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Abstract: Model extraction attacks are an attack in which an adversary utilizes a query access to the target model to
obtain a new model whose performance is equivalent to the target model efficiently, i.e., fewer datasets and compu-
tational resources than those of the target model. Existing works have dealt with only simple deep neural networks
(DNNs), e.g., only three layers, as targets of model extraction attacks, and hence are not aware of the effectiveness of
recurrent neural networks (RNNs) in dealing with time-series data. In this work, we shed light on the threats of model
extraction attacks on RNNs. We discuss whether a model with a higher accuracy can be extracted with a simple RNN
from a long short-term memory (LSTM), which is a more complicated and powerful type of RNN. Specifically, we
tackle the following problems. First, in case of a classification task, such as image recognition, extraction of an RNN
model without final outputs from an LSTM model is presented by utilizing outputs halfway through the sequence.
Next, in case of a regression task such as weather forecasting, a new attack by newly configuring a loss function is
presented. We conduct experiments on our model extraction attacks on an RNN and an LSTM trained with publicly
available academic datasets. We then show that a model with a higher accuracy can be extracted efficiently, especially
through configuring a loss function and a more complex architecture different from the target model.
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1. Introduction

1.1 Backgrounds
Deep learning is a state-of-the-art technology for machine

learning and is known to provide various advantages in many
areas. Deep learning requires a heavy computational load and
therefore a business style called machine-learning-as-a-service
(MLaaS), where a machine learning model is hosted via a public
server, is recently the subject of a great deal of attention. Well-
known MLaaS include AWS *1 and Microsoft Azure *2. In such a
situation where a machine learning model consists of two tasks,
i.e., training and prediction, a trained model is stored in a public
server, e.g., cloud server, and a client requests the model to run a
prediction task via APIs.

However, the execution of prediction tasks via APIs may leak
information about a model to a client. Model extraction at-
tacks [27] have received attention in recent years from the stand-
point of information leakage described above. In particular, an
adversary who mimics a client trains their own model by utilizing
APIs of a machine learning model hosted by a public server called
an original model, and its prediction results. The trained model
by the adversary is called a substitute model. The goal of the
adversary is to obtain a local copy of a machine learning model
with a higher accuracy even when the adversary owns less data
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than the public server of the original model [14], [21]. In general,
benefits for the adversary are significant because gathering data
and its training are tasks involving heavy costs. Moreover, ac-
cording to Juuti et al. [14], transferable adversarial examples [25]
to analyze misidentifiable predictions via a substitute model have
been discussed as applications of model extraction attacks. Con-
sequently, a model extraction attack is a serious problem for deep
learning and its underlying machine learning.

In spite of the significance of model extraction attacks, only
simple architectures such as a logistic regression model [27] or
deep neural networks (DNNs) with simple architectures [14], [15]
have been discussed in existing works. Thus, the features and
feasibility of model extraction attacks on other architectures are
unclear. For instance, threats of model extraction attacks are non-
trivial for recurrent neural networks (RNNs) which are used in
natural language processing and cybersecurity applications. In
particular, the computational process of deep learning differs ac-
cording to the architecture and therefore the success conditions
and advantages of an adversary may differ according to the archi-
tecture as well. Hence, discussion on model extraction attacks for
various architectures is an important research theme for avoiding
many potential threats stemming from attacks such as the adver-
sial example via a substitute model as described above.

The preliminary version of this paper was published at Multimedia, Dis-
tributed, Cooperative, and Mobile Symposium (DICOMO 2019), July
2019. The paper was recommended to be submitted to Journal of Infor-
mation Processing (JIP) by the chief examiner of SIGCSEC.

*1 https://aws.amazon.com/jp/aml/
*2 https://azure.microsoft.com/ja-jp/services/machine-learning-studio/
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1.2 Contribution
In this paper, we introduce model extraction attacks on RNNs

and long-short term memory (LSTM) and show that RNNs with a
higher prediction accuracy as a substitute model by an adversary,
can be obtained from LSTM as an original model by a public
server or other means. Our technical contributions include finding
attacks based on features of RNNs and LSTMs for a classification
task and a regression task. Substitute models with higher accu-
racy can be obtained based on the features of RNNs and LSTMs,
which compute an output each time and give feedback for next
usage and also take into account those loss functions to obtain
a final output (See Section 4). Despite RNNs having simpler ar-
chitectures than LSTMs, an adversary can train a substitute model
with a high accuracy without final outputs from an original model
by biasing the outputs halfway through the sequence.

We also conduct experiments with the MNIST dataset *3 for a
classification task and with the Air Quality dataset *4 for a regres-
sion task to show the ability to extract RNNs as substitute mod-
els from LSTMs as original models. The results show that for
MNIST datasets, a substitute model can be extracted with 97.5%
accuracy with only 20% of the traning data compared to 97.3%
for the original model. Next, on the Air Quality dataset, the sub-
stitute model with 87.1% accuracy, which is computed by the
coefficient R2 of determination, can be extracted with just three
months of training data compared with the original model which
achieves 86.8% accuracy with training data for nine months. We
also discuss relationships between architectures and those fea-
tures and shed light on the success factors for model extraction
and countermeasures (See Section 5 for details).

1.3 Related Work
State-of-the-Art Attacks: As the latest results, Reith et al. [20]

discussed model extraction on support vector regression. For
works targeting neural networks, Juuti et al. [14] showed an attack
in which an adversary generates queries for DNNs with simple
architectures. Their attack might improve our results on RNNs
but we leave this as an open problem for RNNs. Concurrently,
Wang et al. [28] proposed model extraction attacks to steal hy-
perparameters from a simple architecture, e.g., a neural network
with three layers. To the best of our knowledge, the most elegant
attack was shown by Okada and Hasegawa [21]. They utilized
distillation [3], [11], which is a technique for model compres-
sion described below to execute model extraction attacks against
DNNs and convolution neural networks (CNNs) for image classi-
fication. In doing so, Okada and Hasegawa succeeded in extract-
ing a model with a higher accuracy than the original model. We
therefore consider their work as having the best results from the
standpoint of the use of distillation.

Relationships between Architectures and Accuracy: One of the
main discussions in this paper is how to clarify relationships be-
tween accuracy and architectures on an original model and a sub-
stitute model. Similar discussions have been provided by Juuti
et al. [14], Pal et al. [23], Krishna et al. [16], and Okada et al. [21].
The papers in Refs. [14], [23] explain that the accuracy of the

*3 http://yann.lecun.com/exdb/mnist/
*4 https://archive.ics.uci.edu/ml/datasets/air+quality

substitute model increases in general when the architecture of
an original model is identical to that of a substitute model. Pal
et al. [23] have claimed that their argument is true unless under-
fitting or overfitting is caused on a substitute model, whose ar-
chitecture is more complicated than that of the original model,
e.g., the use of a deeper network in the substitute model than in
the original model. In contrast, the results in Ref. [16] showed
that, when BERT [6] utilized in natural language processing is
targeted, the accuracy of the substitute model is improved by use
of a BERT model as a substitute model that is deeper than the
original model. The results in Ref. [21] also showed a similar re-
sult in the case of DNNs and CNNs. Our results are identical to
the results in Refs. [16], [21], except for the use of RNNs.

Distillation: As further related works, model compression,
named distillation [3], is represented. Distillation is used for re-
ducing learning information by multiple neural networks, which
are called teacher models, to smaller neural networks, which are
called student models. Hinton et al. [11] showed a method to dis-
till a model by a softmax function with temperature which can
control the convergence of training through temperature. While
distillation allows a student model to extract a large amount of in-
formation from a teacher model, model extraction attacks require
that an adversary has as little access as possible to a dataset and
an original.

Additional Features on Model Extraction: As one of the lat-
est features on model extraction attacks, the Knockoff nets at-
tack [22] discusses how an adversary attempts model extraction
based solely on observed input-output pairs, i.e., without any
knowledge of the dataset of the original model. However, Atli
et al. [10] showed that the performance of the Knockoff nets at-
tack is limited. Meanwhile, Jagielski et al. [13] proposed a new
feature named fidelity to measure the general agreement between
an original model and a substitute model. Discussions on these
features on RNNs remain an open problem.

Further Attacks for Assisting in Model Extraction:
Naghibijouybari et al. [19] and Yoshida et al. [30] introduced
side-channel attacks targeting models separated by hardware
mechanisms. Model reverse-engineering attacks [2] where an
original model is operated in an environment owned by an
adversary have also been shown as advanced attacks. These
attacks are stronger than the attack scenario in this work because
we do not discuss such physical access to an original model for
an adversary. Our attack against RNNs can potentially become
stronger by utilizing the side-channel attack described above.

1.4 Paper Organization
The rest of this paper is organized as follows. First, the back-

ground required for understanding this paper is presented in Sec-
tion 2. Next, an attack model and the proposed attacks against
RNNs are presented in Section 3. Then, experiments are shown
in Section 4, and considerations including potential countermea-
sures are shown in Section 5. Finally, the conclusion and future
directions are presented in Section 6.

2. Preliminaries

In this section, we provide a background for understanding our

c© 2020 Information Processing Society of Japan
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work.

2.1 Tasks Specified in Neural Networks
The mechanism of a neural network varies depending on the

task to be solved and loss functions in particular differ for each
task. Hence, it is necessary to discuss attack techniques sepa-
rately. We describe the two types of typical tasks handled by
neural networks below.
2.1.1 Classification

A classification task is a task where an input is classified into
one of the categories specified in advance as a prediction out-
put. For example, a neural network for classification categorizes
a number from 0 to 9 when a handwritten digit is given as input.
The number of neurons in the neural network required to solve
such a classification task is identical to the number of candidates
in an output layer, and decides which neuron has the largest calcu-
lation result. The training is often executed through the softmax
function to return candidates along with their probablities.
2.1.2 Regression

A regression task outputs continuous values as a response to
input. For example, a neural network for prediction of the air
quality outputs a numerical value of a component of the air qual-
ity at a certain time of the given input for the previous several
hours. The neural network that solves a regression task outputs
a numerical value on an output layer. Here, the neural network
has plural neurons in proportion to the number of candidates pre-
dicted on the output layer. Unlike the classification task, values
of neurons in the output layer are computed without the softmax
function.

2.2 Recurrent Neural Networks
2.2.1 Principle of Recurrent Neural Networks

Recurrent neural networks (RNNs) are a kind of neural net-
work that deals with time-series data including contexts, e.g.,
speech recognition and language processing. For example, when
gender is estimated by speech waveforms of human voices, a con-
tinuous waveform can be discretized by short time intervals as
shown in Fig. 1. In this figure, inputs are set as x1, x2, · · · , xt,
where xi is the input at time i as time-series data.

RNNs have negative feedback in those networks as shown in
Fig. 2. In comparison with architectures of typical neural net-
works such as deep neural networks (DNNs), RNNs have an in-
put layer, hidden layers, and an output layer whereas they also
have a feedback path to return the output of the hidden layer to
the input itself.

We describe RNNs in detail below. An input to the RNN is
made at each time t. An input given at time t propagates from
the input layer to the hidden layer in a similar manner as in con-
ventional neural networks. An output of the hidden layer with an
activation function propagates to the output layer and returns in
paralle with the input of the hidden layer itself as feedback. The
signal propagated to the output layer is output as a prediction re-
sult at time t, whereas the feedback is given to the hidden layer as
a part of an input at the next time t + 1. Consequently, the output
at t+1 is affected by the outputs of the hidden layer before time t,
and hence is able to capture contexts of the time-series data. Un-

Fig. 1 Example of an audio waveform.

Fig. 2 Architecture of an RNN.

Fig. 3 Memory unit of an LSTM.

like typical neural networks which approximate a mapping from a
single input to a single output, an RNN approximates a mapping
from a sequence to a sequence and returns outputs each time.
RNNs are used in both classification and regression tasks, and of-
ten deal with the regression task that predicts continuous values
such as for stock prices prediction [8].
2.2.2 Long Short-Term Memory

In general, neural networks with deeper layers have a gradi-
ent loss problem [9]. Since RNNs have a recursive structure in
a hidden layer, information propagates deeper when input time-
series data serving as the input becomes longer, even for shallow
networks. Consequently, RNNs are prone to the gradient loss
problem or mainly the memory data is difficult to retain for a
long period of time. Long short-term memory (LSTM) has been
proposed to overcome the gradient loss problem in RNNs, which
only store memory for a short period. The basic architecture of
LSTMs is the same as that of RNNs, except that a hidden layer
with a recursive structure of RNNs is replaced with a layer with
an element called a memory unit which is shown in Fig. 3.

Compared to standard RNNs, LSTMs have greater computa-
tional complexity because they have more complicated architec-
tures. Furthermore, LSTMs are different types depending on the

c© 2020 Information Processing Society of Japan
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Fig. 4 Overview of model extraction attacks.

types of inputs and outputs. For instance, LSTMs have the fol-
lowing three types. The many-to-many type has inputs and out-
puts at each time. The many-to-one type has inputs given at each
time and a single output at only the last time. The one-to-many
type has a single input at only the first time and an individual out-
put at each time. Typical neural networks have a single output
for each given input and can therefore be considered a one-to-one
type.

2.3 Model Extraction Attacks
We briefly describe an overview of model extraction attacks

below. Suppose that a model stored on a public server is trained
using training data D1 ⊂ D. That trained model is thereafter
called the original model. General users pay the server to be al-
lowed to utilize its hosting service and give data as input via APIs
of the server. This data is input to the original model, and then the
original model returns prediction results to a user as a response
from the service.

Based on this background, an adversary, who knows a part of
the training dataset D2 ⊂ D, executes the original model through
the API to train their own model by utilizing prediction results
from the original model for D2. The model trained by the adver-
sary is called a substitute model. For example, the adversary can
train a substitute model by using prediction results and computa-
tional resources of the original model as a springboard to obtain
the same or higher accuracy as that of the original model. This
is the concept for an attack strategy for model extraction attacks.
Figure 4 shows an overview of the attacks.

The main advantage of model extraction attacks for an adver-
sary is to obtain a model with significantly reduced costs for both
data collection and its resulting training. In general, data col-
lection and training tasks involve heavy costs, and hence result-
ing models become an important asset for a provider of a public
server hosting an original model. In contrast, the adversary can
obtain a substitute model whose performance can be the same as
the original model without paying such expensive costs. More-
over, the state-of-the-art work in Ref. [21] has shown that model
extraction attacks enable an adversary to obtain a substitute model
with higher accuracy than the original model.

3. Model Extraction Attacks against Recur-
rent Neural Networks

3.1 Problem Setting
We describe the technical problems and conditions for model

extraction attacks against RNNs as the main problem setting be-
low.
Computational Resources An original model is provided on a

public server with a rich computational resource, whereas
an adversary, who executes model extraction attacks, needs
to train a substitute model with fewer resources.

Input/Output In contrast to deep neural networks (DNNs),
RNNs contain an input and an output for each time. These
inputs and outputs are utilized halfway through the se-
quences in feedback to compute a final output. We discuss
how an adversary obtains an advantage by way of model ex-
traction attacks from the inputs and outputs halfway through
the sequences.

Regression As described in Section 2.2, RNNs are often utilized
for a regression task. Existing model extraction attacks have
been discussed mainly about classification tasks such as im-
age classification. A softmax function is utilized in neural
networks for a classification task but it cannot be used for a
regression task. Therefore, known techniques [21] that mod-
ify the softmax function to decrease the number of queries
cannot be used. Moreover, since an adversary who owns sev-
eral parts of a dataset used in an original model may know
the correct result for each output in advance, the merit of the
information obtained from the APIs may be of only limited
value compare with DNNs. To effectively utilize informa-
tion from RNNs, a loss function for a regression task should
be constructed in detail.

In this paper, we evaluate the accuracy of model extraction attacks
against RNNs from the standpoints described above.

3.2 Attack Strategy
In this section, we describe model extraction attacks based on

features of RNNs.
As described in the previous section, the two features called

computation resources and input/otuput should be considered for
model extraction attacks on RNNs. First, the architecture of an
LTSM is more complicated than that of an RNN. Hereafter, we
simply denote RNNs with a simple architecture as RNNs. Sec-
ond, in comparison with other neural networks such as DNNs or
convolutional neural networks (CNNs), an output with variable
length is generated for each time in RNNs.

Hence, we discuss model extraction attacks against RNNs from
the following standpoints:
( 1 ) Can a substitute model consisting of RNN be extracted from

an original model consisting of LSTM?
( 2 ) Can an adversary obtain any advantage by utilizing features

of input/output for RNNs?
We describe the details of the attacks below. Let training data
used in an original model be Dc and training data used in a sub-
stitute model be Da. Here, the original model, i.e., an LSTM, is
trained by utilizing Dc. Then, an adversary trains the substitute
model, i.e., an RNN, with Da whose distribution is close to Dc

and possibly Da ⊆ Dc, and then continues to train RNN using
the obtained prediction results from the original model by giving
input data.

One might think that an assumption in which an adversary has

c© 2020 Information Processing Society of Japan
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Fig. 5 Soft-label encoding and one-hot encoding.

a part of a dataset utilized in an original dataset, e.g., Da ⊆
Dc, is very strong. However, according to Wang and Zhen-
qiang [28], this setting is rather realistic in machine-learning-
as-a-service (MLaaS) such as Amazon Machine Learning and
Microsoft Azure Machine Learning, where a machine learning
model is hosted via a public server *5. In particular, in the MLaaS
setting, a machine learning model hosted by a public server uti-
lizes data provided by users as the training data for constructing a
large amount of dataset. This means that an original model on the
server is trained with data that each user owns in local. In doing
so, an adversary or namely a malicious user can access to a part
of training data because the user owns the data in local.
3.2.1 Attack on Classification Task

In general, a neural network that solves a classification task re-
turns an output without the use of a softmax function in its output
layer for prediction. We call such an output or namely values not
obtained through a softmax function as logits [9]. While logits
are soft-label encoding, labeled data utilized in training an orig-
inal model and a substitute model, i.e., Dc and Da, are one-hot
encoding that represents just the true value for each label. The
concept of soft-label encoding and one-hot encoding is shown in
Fig. 5. In this situation, an adversary executes the following at-
tack procedure:
( 1 ) Identification of Leaky Time for the Original Model: The

adversary identifies the maximized index on each vector for
logits returned from the original model from the first time
to the last time and then evaluates the prediction accuracy
for each time by comparing those labels. A time with high
accuracy is defined as a leaky time.

( 2 ) Intensive Extraction at Leaky Time: For the leaky time de-
scribed in the previous item, the softmax function with tem-
perature [11] is utilized. In particular, the adversary first
trains a substitute model by computing a loss function with
labeled data, i.e., one-hot labels included in Da to update the
parameters. Then, the adversary computes the loss function
in which soft-labels through the softmax function with tem-
perature are set as labeled data to update the parameters.

The softmax function with temperature is defined in Eq. (1) and
its output is shown in Fig. 6. This function generally behaves
identically to the original softmax function when T = 1, and a
gradient becomes smaller in proportion to a temperature T , or
namely so that convergence of training can become faster in pro-

*5 https://analyticsindiamag.com/10-machine-learning-service-mlaas-
tools-data-scientists/

Fig. 6 Graphs for softmax function with temperature. Let T be tempera-
ture. Baseline is T = 1, which is identical to the original softmax
function. In proportion to T , a derivative on each curve is different
even with the same input k of the output layer.

portion to T . In this paper, the softmax function with temperature
is utilized and, in doing so, the effects on model extraction attacks
are evaluated by changing T .

softmax(k) =
e

ak
T

∑n
i=1 e

ai
T

. (1)

Meanwhile, we focus on image classification with only RNNs
although typical image classification with RNN is based on a
combination with CNNs [29]. The purpose of our paper is to
properly evaluate the accuracy of model extraction attacks to
RNNs, and hence we focus only on features of the RNNs them-
selves. Namely, experiments and discussion described later are
conducted only with RNNs and a combination of RNNs with
CNNs is beyond the scope of this work.
3.2.2 Attack on Regression Task

A neural network that solves a regression task returns a pre-
dicted value computed by a model, and the output is drastically
different from a model for a classification task whose output is
labeled with probabilities. Consequently, due to the structure of
an output layer, a softmax function cannot be used as a loss func-
tion. In general, norms are utilized in a loss function for a model
to solve a regression task, e.g., L1loss or L2loss.

The softmax function with temperature and L2loss has been
utilized in the distillation of neural networks [1], [5]. However,
while the softmax function with temperature has been used in
model extraction attacks by Okada and Hasegawa [21], the use of
L2loss in model extraction attacks is non-trivial. In this paper,
we utilize L2loss in the model extraction attacks for a regression
task.

While an output of the softmax function with temperature is
distributed within [0,1] even for a corrupted prediction, a loss
function with the norm does not have any restriction in the output
range. That is, a student model in distillation, or namely a substi-
tute model for a model extraction attack, may be affected greatly
by a corrupted prediction from a teacher model, i.e., an original
model. To overcome the limitation described above, instead of the
use of outputs from the teacher model, we focus on the method by
Chen et al. [5] which utilizes the outputs as an upper bound to be
achieved for the student model. As shown in Eq. (2), a penalty for
adjusting the parameter is given for the output only when L2loss

between a predicted value Rt for the teacher model and labeled

c© 2020 Information Processing Society of Japan
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Fig. 7 Lossgen graphs for loss functions. We denote by y = norm(x) the
norm function with respect to each norm of smoothL1, L1 and L2,
respectively.

data y is smaller than L2loss between a predicted value Rs for the
student model and y with respect to a parameter m designated in
advance. The function is called teacher bound regression loss and
is denoted by Lb. Here, m is a small value estimated by distribu-
tion for each dataset.

Lb(Rs,Rt, y) =

⎧
⎪⎪⎨
⎪⎪⎩

||Rs − y||22, if ||Rs − y||22 +m > ||Rt − y||22
0, otherwise.

(2)

Furthermore, instead of the use of Lb as a loss function for the
student model, Lb is embedded in the use of smooth L1 loss, Ls1,
which is defined in Eq. (3). The smooth L1 loss Ls1 can overcome
the problem where the derivation is impossible by converging to
zero on the L1 loss and the problem where a gradient becomes
too large in proportion to the distance on L2. The distribution for
each loss function is shown in Fig. 7.

Ls1(Rs, y) =

⎧
⎪⎪⎨
⎪⎪⎩

0.5 × |Rs − y|21, if |Rs − y|1 < 1
|Rs − y|1 − 0.5, otherwise.

(3)

Then, the loss function Lreg of a student model for a regression
task is defined in Eq. (4):

Lreg(Rs,Rt, y) = Ls1(Rs, y) + v × Lb(Rs,Rt, y). (4)

For model extraction attacks, the teacher model described above
is dealt with by an original model stored in a public server while
the student model is dealt with by a substitute model. In doing
so, Lreg is utilized as a loss function to train the substitute model.
Since an adversary does not know the outputs identical to the in-
put data on typical neural networks, an output returned from an
original model is important information for the adversary. Hence,
discussion about the details in loss functions described above is
often unnecessary.

Meanwhile, in the case of RNNs, the following discussion is
necessary due to features of their input and output. For RNNs
of the many-to-many type, an adversary can correctly guess the
predicted data returned from an original model through its own
data because both input data and output data are included in the
same dataset as time-series data. In other words, an adversary
who owns a part of a dataset can train a substitute model with
its own input and labeled data. In doing so, to give a more gen-
eralized performance to the substitute model, knowledge of the

original model trained with a larger amount of data should be ex-
tracted by the adversary. We evaluate the loss function Ls1 with
respect to the extraction of knowledge described above.

4. Experiment

In this section, we conduct experiments on model extraction
attacks on the RNN described in the previous section to evaluate
their effectiveness in terms of the accuracy of prediction in mea-
suring the correctness of predictions on the test distribution. In
particular, we discuss neural network architectures for both clas-
sification and regression tasks.

4.1 Experiment Setup
The experimental environment is shown in Table 1. We config-

ured the environment on the Google Colaboratory *6. The training
algorithm of neural networks used in the experiments is the Adam
optimizer which is standard equipment for TensorFlow *7 with a
learning rate of 0.001.
4.1.1 Settings for the Classification Task

We utilize the MNIST dataset *8 in an experiment on model
extraction attacks against a many-to-many LSTM. The MNIST
dataset used consists of 55,000 samples as training data and
11,000 samples as test data. Each sample represents a handwrit-
ten character from 0 to 9 and is represented as 28×28 pixels. Fig-
ure 8 *9 shows examples of the samples on the MNIST dataset.
This dataset has been used in many works such as model extrac-
tion [13], [14] and distillation [11].

In the experiment described below, each sample on the MNIST
dataset is converted into time-series data. As shown in Fig. 9,
each sample of 28 × 28 pixels is divided into lines for each time
sequentially, where we assume the t-th line is input at time t. In
other words, there are 28 lines of input data, and each line is given
to a model as time-series data for times 1 to 28.

As neural networks for classification of handwritten digits,
DNNs and CNNs have been discussed by Okada and Hasegawa
with respect to model extraction attacks based on the softmax
function with temperature. To compare with the work by Okada
and Hasegawa, we adopt the same experimental setting as in their
work. In particular, as shown in Fig. 10, 55,000 samples as train-
ing data in the MNIST dataset are divided into five subsets, or
namely 11,000 samples per subset. Let the subsets be denoted as
D1, D2, D3, D4, and D5 for convenience. Four of the subsets are
utilized as training data Dc for an original model, and the remain-
ing subset is utilized as training data Da for a substitute model
by an adversary. Experiments are conducted five times because
there are five cases in which each subset is used as Da, and then
the final results of the entire experiment are the averages of the
results of the five experiments, or namely 5-fold cross validation.

Since the MNIST dataset is an academic benchmark for a clas-
sification task, as described in Section 3.2.1, we utilize cross-
entropy error through the softmax function with temperature as a

*6 https://colab.research.google.com
*7 https://www.tensorflow.org/
*8 http://yann.lecun.com/exdb/mnist/
*9 https://machinelearningmastery.com/how-to-develop-a-convolutional-

neural-network-from-scratch-for-mnist-handwritten-digit-classification/
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Fig. 10 Environments of original and substitute models with MNIST dataset.

Table 1 Experimental environment.

Development Platform Tensor Flow 2.0.
OS Ubuntu 18.04

GPU NVIDIA Tesla K80 12 GB
Memory 13 GB RAM
Storage 360 GB

Fig. 8 Example of MNIST dataset.

Fig. 9 Conversion of MNIST dataset to time-series data.

loss function. Here, let temperatures be T = 1, 4, 16. For T = 1,
the softmax function with temperature is exactly identical to the
original softmax function as described above. After training the
substitute model with labeled data using the cross-entropy error,
the substitute model is trained as a loss function utilizing the soft-
max function with temperature by using logits values obtained
from the original model.

The accuracy of prediction is evaluated with 10,000 samples as
test data of the MNIST dataset with respect to both the original
model of LSTM and the substitute model of RNN. According to
our pre-experiment, the accuracy of the original model is 97.3%
although we omit the details. The accuracy is the attack goal of

Table 2 Setting for training in case of classification task.

Epoch 220
Iterations in Each Epoch |Da |

50
Batch Size 50

Fig. 11 The architecture of the neural network used on the experiment in
classification task.

the substitute model for an adversary. The setting for training in
this experiment is shown in Table 2.

Figure 11 shows the architecture of the neural network used
on the experiment classification task. The hidden layer is a single
RNN cell. The outputs of the RNNcell neurons at time t and the
inputs to the RNNcell neurons at time t + 1 are connected by a
full connection, i.e., FC. We use tf.contrib.rnn.BasicLSTMCell
and tf.contrib.rnn.BasicRNNCell as a hidden layer of RNN and
LSTM, respectively, and use tf.contrib.rnn.static rnn for network
input/output.
Baseline of the Experiment on the Classification Task

The following setting is utilized as baselines to compare the
performance of our attack.
• Temperature T = 1: This is identical to the original softmax

function where the distillation is not used.
• Final output at time 28: This is precisely identical to an out-

put on the output layer.
4.1.2 Settings for the Regression Task

For experiments on model extraction attacks against the LSTM
to solve the regression task, we deal with an Air Quality
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Fig. 13 Dataset of test, original and substitute models with Air Quality dataset.

Fig. 12 Examples of the Air Quality dataset.

dataset *10, which consists of the amount of materials contained
in the atmosphere and temperatures collected by sensor devices.
The Air Quality dataset was measured every hour from 18:00 on
03/10/2004 to 14:00 04/04/2005 and each record per hour con-
sists of 13 kinds of values as the amount of materials and tempera-
ture. Examples of the Air Quality dataset are shown in Fig. 12 *11.
This dataset has been utilized in several works on analysis of the
air quality [12], [17], [18].

A dataset that minimizes missing values is desirable because
we handle time-series data, and thus a reliable experimental re-
sult can be expected by using the Air Quality dataset as follows.
We utilize six values, i.e., temperature T , absolute humidity AH,
time average value CO of oxide for carbon monoxide, time av-
erage value NMHC of titanium oxide for non-methane hydro-
carbons, time average value NOx of tungsten oxide for nitrogen
oxide, and time average value NO2 of tungsten oxide for nitro-
gen dioxide. As shown in Fig. 13, we let an RNN receive the six
values described above for 72 hours as time-series data of the in-
put and then we predicted those values as values measured on the
73rd hour as the output.

We run multi-fold cross validation using data from 04/01/2004
to 03/31/2005 of the Air Quality dataset. As shown in Fig. 13,
it is divided into four blocks consisting of three months. Here,

*10 https://archive.ics.uci.edu/ml/datasets/air+quality
*11 https://www.atmarkit.co.jp/ait/articles/1804/26/news150.html

Table 3 Combination of test data and training data owned by adversary.
The Bi shows the Blocki where i is 1, 2, 3, 4.

test data original model adversary distance
B1 B2, 3, 4 B2 (3 months) 1

B3 (3 months) 2
B4 (3 months) 3
B2, 3 (6 months) 1.5
B3, 4 (6 months) 2.5
B4, 2 (6 months) 2

B2 B1, 3, 4 B1 (3 months) 1
B3 (3 months) 1
B4 (3 months) 2
B1, 3 (6 months) 1
B3, 4 (6 months) 1.5
B4, 1 (6 months) 1.5

B3 B1, 2, 4 B1 (3 months) 2
B2 (3 months) 1
B4 (3 months) 1
B1, 2 (6 months) 1.5
B2, 4 (6 months) 1
B4, 1 (6 months) 1.5

B4 B1, 2, 3 B1 (3 months) 3
B2 (3 months) 2
B3 (3 months) 1
B1, 2 (6 months) 2.5
B2, 3 (6 months) 1.5
B3, 1 (6 months) 2

one block among them is used as the test data whereas the re-
maining three blocks are used as the training data Dc for the orig-
inal model. It is also assumed that the adversary possesses data
Da ⊆ Dc for n months, e.g., the one block per three months and
the two blocks per six months. There are four ways to select
the test data Dc as shown in Table 3, and furthermore there are
six ways to choose Da for each Dc. In other words, we conduct
twenty-four experiments to evaluate the original model and the
substitute model.

Since the Air Quality dataset has a general context, an adver-
sary who owns a block of data away from the one selected as
the test data may not have any advantage. Accordingly, the ex-
perimental results are grouped by the distance between Da and
the size of the block related to the test data. The distance is also
shown in Table 3. For example, when the test data is B1 and the
adversary has B2 as Da, the distance is 1. Likewise, if the ad-
versary has B3 and B4 as Da, the distance is 2.5 by taking the
average of both.
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Fig. 14 The architecture of the neural network used on the experiment in
regression task.

As described above, the softmax function with temperature
cannot be used in the regression task. Therefore, the Lreg de-
scribed in Section 3.2.2 is used instead. Note again that Lreg is
used in the distillation of neural networks as well as the softmax
function with temperature and thus it is expected to prove effec-
tive in model extraction attacks. A substitute model is trained
10,000 times using L2loss of the predicted values and labeled
data as Da, and then it is trained 10,000 times again by using Lreg

with the predicted values via querying to the original model. The
batch size is 16.

The coefficient R2 of determination, which is commonly used
for regression analysis, is utilized in the evaluation of the accu-
racy. The coefficient R2 is defined as follows:

R2 = 1 −
∑n

i=1(yi − pre)2

∑n
i=1(yi − y)2

, (5)

where y is the labeled data, y is the average of y, and pre are
the predictions from the original or substitute model. The coef-
ficient R2 is preferably very close to 1. According to Rubin [24],
if R2 exceeds 0.8, the correlation is very strong and, for example,
R2 = 0.8 means that 80% of the variation in the dependent vari-
able has been explained. Based on our pre-experiment, R2 of the
original model is 0.8992 although we omit the details. In this ex-
periment, we refer to the value of R2 as the accuracy, and an R2 of
0.8992 is the attack goal of the substitute model for an adversary.

Figure 14 shows the architecture of the neural network used
on the experiment in regression task. We use tf.nn.rnn cell.
BasicRNNCell and tf.nn.rnn cell.BasicLSTMCell as hidden lay-
ers and use tf.nn.dynamic rnn for network input/output.
Baseline of the Experiment on the Regression Task

The following setting is utilized as a baseline to compare the
performance of our attack.
• True label only: This is identical to the least square error

where the distillation is not used.
4.1.3 Evaluation Terms in Experiments

An evaluation of the experiments is conducted as described be-
low.
4.1.3.1 Classification Task

The evaluation terms in the experiments for the classification
task are as follows:

Fig. 15 Results for identification of leaky time on LSTM.

Fig. 16 Results for identification of leaky time on RNN.

• Leaky time.
• Difference in accuracy depending on each architecture of the

substitute model.
• Difference in accuracy depending on the number of training

data owned by an adversary, i.e., Da.
• Difference in accuracy depending on temperature T of the

softmax function with temperature.
4.1.3.2 Regression Task

The evaluation terms in the experiments for the regression task
are as follows:
• Difference in R2 depending on each architecture of the sub-

stitute model.
• Difference in R2 depending on the ratio of training data

owned by an adversary, i.e., Da.
• Effects of loss functions using Lb.

4.2 Experimental Result
4.2.1 Results of Classification Task

First, the results for identification of leaky time are shown in
Figs. 15 and 16.

According to Figs. 15, 16, increments of accuracy for LSTM
started from t = 21 and reached more than 90% after t = 26.
On the other hand, in an additional experiment, whereby RNN is
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utilized in the original model instead of LSTM, increments of ac-
curacy for RNN started from t = 25 and reached more than 90%
after t = 27. Therefore, the accuracy of the final results of LSTM
is greater than that of RNN, and LSTM is potentially leakier even
at an early time.

Next, the results for intensive extraction of LSTM at t = 21 and
later times are shown in Fig. 17. According to Fig. 17, a model
with 95% accuracy is extracted at t = 21. Notably, for T = 16
in the softmax function with temperature, the accuracy reaches
97.5%, which is higher than the 97.3% accuracy of the original
model. Note that, in the case in which the original model is a
many-to-one type of LSTM and only the final prediction result at

Fig. 17 Intensive extraction during leaky times.

Fig. 18 Accuracy of substitute model depending on the number of queries.

Fig. 19 Accuracy of the substitute model with Air Quality dataset.

t = 28 is returned, an adversary will only know the final result
and cannot extract with 97.5% accuracy for the substitute model.
Furthermore, the accuracy in the case of the baseline, i.e., with
the temperature T = 1 and the use of only the final output at time
28, is lower than 93%. This fact is evidence of the effectiveness
of our attack.

Finally, we investigate how the accuracy of the substitute
model is related to the number of queries at time t = 27 and
temperature T = 16. The result is shown in Fig. 18. As a result,
accuracy of the substitute model is rapidly deteriorates when the
amount of training data Da owned by an adversary decreases.
4.2.2 Results of the Regression Task

The results on the Air Quality dataset are shown in Fig. 19. We
also conduct an experiment where an adversary owns an LSTM as
a substitute model and the results are shown in Fig. 20. When the
parameter m is 10, ||Rs − y||22 in Eq. (2) is selected as Lb almost ev-
ery time. Therefore, m no longer has an effect in the experimental
results, and thus we adopt m ≤ 10.

According to Figs. 19, 20, in comparison with a substitute
model trained with only labeled data without querying the origi-
nal model, a substitute model with Lreg presented in Eq. (4) pro-
vides a large value for R2 by leveraging the predicted values from
the original model. Thus, the coefficient of R2 on utilizing Lreg is
higher than that in the case of the baseline, which uses only the
true label. This fact is evidence of the effectiveness of our attack.

Furthermore, we show the results of the coefficient of R2 for
each range in accordance with the baseline. The case of RNNs
is shown in Fig. 21 and the case of LSTMs is shown in Fig. 22.
These results indicate that when the better performance is ob-
tained only by the use of true labels, the benefit of our attack
is relatively lost. In other words, an adversary is more likely to
benefit from our attack when having unfavorable data or namely
maintaining a poor accuracy with only the true labels.

Several substitute models whose coefficient R2’s are larger than
those of their original models are obtained. For instance, accord-
ing to Table 3, when an adversary has a dataset such that for a
hyperparameter m = 0.5 in Fig. 19, the coefficient R2 becomes
larger when the size is six months and the distance from the test
data is 1.
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Fig. 20 Accuracy in Air Quality dataset when adversary owns LSTM.

Fig. 21 Accuracy of substitute model with Air Quality dataset for each condition according to perfor-
mance when an adversary uses true label only.

Fig. 22 Accuracy in Air Quality dataset for each condition according to performance when an adversary
uses true label only and owns LSTM.

5. Considerations

In this section, we discuss the difference in behavior of model
extraction attacks in accordance with the distinction of architec-
tures on a classification task to determine how simple RNNs and

complex LSTMs affect the model extraction. Moreover, we con-
sider the loss function used in a regression task to clarify how
the designed loss function works in the model extraction, and
then show future prospects. Finally, we discuss countermeasures
against model extraction attacks.
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5.1 Classification Task
We discuss the impact of structural architectural differences in

the original model. LSTM can stochastically control information
not only for the near past but also for an earlier time as feedback,
and thus the range of leaky times can be potentially expanded.
Likewise, a substitute model with a high accuracy at t = 21 was
extracted because the bottom lines of the samples on the MNIST
dataset contain less information. Thus, the substitute model was
able to learn sufficient knowledge from the original model at the
procedure on the 21st line. In our experiment, we converted the
MNIST dataset to time-series data to identify the range of leaky
times. This implies the existence of other time-series datasets
where an adversary can extract a model even at earlier times, such
as at the beginning time of a model extraction attack. In such a
case, extraction becomes easier and thus more stringent restric-
tions on the use of APIs are necessary.

Moreover, as an additional experiment, we used LSTM as a
substitute model. In comparison with the 90.3% accuracy ob-
tained by RNN as a substitute model with 1,375 training data,
the same accuracy is obtained by LSTM as a substitute model
with only 500 training data. Furthermore, in the case of LSTM as
a substitute model, the model with 99.69% accuracy can be ex-
tracted when 11,000 training data is used in the substitute model.
Thus, in RNNs, an adversary using LSTM can extract a substi-
tute model with a higher accuracy even with fewer queries than
the use of RNN.

Okada et al. [21] utilized DNN and CNN as substitute models
with the MNIST dataset, respectively, in their experiments. In
doing so, they showed that models with more than 90% accuracy
can be extracted even with 684 training data on DNN and 171
training data on CNN for the substitute models. In other words,
according to Okada et al., the use of CNN is more effective for
an adversary to extract a model with a high accuracy in an image
classification task. Likewise, Krishna et al. [16] showed that an
adversary can obtain a higher accuracy when a more complicated
architecture of BERT [6] is used. In contrast, we show that in the
case of time-series data, the use of LSTM as a substitute model
enables an adversary to extract a model with a higher accuracy
even with fewer queries than during use of RNN. Our results are
identical to those of Okada et al. and Krishna et al., except for
differences in the architectures among RNN, CNN, and BERT.

Finally, although a substitute model in our experiment was
trained by utilizing labeled data and soft labels separately, Chen
et al. [5] defined a loss function using both at the same time. The
use of this loss function can reduce the number of epochs in train-
ing. In particular, the loss function is defined in Eq. (6) below,
where Ps is the predicted value of a substitute model, Pt is a pre-
dicted value of an original model, µ is a hyperparameter, Lhard is
the value of a loss function obtained by labeled data, and Lso f t is
the value of a loss function obtained by soft labels.

L = µLhard(Ps, y) + (1 − µ)Lso f t(Ps, Pt). (6)

The convergence of a substitute model with high accuracy be-
comes more effective by setting an appropriate value for µ. We
leave the determination of an appropriate value for µ as an open
problem.

5.2 Regression Task
Next we consider the loss function Lb. We discuss the reason

why performance of a substitute model is independent of a pa-
rameter m when the model extraction attacks are performed with
high performance, e.g., R2 exceeds 0.85. The parameter m affects
the case where a non-zero value is selected for Lb, or namely the
frequency of training such that weights are significantly updated.
Since training for the substitute model by an adversary was suffi-
ciently converged in our experiment given a sufficient number of
epochs, the case described above did not become a problem.

Next, we consider the reason why the loss function Lreg defined
in Eq. (4) is ineffective in the case where training for the substitute
model with labeled data is unsuccessful, e.g., R2 is lower than 0.3.
In that case, at the phase of training with the predict values from
an original model, a value of Rs is expected to be close enough
to that of Rt. Consequently, if Rs is mismatched and underfitting
at the phase of Lb in Eq. (2), the inequality cannot be evaluated
as expected. Thus, its resulting loss function Lreg will become
unworkable.

Finally, if an adversary who owns data from April to June can
produce valid data from July to September, then it has the same
ability as an adversary who originally owns data from April to
September. This is possible for at least time-series data such as
the Air Quality dataset in which an output value at a certain time
is identical to an input at a later time. For instance, if an adver-
sary who owns data from April to June makes queries from 0:00
on June 28th to 23:00 on June 30th, then it may be able to pre-
cisely predict data about 0:00 on July 1st, which was unknown
to the adversary. By iterating such an operation recursively, the
adversary can obtain a larger and pseudo dataset. The intuition
of the methodology is shown in Fig. 23. We plan to verify the
validity of the methodology in a future work by utilizing features
of input/output for RNNs to handle time-series data.

5.3 Countermeasures
As countermeasures to model extraction attacks, Kesarwani

et al. [15] proposed extraction warning, wherein a model trained
by an adversary is emulated as another model by a proxy and
extraction will be alerted if the emulated model achieves some
threshold designated in advance. Although the extraction warn-
ing can potentially be useful, settings about thresholds have never
been discussed. In addition, although there is a method to de-
tect model extraction attacks [14] whereby a cloud server checks
if the distribution of API queries deviates from general and le-
gitimate users, such an approach is ineffective against collusion
between adversaries who execute the attacks according to Ke-
sarwani et al. [15]. Moreover, according to Atli et al. [10], ap-
proaches to monitoring and alerting behavior of users are ineffec-
tive against model extraction attacks on complex neural networks.

Szyller et al. [26] proposed an approach based on digital water-
marking [4], [31] to claim cloud ownership after a model extrac-
tion attack is made. Such an approach is expected to detect model
extraction attacks by verifying the watermarking in a substitute
model when an adversary publishes the model. However, the
model extraction attacks based on distillation shown in this work
(and the work of Okada et al. [21]) enable an adversary to remove
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Fig. 23 Idea for improvement of adversary’s capability.

watermarking. Moreover, according to Krishna et al. [16], wa-
termarking can only verify whether an original model has been
stolen through a substitute model and cannot prevent the extrac-
tion itself. Therefore, extraction can go unnoticed if an adversary
keeps its own substitute model private, rendering the digital wa-
termarking useless.

Another countermeasure is the use of differential privacy [7] as
proposed by Huadi et al. [32]. However, such an approach will
lower the performance of an original model hosted by a cloud
server. Consequently, to the best of our knowledge, providing
practical and effective countermeasures remains an open prob-
lem.

Finally, we discuss an alternative way to mitigate model ex-
traction attacks, especially against the attacks discussed in this
paper. The use of the softmax function with temperature [11] was
the key idea regardless of the architecture from the viewpoint of
model extraction attacks for a classification task. In doing so,
soft-labels provide the probability for each label as a prediction
result and are given to the softmax function with temperature as
input. Since accuracy heavily depends on the maximized value
in the prediction result, we consider manipulating the effects by
the second maximized value and the lower values to mitigate the
softmax function with temperature. This can prevent an adversary
from obtaining more information than prediction results alone by
disturbing an output without affecting a precise prediction result.

5.4 Limitations
We describe three limitations on this work below.
The first limitation is the assumption about knowledge of an

adversary. In the current discussion, an adversary needs to have
knowledge of a dataset utilized in the training of an original
dataset. Namely, we have not solved whether our attacks are ap-
plicable to a completely private dataset or not. For instance, data
distributions based on private photos such as the CIFAR10 dataset
are potentially wider than that of the MNIST dataset, which was
utilized in the current experiments. In other words, in the case
of a dataset whose distribution is completely private, an adver-
sary may no longer own a part of a dataset utilized in an original
dataset and thus threats in such a situation are an open problem.

We have also considered that such an evaluation is possible via
the approach of the knockoff nets [22]. Further studies, which
take the knockoff nets setting into account, will need to be under-
taken.

The second limitation is the image classification task with
RNNs. As described in Section 3.2.1, image classification
with RNNs is often based on a combination of the RNNs with
CNNs [29]. To understand threats of model extraction attacks
for an image classification task with RNNs in the real world, the
model extraction with a combination of RNNs with other neu-
ral networks, e.g., DNNs and CNNs, should be discussed. These
topics are reserved for another future work.

The final limitation is that the current experiments are con-
ducted on only the MNIST and Air Quality datasets. To fur-
ther clarify the generalization ability of the model extraction on
RNN, additional experiments with more datasets, e.g., CIFAR10,
should be conducted. We hope that further tests will confirm our
findings.

6. Conclusion

Model extraction attacks enable an adversary to extract a ma-
chine learning model via prediction queries to a model. In this
paper, we discussed model extraction attacks based on features of
recurrent neural networks (RNNs). In the case of the classifica-
tion task, we were able to extract a substitute model without the
final output from an original model by utilizing outputs halfway
through the sequence. In the case of the regression task, we pre-
sented a new attack by newly configuring a loss function.

In the classification task, we conducted experiments by con-
verting the MNIST dataset to time-series data. Our experimental
results show that a substitute model can be effectively extracted
by utilizing prediction results from the original model after identi-
fying the leaky time via training with true labels. In particular, by
utilizing the softmax function with temperature [11] in prediction
results from the original model, a substitute model with a higher
prediction accuracy than the original model could be extracted.

In the regression task, we proposed a new extension of model
extraction attacks by using the teacher-bounded regression loss
function [5] as a loss function. In experiments with the Air Qual-
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ity dataset for our attack, we showed a substitute model whose
correlation is strongly similar to an original model even when the
substitute model was trained with only a small amount of data.

We also considered relationships between the accuracy and
complicated architectures for a substitute model. We conclude
that the use of a complex architecture contributes to obtaining a
higher accuracy for a substitute model. These results corroborate
the findings of Okada and Hasegawa [21] and Krishna et al. [16].

To further our research, we intend to conduct experiments un-
der the knockoff nets setting [22] as described in Section 5.4. Fu-
ture work will also look into experiments with more detasets such
as the CIFAR10 as well. We are now investigating model extrac-
tion on a combination of RNNs and CNNs for an image classi-
fication task in the real world as well. Finally, we also plan to
discuss the threshold of restrictions on the use of APIs as a coun-
termeasure to model extraction attacks.
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Editor’s Recommendation
This paper proposes a model extraction attack on a network

(RNN) and shows that the attack can be successfully carried out
with relatively high accuracy by conducting experiments using
the MNIST dataset and other data sets. Since the boundary field
between deep learning and security is not still very cobbled to-
gether, and the threats to the RNNs have not yet been sorted out,
this paper’s achievement is very interesting.
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