

9ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.19
2020/12/22

