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Abstract: This study presents a method for recognizing packaging tasks using wrist-worn accelerometer
sensors under real conditions. As the lead times and actions of packaging activities depend on the number
of objects to pack along with the size and shape of each object, it is difficult to recognize operations during
every period. We propose a segmentation neural network augmented with a multi-head attention mechanism
to capture actions found in a specific operation, which can be useful to identify individual operations. To
efficiently detect useful actions with limited training data, we propose an attention guiding approach based
on existing motif detection algorithms, which find actions (motifs) that frequently appear in a specific oper-
ation. We then use the occurrence of these motifs as a target for each attention head, enabling it to increase
its ability to recognize similar operations during the packaging process. We evaluate our framework using
data obtained in an actual logistics center.
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1. Introduction

With the increasing availability of wearable sensing de-

vices such as smart-bands, smartwatches, and so forth,

the wearable computing research community has actively

studied their applications related to human activity recog-

nition in many different fields. Body-worn sensor data for

human activity recognition (HAR) can be applied in a

variety of applications in both home settings, e.g., daily

routine or living conditions for rehabilitation patients, and

industrial settings, e.g., process monitoring during assem-

bly work[1], [2], [3], [4], [5]. Our study focuses on the

industrial application, specifically on the identification of

operations in the packaging process at a logistics center

using data from wrist-worn acceleration sensors.

While the existence of logistics centers has been a part

of all product chains for a long time, given the prolifera-

tion of delivery services such as Amazon or Alibaba, logis-
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tics centers have become one of the more rapidly expand-

ing industries worldwide. Furthermore, the generality of

products that go through logistics centers has equally in-

creased, allowing a single center to be used for packaging

hundreds or thousands of different items using the same

process.

This extension in the reach of logistics centers puts spe-

cial importance on the improvement of packaging tasks

both from the process structure and worker ability per-

spectives. Improving packaging efficiency would result in

reduced time spent per item and in turn decrease deliv-

ery time and costs associated with the packaging process.

This paper aims to provide a tool that allows a manager

in a logistics center to improve the process structure and

increase the efficiency of the packaging work by identify-

ing the order and length of the standardized operations

performed during the packaging process.

A packaging work is composed of a sequence of opera-

tions that culminates in one or more items inside a con-

tainer ready to be transported to a different location. We

can say that packaging work consists of a set of periods,
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where an item or group of items is packed. While each

of these periods includes a standard number of operations

the worker should perform, due to the nature of packaging

work each period may differ on the length of each partic-

ular operation or on the order of operations depending

on the size and number of objects each package contains.

The variability in the length and order of these operations

is reflected in the data captured from the accelerometer

sensors which varies as well from one period to the next

making it difficult for standard models to recognize similar

operations with the limited amount of data collected.

Our approach is based on the fact that even when the

order and length of packaging operations are not uniform

among periods, each operation has some unique motions

that can be used to identify and differentiate operations.

First, since our objective is to identify the start and fin-

ish of each operation we base our method on a segmen-

tation neural network, i.e., U-Net [1]. We use this base

network to better segment each specific operation with a

dense prediction function. Then, in order to identify the

unique motions that describe each standard operation, we

augment the U-Net with a multi-head attention mecha-

nism. However, this mechanism would originally require

a huge amount of data which is hard to acquire under real

conditions in logistic centers so we employ existing motif

finding algorithms to create a target occurrence sequence

for known unique motions to aid the attention mechanism

training. We call our method motif-guided-attention net-

work (MGA-Net).

The contributions of this study are summarized as fol-

lows.

2 Our method improves the activity recognition accu-

racy with an attention guiding approach on a limited

data set from packaging logistics works.

2 We propose a motif guiding method for attention

mechanisms to improve its accuracy on small training

data sets.

2 We propose three kinds of motifs corresponding to

characteristic actions that can enhance the segmen-

tation.

2 We evaluate the proposed method using sensor data

collected from an actual logistics center. Using this

data, the proposed method outperformed baseline

methods based on recurrent neural networks and seg-

mentation networks.

2. Related Work

Due to the recent growing interests in smart manufac-

turing, more studies focus on recognizing and supporting

factory activities using variety of sensors. In particular,

acceleration sensor which has a good trade-off between

activity prediction accuracy and power consumption has

been widely used in ubicomp community. For example,

Maekawa et al. [4] reused labeled sensor data of source

users who have similar physical traits to a target user

to train the target user’s activity model. State-of-the-art

convolutional neural networks (CNN) have also been ap-

plied on sensor-based activity recognition. Rueda et al.

[6] applied parallel branches within a CNN, with a branch

processing data from each inertial sensor, confirming that

the proposed network outperformed a baseline CNN when

using a small amount of sensor data in the logistics do-

main. Zhang et al. [7] indicated that a U-Net based algo-

rithm is able to support both activity labelling and pre-

diction at each sensor data point. Cordonnier et al. [8]

and Murahari et al. [9] utilized different types of atten-

tion mechanisms to generate higher-dimensional feature

representations used for activity recognition.

Several studies explored motif finding algorithms for ac-

tivity and gesture recognition. Minnen et al. [10] first dis-

covered motif seeds using a minimum description length

criterion and then refined the motif seed by splitting,

merging, and extending the motifs. Berlin et al. [11]

recognized leisure activities by employing useful motifs in

acceleration signals. Maekawa et al. [12] measured the

duration of each work period on a production line in an

unsupervised manner, by discovering a motif that appears

only once in each work period. Xia et al. [13] further pro-

posed two types of motifs, which correspond to specific

actions that appear once or several times in a work pe-

riod to robustly recognize operations even outliers exist.

図 1: An introduction to logistic work accelerometer data.
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3. Activity Recognition Method

3.1 Preliminaries

We assume a data set captured from workers doing

packaging work in a logistics center. The data are tri-

axial accelerometer data captured from the workers us-

ing a commercial smartwatch on their dominant hand. A

worker iterates a period of work consisting of performing

sequential operations from picking a product, assembling

a box, attaching a label, closing the box, and finally plac-

ing the finished box on a cart.

In Figure 1 we can see example data collected from a

worker’s watch, the data on the top corresponds to the

first period and the operations of replace-label, assemble-

box, and close-box, the data on the bottom corresponds

to the same worker performing the same operations dur-

ing the 15th period. Even when the worker performs the

same operation for both periods, the data corresponding

to each of them is not uniform in shape or length. In this

case, we can also see how the worker has inverted the or-

der of two of the operations. Our study aims to classify

each of these data points into an activity class that corre-

sponds to the operation the worker performs, allowing us

to know the starting and ending time of each operation.

3.2 Method overview

Our method recognizes the operations performed dur-

ing the packaging task using a segmentation neural net-

work. We use this network since the operations are per-

formed sequentially but with different lengths. Based on

U-Net [7], we propose an improvement over this segmen-

tation network idea by augmenting the network structure

adding a multi-head attention mechanism. This new layer

helps identify important actions in an operation. Unfor-

tunately, training such a complex network is data-hungry,

which is not suitable for a logistics environment, where

preparing enough training data is difficult. Therefore, we

utilize existing motif detection algorithms [13] to find use-

ful actions/motions that can define the operations we are

looking to recognize. Such actions may be unique to a

particular operation like placing the tape on the box when

closing it, or removing the glue protection before attach-

ing a label. We use such motifs to guide the training of the

modified network to make up for the amount of training

data available.

In Figure 2 we can see an overview of our method, ini-

tially, we have the accelerometer data time-series which

図 2: Method Overview.

is then pre-processed inside our motif finding algorithm.

Once pre-processed we employ three different techniques

to obtain a Unique, Supporting, and Boundary mo-

tifs. These motifs can be understood as follows:

2 The unique motif corresponds to an action that oc-

curs almost solely on the expected operation.

2 The supportive motif is an action closely related to

the unique motif appearing almost always at the same

distance from it in time.

2 The boundary motif could be an action that is per-

formed at the start or finish of the operation.

We then calculate a Motif Occurrence Sequence that is

in turn used to train the attention augmented segmenta-

tion network. The network is a motif guided attention

network (MGA-Net), it performs activity recognition on

small training sets using a segmentation network with a

guided attention mechanism based on the found motifs.

3.3 Motif Selection

3.3.1 Data preprocessing

In order to reduce computational costs, we first apply

principal components analysis (PCA) to simplify the in-

put acceleration data into one-dimension. Then, we use

piecewise aggregate approximation (PAA) to reduce the

number of data points of the sequence. After that, we

symbolize the sequence based on previous factory activ-

ity recognition methods [12]. In brief, we convert each of

the aggregate values in the sequence into a symbol based

on the thresholds of value range (e.g., a sequence is sym-

bolized to aabcddbaa, where the same character belongs

to the same value range). We then use this symbolized

sequence to track motifs.

3.3.2 Occurence sequence calculation

We start by extracting all possible motifs from the ini-

tial working period. Given that we do not know the po-

sition or frequency of characteristic actions for each op-

eration, we perform an initial scoring of the candidates

to reduce the computation time. To perform said prun-

ing, we isolate all sub-sequences that correspond to that

operation and scan for more occurrences of the candidate

motifs while calculating the number of appearances it has

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-HCI-190 No.11
Vol.2020-UBI-68 No.11

2020/12/9



情報処理学会研究報告
IPSJ SIG Technical Report

among all periods. From this, we select the best group of

candidate motifs for selection.

Now that we have our group of candidate motifs for

each operation, we slide each candidate motif along the

complete training time-series calculating its similarity ra-

tio to generate an occurrence sequence. After extracting

a group of candidate motifs for each operation, we com-

pare the similarity of each candidate motif sliding along

the complete sequence to get an occurrence sequence. To

obtain the similarity ratio we employ the Levenshtein dis-

tance metric [14].

Lratio = (lensum− ldist)/lensum (1)

The ratio is given by Equation 1 where lensum is the

length of the maximum sequence and ldist is the Leven-

shtein cost for symbol modification between the sequences.

We then process the sequences in order to transform the

similarity sequence into an occurrence sequence. Since we

only want the position where the action occurs we elimi-

nate all sequence values below the threshold of 0.9 similar-

ity ratio. After these calculations, we are left with several

final candidate sequences that may be helpful to recognize

each of our classes.

3.3.3 Unique Motif selection

A unique motif that usually appears in a specific oper-

ation is useful to identify that operation. However, from

our pool of candidate motifs, some of them may corre-

spond to motions that are not unique to one operation

but several. In order to identify which of our candidate

motifs best describes our operations, we devised a scoring

system based on correct and incorrect appearances. To

calculate the uniqueness score of a motif that corresponds

to an operation Oj we first generate a supporting sequence

OV which corresponds to the value given to the operation

so that when timestep t is inside Oj the value of OVt is

positive and negative otherwise. With this, we calculate

the uniqueness score of the motif with Equation 3. Where

t corresponds to the current timestep and T is the total

length of the sequence.

OVt =

1, if t ∈ Oj

−1, otherwise
(2)

Uscore =

T∑
t=0

LratiotOVt (3)

Using this calculation we select the motif that mostly

appears in the operation Oj . We call this motif the Unique

Motif and there is one associated with each of our classes

or operations.

3.3.4 Supportive Motif selection

As an operation consists of a sequence of actions, the

corresponding unique motif can only locate a single ac-

tion/motion but it is still difficult to review the structure

of the operation. To efficiently recognize the operation,

capturing the sequential structure of actions is important.

Therefore, we leverage a supportive motif for the unique

motif that occurs before or after the unique motif, where

the time difference is consistent with the corresponding

unique motif (e.g., a supportive motif can be removing

the glue cover before pasting a label on the box. This

action always happens when a worker attaches a label.).

To find the supportive motif we first identify all periods P

where the candidate appears along with the Unique Motif

in the same period. Once we have identified all these peri-

ods we calculate a distance-vector MD that contains the

symbol distance from the Unique Motif. We then obtain

the supportive score (Sscore) for each motif by calculating

the average standard deviation inside MD and multiply-

ing the result by P
2 so giving a higher score to candidates

with more occurrences together along with Unique Motif.

Sscore =

√
(
∑P

i=0(MDi −MD))

P − 1

P

2
(4)

We then select the candidate with the highest Sscore as

Supportive Motif. The occurrence of both Motifs during

the same period gives higher confidence when identifying

an operation compared to only using a single Unique Mo-

tif.

3.3.5 Boundary Motif selection

Different from the supportive motif, a boundary motif

always appears at the beginning or end of an operation.

Since we employ a segmentation neural network to find

the beginning and ending times of each operation, it is

important to know where the boundary between opera-

tions occurs. Unlike the scoring systems used to select

the Unique and Supportive motifs, the boundary motif

is selected by scanning the sequence with the remaining

candidate motifs and counting the number of appearances

for each of them within a specified distance from the end

or the start of their designated operation. However, a

secondary count is also performed to ensure this Bound-

ary motif appears along with the other 2 selected motifs.

As shown in Equation 5, we score the boundary motifs

by simply multiplying the number of appearances close to

the boundary (BA) by the number of appearances it has

together with the other motifs, where each occurrence of
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all three motifs appearing on the same period is aggre-

gated to the value of TA. We then select as boundary

motif the candidate with the highest Bscore.

Bscore = BA ∗ TA (5)

3.4 MGA-Net

3.4.1 Network Structure

As noted in section 3.2, we base our network structure

on the existing U-Net topology for segmentation of time-

series data. We can see in Figure 3 our network structure

which consists of three encoding blocks as well as three

decoding blocks. The topology for a single block consists

of 2-one dimensional convolutional layers plus one either

max-pooling layer or upward convolutional layer depend-

ing on if the block is part of the decoder or encoder. An-

other part of the original topology is the concatenation

layer at the beginning of each new decoder block where

the output from the second convolutional layer of the cor-

responding block is concatenated with the output of the

up-convolutional layer. This network structure allows us

to use a complete period of data as a single input. It is

also capable of giving a classification to every independent

data point in the sequence.

As seen in Figure 3, we include at the end of the first

encoding block a multi-head attention mechanism whose

purpose becomes finding specific actions that are useful

for recognizing individual operations from one another.

This mechanism consists of one attention head dedicated

to identifying the specific actions that correspond to one

of our classes, that way each head analyses the time-series

independently and can focus better on finding the re-

quired data. We introduce this attention mechanism on

the first layer for it to be able to focus on even small ac-

tions/motions that would be lost on deeper layers. We

also chose this position since the attention will in turn

be concatenated with the final decoding block carrying

double importance in the network.

3.4.2 Network Training

Another modification we made from the previous in-

troductions of U-Net for activity recognition is the way

we train the network. Network training in this network

is usually done to reduce segmentation error but fails to

overcome the lack of descriptive features to recognize spe-

cific operations. Furthermore, given our lack of training

data, the accuracy of a self-attention layer does little to

improve the recognition results. For this, we introduce a

new method to train the network using the motifs found

図 3: MGA-Net Network structure.

in section 3.3.

For each operation in our group of classes, we have pre-

pared a total of three occurrence sequences corresponding

to the Unique, Supportive, and Boundary motifs. Those

sequences point out where key actions occur for that oper-

ation and can therefore be a meaningful help to train the

attention mechanism for it to find similarly meaningful

data along the time-series. Before using these sequences

to train, they must be simplified. For this, we add the

three sequences into a single Motif Occurrence Sequence.

We further normalize the distribution of said sequence to

assimilate as a Softmax distribution and equalling the sum

of its values to 1.

Now for the training procedure, we must first analyze

how the U-Net is trained. Each layer l on the network has

an output vector that may be denoted as:

zi = f({xi+i′}− ki−1

2 ≤i≤ ki−1

2

) (6)

Where zi corresponds to the intermediate output vector

of said layer, ki corresponds to the kernel size of the ith

layer, and f(.) denotes the activation function performed

inside the layer. The size of the vector can be expressed

as 1×wl+1 × fl+1 where wl+1 is the length of the output

vector and fl+1 is the number of feature maps after the

operation. We can then obtain the loss function for this

same layer l denoted as:

L(x, zi;W, b) =

N∑
j

− log p(zij |x,W, b) (7)

L(x, zi,MOS;W, b) =

T∑
j

− log p(zij |x,W, b)+λ(zij−MOSj)

(8)

Where N is the total length of the output vector and

zij is a single sample in the output sequence. In the case

of the attention layer, the output vector is of size zi is

1× T ×AH where T is the total length of the time-series

and AH is the number of attention heads in the layer.
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We then introduce a new term for the motif guided

training given to the attention layer. The motif occurrence

sequence is introduced as a parameter for loss calculation.

The attention loss is now calculated with respect to both,

the expected output class and the value of similarity ob-

tained from the Motif Occurrence Sequence (MOS). With

this new term, we update Equation 7 and obtain the up-

dated loss function for the attention layer as presented on

Equation 8. Where MOSj corresponds to the subset of

values for the jth timestep from the combined MOS of all

existing operations. As a final note, we introduce a sta-

bilizing parameter λ given that during training the loss

value of the standard segmentation loss overshadows the

attention training loss introduced. Said parameter can

be adjusted to increase or decrease the effect of the motif

guided attention loss training in the network. Given that

we train this network for continuous cycles we require an

optimization function to update the weight parameters of

the various layers in the model during back-propagation.

For simplicity, we have decided to include all layers under

the same optimizer and use an Adam optimizer for this

purpose.

Worker

Number Values Classes

Periods of per in

samples sample data set

1 46 148076 3 (x,y,z) 8

2 28 308207 3 (x,y,z) 9

3 31 232507 3 (x,y,z) 9

4 73 375508 3 (x,y,z) 10

表 1: Overview of recorded data sets.

4. Evaluation

4.1 Dataset

We evaluated the proposed method using 4 data sets

collected from 4 individuals working in a real logistics cen-

ter. Table 1 shows an overview of the data sets. The ac-

celerometer data were collected from a smartwatch (Sony

SmartWatch3 SWR50) worn on the worker’s dominant

side wrist, with an approximate sampling rate of 60Hz.

Due to temporary constraints as well as differences in the

ability of the worker and nature of the packaging tasks

available, the total number of periods recorded for each

individual varied. The data was labeled into classes us-

ing the name of 10 packaging operations, not all workers

perform every operation.

4.2 Evaluation Methodology

For each data set, we use leave one out cross-validation

as evaluation criteria among methods. We use the

weighted average F1-score as metric to compare the per-

formance of the proposed method against other models.

We provide the results for the proposed method and

other comparing methods to evaluate the effectiveness of

our approach. The methods to be tested are listed as

follows:

• LSTM: As initial baseline we use a five-layer Long

short term memory (LSTM) network. As input we

feed a segment within a sliding time window with a

size of 60 points and slide length of 10 points. The

training period was of 100 epochs with a batch size

of 128.

• U-Net: The base of our method corresponds to the

segmentation neural network referred to as U-Net.

We use a network that consists of 3 encoding blocks

and 3 decoding blocks. For each encoder and decoder

block, we use two 1D convolutional layers with a ker-

nel size of 3x1 and a max-pooling/up-convolutional

layer with a kernel of 2x1. We train this network us-

ing the negative logarithmic likelihood loss function

as presented on Equation 7 under an Adam optimizer.

The training period was 100 epochs with a batch size

of 4.

• Self-attention U-Net: The Self-attention network

is an extension of the previous U-Net architecture,

with an added self-attention mechanism at the end of

the first encoding level.

• Proposed (MGA-Net): This is our proposed

method.

4.3 Results

Figure 4 compares the performance of the 4 methods

among all the workers. The proposed method (MGA-

Net) achieved the highest average accuracy across all 4

data sets. We can observe how the lack of training data

does not allow the self-attention model to really capture

the complete importance of the existing characteristic

actions present on the operations and only slightly im-

proves in performance when compared to the pure U-Net

model. However, by introducing our training mechanism

to this same architecture the performance of the network

increases on average 47% when compared to the original

U-Net. When comparing performance among the workers

it is clear that the lack of training data is the biggest con-

cern when dealing with any type of deep learning method-
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図 4: Accuracies (F-measures) of the 4 methods among

all data sets.

ology, nevertheless, we can see while observing worker 2

and worker 3 that our motif guided attention mechanism

still outperforms the rest of the architectures.

Figure 5 gives us a graphic perspective of how each

model identifies or miss-identifies each particular opera-

tion. We chose the matrices belonging to worker 4 since,

on this data set, the performance increase of our method is

almost threefold when compared to the LSTM and twofold

when compared to the U-Net. First, we analyze the stabil-

ity of all methods and then the reasons that may explain

the differing performance among them.

We now focus on Figure 6, where we can observe the

performance of the different methods on a single working

period. This figure shows us the characteristics of each

model. The LSTM model has the worst overall perfor-

mance since it fails to recognize complete operations. Our

second baseline, the U-Net model can be seen trying to

gather as much close related points as possible but failing

to decide on a single operation as it alternates between

different classes. Then we see how the introduction of the

attention mechanism provides accuracy in the selection of

a single class to the segmentation model. Our method

proves its advantage by disappearing behind the ground

truth label for almost the complete length of the working

period. However, as we can see in the picking segment it

completely fails to recognize the operation, this may be

possible if that the worker did not perform the activities

similar to the actions found during the motif selection.

We use Figure 7 to analyze the functionality of our motif

guided attention training. In this figure, we can observe

the attention scores corresponding to the attention heads

dedicated to identifying the operations of close-box and

replace-label, as well as the input acceleration sequences

used for this testing period along with the ground truth

and predicted labels. We can observe how the trained at-

tention heads dedicated to each operation have the ability

to find distinctive motions and then increase the impor-

tance of the segments around them.

LSTM U-Net

MGA-NetSelf-Attention

図 5: Confusion matrices for worker 4, operation recog-

nition results among 4 comparison methods with LSTM,

U-Net, Self-attention U-Net and MGA-Net.

In this figure, we highlight 3 segments from the time-

series where the functionality of our method is best de-

scribed (red circles). On the first highlighted section we

observe particularly small values of attention but an ac-

curate recognition, this shows the impact the rest of the

series around those points have when using a segmenta-

tion architecture for our model. On the second highlight,

there is an unstable recognition even when the attention

score is high, which proves that training is not fully di-

rected by the motif. Finally, at the end of the series we

see a clear increase of the attention values during the pen

operation, since the pen operation refers to a worker writ-

ing something by hand, it is highly rare for it to appear

during any given period and can be easily mistaken for a

more common operation such as closing a box, more so if

the worker performs a motion similar to the one you would

expect during that operation (e.q. flipping the box).

5. Conclusion

We conclude that the preliminary investigation on the

application of motif-finding techniques for attention mech-

anism training constitutes an advantage when attempting

activity recognition with small data sets. Furthermore,

we have proven that by using our three motifs extracted

from particular motions as a base for training the atten-

tion mechanism we could make it increase its ability at

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-HCI-190 No.11
Vol.2020-UBI-68 No.11

2020/12/9



情報処理学会研究報告
IPSJ SIG Technical Report

図 6: Prediction results comparison for the 4th period from worker 1.

図 7: MGA-Net Attention score of close-box and replace-label operation with predicted and ground truth labels for the

4th period from worker 3.

an improved rate. This optimization may allow the use of

the extremely helpful attention mechanism to be applied

in more applications where the collection of data proves

difficult as is the case of a logistics center.

As future work, we desire to further increase the abil-

ity of the motif guided attention technique and MGA-net

model to solidify the preliminary advances made in this

study.
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