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スマートウォッチによるアクティブ・パッシブセンシングを
用いた屋内位置ラベル推定

Thilina Dissanayake1 前川 卓也1 原 隆浩1 宮西 大樹2 川鍋 一晃2

Abstract: This study presents a novel approach for predicting the indoor location class of a smartwatch user,
e.g., kitchen, bedroom, bathroom, by discovering location-specific sensor data motifs observed in sensor data
collected from the smartwatch sensors. Specifically, we use acceleration data and audio impulse responses
from the smartwatch to extract data segments that correspond to actions and acoustic characteristics that
are specific to the different location classes using a novel matrix manipulation method. As an example, we
can observe waveforms in acceleration data related to brushing actions only in bathrooms and also specific
sound features because of their water-resistant walls. Our environment-independent location classifier does
not use sensor data collected from the target environment or any handcrafted rules or templates to predict
the location class. The proposed method is evaluated using 4 different household environments and achieve
state-of-the-art performance.

Keywords: Indoor positioning, location class prediction, frequent pattern mining.

1. Introduction

Due to the increasing popularity of smart devices and

advancements in sensors and, context recognition tech-

niques, recognizing daily activities and estimating the in-

door location of a user employing sensor data from his

smart devices has been widely studied in the ubiquitous

computing research community. Previous studies employ

onboard inertial sensors of smart devices such as smart-

watches and smartphones to recognize activities such as

running, walking, and cleaning [1], [2], [3]. Furthermore,

signaling techniques based on infrared, active acoustic

sensing, Bluetooth, and Wi-Fi have been employed to es-

timate the indoor coordinates, i.e., the indoor location of

a smart device user.

An important component in understanding a user’s

daily lifestyle is recognizing the room level indoor posi-

tioning of the user at a given time. This is because a

user’s daily activities have a strong correlation to the in-

door location class. As an example, if the user’s location is

estimated as the bedroom, this prior knowledge can then

be used to enhance the recognition of activities such as

1 大阪大学大学院情報科学研究科
2 株式会社 国際電気通信基礎技術研究所

sleeping. Furthermore, recognizing the user’s indoor lo-

cation class can be incorporated into applications such as

lifelogging.

This study focuses on recognizing room-level location

classes of the user by employing acceleration and acous-

tic impulse response data recorded by onboard sensors of

an off-the-shelf smartwatch. By employing the aforemen-

tioned data, we try to automatically capture sensor data

inherent to each indoor location class.

2. Related work

Employing sensor data from the smartphone of the user

is one of the most common methods that is currently be-

ing used to predict the location class of the user. Tarzia

et al. [4] employed passive sound sensing to extract acous-

tic fingerprints from the background noise and attempted

to locate a smartphone user. Azizyan et al. [5] em-

ployed multi-model sensor data (acceleration, image, Wi-

Fi, light features, and acoustic features) to estimate the

location labels to different stores such as Starbucks and

Walmart. However, these methods require training data

from the target environment. In contrast, our method can

extract environment independent location-specific sensor

data motifs from the training environments, hence not re-
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図 1: Overview of the proposed method

quiring training data from the target environment.

Tachikawa et al. [6] employed a modified random for-

est classifier to extract inherent sensor data from each

location class and estimated room-level location class of

the user. They also employed magnetometer, barometer,

and microphone of the smartphone to extract location-

specific features in six location classes in laboratory/office

environments. In contrast to their method, our method

does not assume that location-specific sensor data can be

continuously observed in a target environment. Also, we

employ inaudible sound waves to acquire location-specific

acoustic data.

Elhamshary et al. [7] conducted a study that employed

microphone, accelerometer, gyroscope, magnetometer,

and barometer of a smartphone to extract location-specific

features in nine assumed classes of train stations. How-

ever, this method relies on handcrafted recognition rules

and sensor data templates tailored for each location class.

In contrast, our method automatically extracts location-

specific sensor data motifs and automatically constructs

the location classifier.

3. Location class estimation method

3.1 Preliminaries

For this study, we assume that the user is wearing a

smartwatch that is paired with a smartphone which is

also carried by the user in his pocket. We use the smart-

phone to observe Wi-Fi Received Signal Strength Indica-

tor (RSSI) data in the target environment at the same

time collect acceleration and audio impulse response data

from the smartwatch. Therefore, for each time slice, there

exists a Wi-Fi scan, an acceleration data segment, and

audio impulse response. We cluster the Wi-Fi scans to

divide the locations into room level units. Furthermore,

we employ acceleration data from the smartphone of the

user to detect movement in between locations.

3.2 Overview

Figure 1 shows the overview of the proposed method.

Our proposed method consists of two main phases; train-

ing phase and testing phase. During the training phase,

we employ the data from the training environments, i.e.,

acceleration data and audio impulse responses to extract

location-specific sensor data motifs using labeled training

data. However, the training data from each environment

and user is different from each other, because actions per-

formed by each user is different from each other.

In order to address such problems related to environ-

mental dependencies in the training data, we employ a

domain-adversarial motif classifier to detect the occur-

rences of extracted motifs in the training data. Next, we

use the detected motifs to train a location classifier.

In the testing phase, we collect sensor data as well as

Wi-Fi RSSI data from a target user in a target environ-

ment. First, we cluster the Wi-Fi RSSI data into several

place clusters, each corresponding to a different location

the user visited in the target environment. Next, we detect

the occurrences of the motifs in each Wi-Fi place cluster

and then estimate a class label for each cluster using the

trained location classifier.

3.3 Preprocessing

3.3.1 Acceleration data

In order to reduce the noise contained in acceleration

data while preserving the most significant and unique

waveforms corresponding to hand motions in data, we ap-

ply Principle Component Analysis (PCA) [8] and reduce

the dimensionality of acceleration data from three dimen-

sions to a single dimension. We then employ an over-

lapping time window to separate acceleration data into

segments.

3.3.2 Impulse responses

An impulse is a signal that equals to one at time zero

and is zero otherwise. Audio impulse responses can be em-

ployed to capture the acoustic characteristics of different

environments. Impulse responses contain information re-

lated to sound propagation, hence, impulse responses can

be used to capture information related to various environ-

mental factors such as construction materials, abundant

objects, and shape and the size of the space.

Our goal is to extract acoustic features that are inher-

ent to each location class. As an example, when the user

is in the bedroom, we can observe sound features related

to mattresses, pillows, and other bedding while we ob-

serve features related to outside noise when the user is on

the balcony. Therefore, we can expect to observe similar

acoustic fingerprints in impulse responses recorded in the

same location class.
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In our method, we employ an impulse that sweeps the

inaudible frequency range of 18 kHz and 20 kHz within 1

sec. Using the recorded signal, 12th degree Mel Frequency

Cepstral Coefficient (MFCC) features are extracted using

a sliding time window. MFCC algorithm employs a scale

that is more discriminative at lower frequencies and less

discriminative at higher frequencies. Therefore, we mod-

ify and optimize the algorithm to fit our desired frequency

range of 18 kHz - 20 kHz. In order to further enhance the

hidden patterns in the acoustic features, we extract local

binary patterns (LBP) from the MFCC features [9], [10].

3.4 Finding location-specific motifs

The process of discovering location-specific motifs con-

sists of two main procedures: (i) similarity matrix calcu-

lation and (ii) calculation of location specificity measure

(LSM) of each sensor data segment.

3.4.1 Similarity matrix calculation

In this step, the distance between each data segment

collect by the same sensor modality is calculated. This

allows us to detect similar data segments contained in the

recorded sensor data. We first calculate the Euclidean dis-

tance between each pair of sensor data segments si and

sj , and arrange the distances into a distance matrix. Be-

fore the distance calculation, we standardize data within

each data segment by subtracting the mean and dividing

by the standard deviation. This makes the distance be-

tween data segments with low amplitude static noise to

have larger values and the data segments with a similar

waveform to have small distances.

Next, we normalize the distance matrix by dividing each

element by the maximum value of the matrix and then we

subtract each element from 1 to create a normalized sim-

ilarity matrix. As we are mostly concerned with elements

with higher similarity, we replace the elements in the sim-

ilarity matrix that are less than a threshold with 0.0.

3.4.2 Calculating location specificity measure

(LSM)

Next, we use the concept of Gini impurity to calculate

the degree of specificity of each data segment si with re-

spect to a location class. Gini impurity calculates the

statistical dispersion using the following formula:

G = 1−
C∑
i=1

p2i .

Here, pi is the proportion of instances belonging to the

i-th class and C is the number of classes. A lower Gini

impurity means a smaller dispersion in instances. This

idea can be used to calculate the specificity of each data

setment to each location class.

First, we calculate pi for a data segment, which rep-

resents the ratio of the segment occurring in ith class,

i.e., location. By using pi, we can calculate the location

specificity of each data segment based on the idea of Gini

impurity.

Here, we assume that a similarity matrix S ∈ IRn×n

and binary time-series of location labels with length n

(i.e., ground truth labels) are given. The binary time-

series bc is prepared for each location class c where its

element value at time t is 1 when the training user is at

the location class at time t, which is defined as follows:

bc,t =

{
1 (the training user is at c at time t)

0 (otherwise)

For a row vector of S at each time slice t, i.e., S(t), we

compute sc,t as follows:

sc,t =
bc · ST

(t)∑
bc,t′∈bc

bc,t′
.

Because S(t) is the similarity time-series for a time win-

dow (segment) at time t, sc,t shows the frequency of the

occurrences of segments similar to the segment at place c.

Note that we normalize the frequency by the duration of

staying at place c, i.e.,
∑

bc,t′∈bc
bc,t′ . Then, we compute

pc,t as follows:

pc,t =
sc,t∑C
i=1 si,t

.

Therefore, pc,t shows the ratio of the occurrences of the

data segment at time t for place c. Using pc,t, we com-

pute the LSM of the segment based on the idea of Gini

impurity as follows:

LSMt =

C∑
i=1

p2i,t,

Note that a larger LSM value shows greater location speci-

ficity of the data segment. Figure 2 shows an example

time-series of LSM values. As shown in the example,

location-specific actions (e.g., eating in a dining room)

have high LSM values. In addition, walking actions, which

are observed in multiple locations, have low LSM values.

3.5 Building motif classifier

By using the aforementioned method, we obtain

location-specific motifs from the training environments.

Next, we build a classifier that detects the occurrences of

location-specific motifs in the target environment for each
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図 2: Example acceleration data and time-series of LSMs computed from the

data

図 3: Structure of motif classifier based on domain-

adversarial learning. Lc, Ld, and LKL show the loss

functions for location classification, domain classifica-

tion, and distributions of output probabilities, respec-

tively.

sensor modality. Here, a sensor data segment is an in-

put to the motif classifier and the output is the location-

specific motif class. Here, we are only interested in the

sensor data segments that are specific to a certain loca-

tion class, not recognizing fine-grained actions and ges-

tures. We also define a class called “other” into which the

none location-specific, i.e., the data segments with low

LSM values are assigned to. As a result, the trained mo-

tif classifiers can ignore the outliers contained in the test

data and mainly focus on the location-specific motifs.

Next, we train this classifier using the location-specific

motifs extracted from the training environments. Note

that the variability in sensor data segments in different

environments has to be taken into consideration when

training the classifier. In order to address environmental

dependencies in data, we build the motif classifier based

on domain-adversarial neural networks [11].

During the domain-adversarial training, we train the

classifier (neural network) in such a way that it can clas-

sify the input instances into appropriate location classes

but cannot classify the instances into their appropriate

domain (environment). As our classifier is incapable of

distinguishing features of different domains, we can con-

sider the features as environment-independent.

Figure 3 shows the structure of the neural network used

in this study. The neural network has three sections; the

feature extractor, location label predictor, and the envi-

ronment label predictor. Feature extractor is consisted

of 1D convolution layers and is responsible for extracting

domain-independent features from the sensor data seg-

ments. The location label predictor predicts the location

class of each data segment based on the features extracted

by the feature extractor. The environment label predictor

predicts the relevant environment. i.e., source domain or

target domain, of the data segment.

In order to make the motif classifier incapable of distin-

guishing between the domains, we introduce the gradient

reversal layer that multiplies the gradient with a negative

constant, making the feature extractor to extract features

that can only recognize the classes, not the domain [11].

We train the network to minimize the following loss

function using backpropagation based on Adam [12].

E(θf , θc, θd) =
1
n

∑n
i=1 L

i
c(θf , θc)− λ1

1
n

∑n
i=1 L

i
d(θf , θd)− λ2LKL(θf , θc),

Here, θf , θc, θd are the network parameters of the fea-

ture extractor, location label predictor, and environment

label predictor. n is the number of training instances.

Li
c(θf , θc), and Li

d(θf , θd) are calculated cross entropy loss

for the location label predictor and environment label pre-

dictor. LKL(θf , θc) is the loss calculated based on the

divergence of the classes output by the location label pre-

dictor. The input of our location label predictor is the

output location probabilities averaged over each location

class. Hence, when the distribution of these averaged vec-

tors is distinguishable for each class, our location label

predictor achieves higher accuracy. Therefore, we calcu-

late the Kullback-Leibler divergence between the averaged

vectors between each class and train the network in a way

such that LKL(θf , θc) is maximized.

3.6 Location classifier

Here, we construct a classifier that can predict the loca-

tion class of the place cluster in a target environment. We

base the estimation of location class of the place clusters

on the occurrence frequencies of location-specific motifs,
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acquired by the motif classifier. The input of the location

classifier is the occurrence ratios of location-specific motif

classes and the output is the location class. Here, we ex-

plain the process of calculating the location cluster-wise

motif occurrence ratios. First, using the motif classifier,

we acquire the output probabilities of each segment in

each location cluster. Note that the output of the mo-

tif classifier is a probability vector with a dimension of

C + 1, C being the number of location classes. Next, we

take the average of the output of the vectors by the motif

classifier over the data segments in each location cluster.

When employing multi-model sensor data, we calculate

the probability vectors and average them for each vector

modality separately. Next, we concatenate the probability

values of each sensor modality for each location class to

form a single probability vector. In the case of employing

s sensor modalities, the dimension of this vector becomes

s× (C + 1). Note that the training data for the location

classifier is limited as we are averaging the class probabil-

ities of each data segment in each location cluster. Due to

this limitation, we employ the nearest centroid classifier

[13] as the location classifier.

3.7 Wi-Fi based place clustering

During the testing phase, we cluster the Wi-Fi RSSI

data collected using the smartphone of the user. Each Wi-

Fi scan consists of the MAC address of the access points

(APs) that are detected by the device and the received sig-

nal strengths from them. As the scans of the same place

are similar, we can cluster the Wi-Fi scans into place clus-

ters [6].

3.8 Estimating location class

Finally, we estimate the location label of each location

cluster in the target environment. Here, we feed the data

segments acquired from the target environment into the

motif classifier and obtain the probability vectors. Next,

we average the vectors within each Wi-Fi location clus-

ter. These averaged vectors are then fed into the location

classifier and the output is the estimated location class of

the location cluster.

4. Evaluation

4.1 Dataset

In order to evaluate our method, we collected data from

four different environments (Figure 4), where a different

participant collected data from each environment. ASUS

ZenWatch3 smartwatch was attached to their dominant

表 1: List of locations and specific actions performed

Location Activity

kitchen chop, wash dishes, wash hands

washstand brush teeth, wash face, wash hands

bedroom lie

toilet sit, use toilet paper, wash hands

dining room eat, drink, sit

den use PC, write on a notebook, sit

smoking area smoke

表 2: Physical features of participants

dominant hand height sex age sessions

1 right 175cm male 26 6

2 right 177cm male 27 7

3 right 168cm male 30 8

4 right n/a female 39 7

wrists. We collected data from seven location classes

(kitchen, dining room, restroom, washstand, den, smok-

ing area (outdoor resting place), and bedroom), hence,

this problem can be considered as a seven-class classifica-

tion problem. We observed a semi-naturalistic collection

protocol [1] that serves a greater variability in partici-

pant behavior compared to the laboratory data. Table

1 shows a list of the activities, where each participant

performed in a random sequence, at each location. The

smoking areas are outdoor places, e.g., balcony, veranda,

therefore outside noises are captured by the microphone

of the smartwatch. Furthermore, noises of running water

were captured by the microphone when the participant

was washing hands, dishes, and face.

Table 2 shows the list of physical features of the par-

ticipants and the number of data collection sessions done

by each participant. The acceleration data was collected

at the sampling rate of 30 Hz and the audio data was col-

lected at 44.1 kHz sampling rate. We also collected video

data to obtain ground truth.

4.2 Evaluation methodology

We evaluated our method using “leave-one-

environment-out” cross-validation where sensor data

from one environment is employed as the test data and

the data from the remaining environments were treated

as the training data. We predicted the location class

of each session. In order to compare the effectiveness

of the proposed method we also prepared the following

methods.

• Proposed: This is our proposed method that em-

ploys acceleration data and impulse responses col-

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-HCI-190 No.9
Vol.2020-UBI-68 No.9

2020/12/8



情報処理学会研究報告
IPSJ SIG Technical Report

図 4: Experimental environments

lected using active probing.

• RF-ACC: This method only employs acceleration

data and is designed based on a previous study

that assumed location-specific features are always

observed at a location of interest. Therefore, this

method assumes a sliding time window and extracts

sensor data features within that window. Then, this

method forms a feature vector concatenating the fea-

ture values, which is input to the random forest (RF)

classifier, which classifies a feature vector into a loca-

tion class. The extracted features are the minimum,

maximum, mean, standard deviation, etc. using the

tsfresh library (v 0.12.0).

• RF-MIC: This method only employs impulse re-

sponses. The procedures of this method are identical

to those of RF-ACC.

• RF-C: This method employs acceleration data and

impulse responses. This method first clusters Wi-Fi

scans in the same manner as the proposed method.

This method then aggregates the location class esti-

mation results for time windows in each location clus-

ter by majority vote to determine the location class

of the cluster.

• Only-ACC: This is a variant of the proposed method

that only employs acceleration data.

• Only-MIC: This is a variant of the proposed method

that only employs impulse response.

• DANN: This is a variant of the proposed method

that does not employ the loss function for distribu-

tions of output probabilities in the motif classifier

(i.e., using only Lc and Ld).

• CNN: This is a variant of the proposed method that

does not employ domain-adversarial training and the

loss function for distributions of output probabilities

in the motif classifier (i.e., using only Lc).

図 5: Average F-measures of the methods

図 6: Average F-measures of Proposed for each location class

The classification accuracy was evaluated by micro-

averaged F-measure of the location class predictions made

for each location cluster. For RF-ACC and RF-MIC meth-

ods, these metrics were calculated based on the classifica-

tion results of the time windows.

4.3 Results

4.3.1 Classification accuracy

Figure 5 shows the F-measures for the proposed method

averaged over all environments. As can be seen, our pro-

posed method achieved an average F-measure of 86.5%

even the test data from the target environment is not

used. Figure 6 shows the average accuracy of the pro-

posed method for all the location classes. Figure 7 shows
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図 7: Confusion matrices of classification results of Proposed

the visual confusion matrices for the proposed for all the

environments. Note that the accuracy of the washstand

class is poorer than that of the other classes. As the user

washed the hands at both the washstand and the toilet,

several washstand instances were incorrectly classified into

the toilet class. The tooth brushing action was somewhat

different between each participant. This can be the reason

for some washstand instances being misclassified into the

bedroom class where there are only little distinguishable

hand motions.

The accuracy of the smoking area class is also somewhat

poor. Several smoking area instances were incorrectly

classified into the dining room class (Figure 7). This is be-

cause our method could not distinguish between location-

specific actions such as smoking and eating in these loca-

tions. Furthermore, acquiring meaningful acoustic char-

acteristics from the balcony class was difficult in some

environments due to ambient noises.

4.3.2 Comparison with prior methods

Figure 5 also shows the average F-measures of RF-ACC,

RF-MIC, RF-C methods. Note that the RF-ACC and RF-

MIC methods are based on the assumption that location-

specific motifs can continuously be observed at the loca-

tion of interest. However, even though the participants

performed the location-specific actions at each location,

these methods could not accurately recognize the loca-

tion based on those actions as they only lasted for a very

short amount of time. Furthermore, some activities such

as “wash hand” were performed in multiple locations (Ta-

ble 1), and these methods could not distinguish between

those locations accurately.

Moreover, the RF-C method which aggregates the

window-wise location class estimations within each place

cluster and predicts the location class of the cluster based

on majority vote, could not recognize the location classes

with high accuracy as the results of RF-C is based on the

poor results of RF-ACC and RF-C methods.

表 3: Classification F-measures in each environment

Env.1 Env.2 Env.3 Env.4

Proposed 0.770 0.830 0.880 0.980

RF-ACC 0.490 0.380 0.440 0.470

RF-MIC 0.240 0.200 0.220 0.360

RF-C 0.640 0.510 0.570 0.580

Only-ACC 0.590 0.760 0.710 0.650

Only-MIC 0.400 0.200 0.430 0.430

DANN 0.720 0.820 0.670 0.970

CNN 0.670 0.600 0.720 0.830

4.3.3 Classification accuracy in each environment

Table 3 shows the F-measure values of the methods for

each environment. Our method achieves good results in

all the environments. However, the result of Environment

1 is marginally poor compared to the other Environments.

As can be seen in Figure 7, several smoking area instances,

and washstand instances are misclassified into the dining

room and toilet classes respectively.

4.3.4 Sensor contribution

Figure 5 also shows the F-measures of the Only-ACC

and Only-MIC methods. Between the accelerometer and

the microphone sensor modalities, the accelerometer was

the best contributor to the accuracy. Only-ACC achieved

an average F-measure around 68%. However, the ac-

celerometer alone could not achieve good results because

the actions of different participants are different from each

other. Furthermore, locations such as a bedroom that has

very little location-specific actions, were specifically hard

to predict using Only-ACC method.

4.3.5 Contribution of motif classifier

Figure 5 also shows the average F-measure of DANN

and CNN methods. The proposed method outperforms

DANN by 7% and DANN outperforms CNN by 9%. Es-

pecially, the F-measures of smoking area and toilet classes

were improved by introducing the loss function that was

calculated for the distributions of output probabilities,

i.e., LKL. By introducing the domain adversarial train-
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図 8: Transitions of average F-measures when the number of

training sessions is varied

ing, accuracies of the toilet and bedroom classes were im-

proved because they contained the most environmental-

dependent acoustic features.

4.4 Discussion

4.4.1 Amount of training data

Figure 8 shows the transitions of average F-measure

for several methods when the number of training environ-

ments was changed. As shown in the figure, even though

the number of training environments is increased, the F-

measure for RF-C method did not improve, showing the

inability of capturing location-specific features using this

method. In contrast, with only two training environments,

the proposed method exceeds the average F-measure of

80%.

4.4.2 Energy consumption

In order for our method to work, the accelerometer,

speaker, and microphone of the smartwatch should al-

ways be on. Under this condition, ASUS ZenWatch3 could

function up to approximately 3 hours When only the ac-

celerometer was switched on, the battery life was approx-

imately 4.5 hours. To reduce the battery consumption,

we propose to enable sound sensing only when the hand

movement of the user is minimum as we do not use the im-

pulse responses recorded when the hand of the participant

was moving.

5. Conclusion

In this study, we employed multi-model sensor data

from the smartwatch of a user to extract location-specific

sensor data to predict his indoor location class. We also

proposed a novel matrix manipulation method that can

automatically extract location-specific time-series sensor

data by calculating a score known as Location Specificity

Measure based on the idea of Gini impurity. To the best

of our knowledge, this is the first study that introduces

Gini impurity to extract class-specific sensor data tem-

plates. We evaluated our method in real household envi-

ronments and achieved state-of-the-art-performance. As a

part of our future work, we intend to evaluate our method

in working environments such as factories.
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