
ECC Improved Verifiable Second-Price Auction by

Smart Contract

PoChu, Hsu1,a) Atsuko, Miyaji1,b)

Abstract: A second-price auction is an auction method in which all the bidders submit their bids simul-
taneously. The highest bidder then purchases the good at the second highest bid price. This scheme does
satisfies the requirements of maintaining the bid price secret from the manager while also ensuring financial
fairness for the legitimate parties. In this paper, we propose an efficient and secure second-price auction
protocol that guarantees financial fairness through the introduction of smart contracts, does not leak any
information to the manager, and verifies the correctness of the auction under a malicious model. We also
used elliptic curve cryptography to reduce the gas usage in smart contract. This makes 81% improvements
on average compared with discrete logarithm implementation.

Keywords: second-price auction, vickrey auction, smart contract, protocol, elliptic curve cryptography

1. Introduction

Second-price auction is an auction in which all bidders

submit their bids simultaneously. The bidder who proposed

the highest price can purchases the good at the second high-

est price. In reality, the manager will know every bidder’s

bid. To construct a scheme in which no participant, even a

trusted third party (TTP), knows each bidder’s bid, a typical

method is to divide the functions of TTP into two indepen-

dent entities as Second-price sealed-bid auction [7]. In their

scheme, all participants do not know any information about

the bid price, except the winning price and the winning bid-

der. However, this scheme is based on the p-th root prob-

lem, which causes high time-complexity and requires huge

memory usages by public parameters and bid values. Thus,

this scheme is unsuitable for blockchain, as the computa-

tion power, storage, and memory are all critical resources

on blockchain. On the other hand, the M+1st price auction

[7] is based on the ElGamal encryption scheme, which is

an improvement in terms of time complexity and memory

1 Osaka University
a) hsu@cy2sec.comm.eng.osaka-u.ac.jp
b) miyaji@comm.eng.osaka-u.ac.jp

usages. Nevertheless, there’s an entity called the manager

can obtain the bid price of all the bidders.

To overcome these problems, we introduce the notion of

double encryption, which divides the TTP into two inde-

pendent entities. By applying smart contracts, we propose

an efficient and secure second-price auction protocol that

guarantees financial fairness and verifies the correctness of

the auction. Also, we used Elliptic Curve Cryptography

(ECC) to reduce the computation resources usage in smart

contract. Which makes 81% improvements on average com-

pared with discrete logarithm implementation.

In this paper, we introduce the related studies on smart

contract auction protocols in Section 2 and explain the cryp-

tography preliminaries in Section 3; We propose an efficient

and secure second-price auction protocol in Section 4 and

describe the implementation and optimization in Section 5.

We compare our work with the related works in Section 6.

Finally, we conclude our work in Section 7.

2. Related work

2.1 Hawk

Hawk executes Smart contracts while keeping secrets [6]

when an bidder and a manager exchange data in the fol-

Computer Security Symposium 2020
26 - 29 October 2020

© 2020 Information Processing Society of Japan －244－

lowing way. 1. The bidders and the manager deposit to the

smart contract as a stake when the protocol starts; 2. Zero-

knowledge proof (zk-SNARK) for data; 3. Smart contract

verifies the zero-knowledge proof and the time limit in each

phase. In the Hawk protocol, since the bid amount of all

bidders is leaked to the manager by design, it is necessary

to assume that the manager does not leak any information

inappropriately or collude with any party. In other words,

the manager has to be a trusted third party. The Hawk

protocol satisfies the following requirements.

On-chain privacy As long as the contractual parties do

not intentionally disclose the information, the privacy

of the transaction is kept as a secret, and it is disclosed

only with the Hawk manager.

Bid privacy Each party does not see others’ bids before

committing to their own. All parties’ bids are indepen-

dent of others’ bids.

TTP-based posterior privacy As long as the manager

does not disclose information, users’ bids are kept pri-

vate from another (and from the public) even after the

auction.

Financial fairness If bidders or auction managers aborts

from the protocol, then the aborting party would be fi-

nancially penalized while the remaining parties would

receive compensation.

Hawk provides the second price auction. The bidder first

sends his bid commitment to the Hawk contract (Freeze);

then, the Hawk contract verifies the proof and places the

proof on the blockchain. The proof indicates the bidder’s

bid commitment but does not state the bid itself. Next, the

bidder encrypts his bid amount with the Manager’s public

key and sends it to the smart contract for verification and

entry (Compute). The Manager decrypts their bidding and

calculates the result of the auction. Then, the manager de-

termines the winner as well as the distribution of money

and its commitment, and he sends it to the smart contract

with zero-knowledge proof. Finally, the smart contract ver-

ifies the proof and redistributes the bidding (Finalize).

2.2 Verifiable Sealed-Bid Auction protocol

Another verifiable sealed-bid auction protocol [4] was

proposed by using a smart contract and Pedersen commit-

ment scheme [8]. In this protocol, there are bidders and

managers just as in Hawk. The manager and a bidder pay

a deposit to the smart contract, and the bidder simultane-

ously sends a bid commitment to the smart contract. Next,

the bidder encrypts the value to open the commitment with

the manager’s public key, and transmit to the smart con-

tract. The manager determines the winning bid and win-

ner, sends the commitment of the winning bid to the smart

contract, and proves to the smart contract that the winning

bid is higher than any other bid. This scheme achieves bid-

privacy, TTP-based posterior privacy, and financial fairness

in the same way as the protocol reported in [6]. In addition

to these advantages, it satisfies the following conditions:

Bid Binding Once the bidding phase is closed, bidders

cannot change their commitments.

Public verifiable correctness The auction contract veri-

fies the correctness of the manager’s work to determine

the winner.

Non-Interactivity Bidders do not participate with the un-

derlying protocol of the auction contract.

3. Preliminaries

Definition 1 (DDH assumption) Let t be a security pa-

rameter. A decisional Diffie-Hellman (DDH) parameter

generator IG is a probabilistic polynomial time (PPT) al-

gorithm that takes an input 1k and outputs the descrip-

tion of a finite field Fp and a basepoint g ∈ Fp with the

prime order q. We say that IG satisfies the DDH assump-

tion if |p1 − p2| is negligible (in K) for all PPT algorithms A,

where p1 = PR[(Fp, g) ← IG(1K); y1 = gx1 , y2 = gx2 ← Fp :

A(Fp, g, y1, y2, gx1x2) = 0] and p2 = Pr[(Fp, g)← IG(1K); y1 =

gx1 , y2 = gx2 , z← Fp : A(Fp, g, y1, y2, z) = 0].

Definition 2 (ECC based ElGamal scheme) Let p and q

be large primes. Let 〈G〉 denotes a prime subgroup of

GF(p) generated by G whose order is q. Given a message

M ∈ GF(p), we define ElGamal [3] encryption as EY(M),

where Y is the public key. Given a ciphertext C, decryption

is defined as Dx(C), where x is the private key.

Definition 3 (Proof of knowledge of a scalar) Given

G ∈ GF(p) and x ∈ Z∗q, define ZKP [x |Y = xG] as the

non-interactive zero-knowledge proof of the scalar.

Definition 4 (Proof of equality of two scalar)

Given G1,G2 ∈ GF(p) and x1, x2 ∈ Z∗q, define

ZKP
[
x1 ≡ x2 (mod q)

∣∣∣ (Y1 = x1G1,Y2 = x2G2)
]

as the

－245－

non-interactive zero-knowledge proof of the equality of

two scalar defined as in Definition 3.

Algorithm 1 (Binary search) Binary search [2] is an al-

gorithm used to search on an ordered list. It can reduce

the time complexity to O(log(N)), where N is the number of

elements.

Input Given an ordered list A of N elements and a com-

pare function cmp.

Output The index j of the target element A[j]. If there

are no element satisfies the condition, output the largest i

where cmp(i) = 1.

We use the symbol BiSearch[A, cmp] = i for it.

Algorithm 2 (Mix and match) Mix and match [5] is a

technique used to examine whether the decryption of a ci-

phertext D(C) belongs to a set of plaintexts. The process is

publicly verifiable without revealing the permutation.

Input Ciphertext C and the set of plaintexts S =

{M1,M2, ...,Mn}.

Output Output true if D(C) ∈ S. Otherwise, output false.

We use symbol MixMatch[C,S] to represent it.

4. Our scheme

To construct a scheme without any such entity as the so

called TTP, who knows the secret information of the bid-

ding values of each bidder, a typical method is to divide

the functions of the entity into two entities as in [7, 1]. The

protocol of [7] can realize two separate and independent

entities; thus, no entity can obtain the bidding prices of any

bidder, except the winning price and bidder. However, this

scheme has a high computational complexity and requires

a huge memory size for public parameters including bid-

ding values, as it is based on the p-th root problem. As the

size of the public parameters influences the size of data in

blockchain, it should be reduced. In addition, their scheme

requires each bidder to use each different bidding price.

Thus, the memory size used for bidding points depends on

the number of bidders. To overcome the above problems,

we introduce the notion of double encryption. Double en-

cryption satisfies two-entity independent encryption and

decryption operations, which can divide the functions of

TTP into two independent entities. In this section, we first

propose the notion of the double encryption scheme to-

gether with the necessary features and a concrete example

of double encryption. Then, we present our scheme.

4.1 Double Encryption

In this section, we describe the definition of the double

encryption.

Definition 5 (Double encryption) Let the public and

private key pairs of the public key cryptography of the en-

tity be (Y1, x1), (Y2, x2), respectively. The ciphertext of plain-

text using the public key Yi is EncYi (M), and the decryption

is DecYi (EncYi (M)). When public key cryptography satis-

fies the following, the public key cryptosystem is called a

double encryption cryptosystem.

• Double encryption: We define the encryption using the

public key Y2 for the ciphertext encrypted with public key

Y1 for a plaintext M through the following operation.

EncY1 ·Y2 (M) = EncY2 (EncY1 (M))

• Partial decryption: We define the decryption performed

by each entity for the ciphertext EncY1 ·Y2 (M) encrypted

with the public keys Y1,Y2 for the plaintext M through the

following operation.

DecY1 (EncY1 ·Y2 (M)) = EncY2 (M)

DecY2 (EncY1 ·Y2 (M)) = EncY1 (M)

• Full decryption: We define the decryption performed by

both entities for the ciphertext EncY1 ·Y2 (M) encrypted with

the public keys Y1,Y2 for the plaintext M through the fol-

lowing operation.

DecY1 (DecY2 (EncY1 ·Y2 (M))) = M

Definition 6 (Commutative encryption) For a given

double encryption EncY1 ·Y2 (M), if

DecY1 (DecY2 (EncY1 ·Y2 (M))) = DecY2 (DecY1 (EncY1 ·Y2 (M))) = M

is satisfied, then the encryption is commutative encryption.

Definition 7 (Bi-homomorphic) When a double en-

cryption satisfies the following properties, we say that the

encryption is satisfies bi-homomorphic.

• EncY1 ·Y2 (M) + EncY1 (M̃) = EncY1 ·Y2 (M + M̃)

• EncY1 ·Y2 (M) + EncY2 (M̃) = EncY1 ·Y2 (M + M̃)

• EncY1 ·Y2 (M) + EncY1 ·Y2 (M̃) = EncY1 ·Y2 (M + M̃)

• ωEncY1 ·Y2 (M) = EncY1 ·Y2 (ωM)

－246－

We propose the double encryption based on the ElGa-

mal encryption as follows. We also show that it satisfies

bi-homomorphism.

• ElGamal double encryption: The encryption using the

public keys Y2 and Y1 is as follows.

EncY1 ·Y2 (M) = (U1,U2,C),where

U1 = r1G,U2 = r2G and C = M + r1Y1 + r2Y2.

• Partial decryption: The partial decryption for a cipher-

text EncY1 ·Y2 (M) by each entity Y1,Y2 is as follows.

DecY1 (EncY1 ·Y2 (M)) = (U1,U2,C − s1U1) = (U2,M + r2Y2)

= EncY2 (M), or

DecY2 (EncY1 ·Y2 (M)) = (U1,U2,C − s2U2) = (U1,M + r1Y1)

= EncY1 (M), respectively.

• Full decryption: The decryption performed by both en-

tities for the ElGamal ciphertext EncY1 ·Y2 (M) encrypted

with the public keys Y1,Y2 for the plaintext M is defined

as follows.

DecY1 (DecY2 (EncY1 ·Y2 (M))) = DecY1 (EncY1 (M)) = M

Thus, our double encryption scheme satisfies partial de-

cryption, full decryption, and commutative encryption.

• Double commutative encryption: The order of ElGa-

mal encryption encrypted with the public keys Y1,Y2

for the plain text M can be changed.

DecY1 (DecY2 (EncY1 ·Y2 (M))) = M = DecY2 (DecY1 (EncY1 ·Y2 (M)))

• Bi-homomorphic: For two given ciphertexts

EncY1 ·Y2 (M) = (U1,U2,C) and EncY1 (M̃) = (Ũ1, C̃)

with U1 = r1G, U2 = r2G, Ũ1 = r̃1G, C = M+ r1Y1 + r2Y2,

and C̃ = M̃ + r̃1Y1, the addition of the ciphertexts is as

follows.

EncY1 ·Y2 (M) + EncY1 (M̃) = (U1,U2,C) + (Ũ1, C̃)

= (U1 + Ũ1,U2,C + C̃) = EncY1 ·Y2 (M + M̃)

For two given ciphertexts EncY1 ·Y2 (M) = (U1,U2,C) and

EncY2 (M̃) = (Ũ2, C̃) with U1 = r1G, U2 = r2G, Ũ2 = r̃2G,

C = M + r1Y1 + r2Y2, C̃ = M̃ + r̃2Y2, the addition of the

ciphertexts is as follows.

EncY1 ·Y2 (M) + EncY2 (M̃) = (U1,U2,C) + (Ũ2, C̃)

= (U1,U2 + Ũ2,CC̃) = EncY1 ·Y2 (M + M̃)

For two given ciphertexts EncY1 ·Y2 (M) = (U1,U2,C) and

EncY1 ·Y2 (M̃) = (Ũ1, Ũ2, C̃) with U1 = r1G, U2 = r2G, C =

M+r1Y1 +r2Y2, Ũ1 = r̃1G, Ũ2 = r̃2G, C̃ = M̃+ r̃1Y1 + r̃2Y2,

the addition of the ciphertexts is as follows.

EncY1 ·Y2 (M) + EncY1 ·Y2 (M̃) = (U1,U2,C) + (Ũ1, Ũ2, C̃)

= (U1 + Ũ1,U2 + Ũ2,C + C̃) = EncY1 ·Y2 (M + M̃)

For a given ciphertext EncY1 ·Y2 (M) = (U1,U2,C) with

U1 = r1G, U2 = r2G, C = M + r1Y1 + r2Y2, the scalar

multiplication of the ciphertext is as follows.

ωEncY1 ·Y2 (M) = (ωU1, ωU2, ωC)

= (r1ωG, r2ωG, ωM + r1ωY1 + r2ωY2) = EncY1 ·Y2 (ωM)

Thus, we show the following theorem.

Theorem 1 The ElGamal encryption satisfies the double

commutative encryption with bi-homomorphism.

Theorem 2 (Verifiable partial decryption) In dou-

ble encryption, a prover can prove that a decrypted

ciphertext EncY1 = (U1,C1) is the partial decryption of

EncY1 ·Y2 (M) = (U1,U2,C) without revealing x2 by showing

the following signiture of knowladge (SPK) , where

U1 = r1G, U2 = r2G, C1 = M + r1Y1, C = M + r1Y1 + r2Y2.

SPK[(α) : C − C1 ≡ αU2 ∧ Y2 ≡ αG](M)

4.2 Features of our protocol

We propose an efficient second-price auction protocol

which achieves following properties.

Bid privacy: All the bids except the second highest bid

should be private.

Anonymity of the second highest bid: No one can iden-

tify the bidder who places the second highest bid.

Strong posterior privacy: As long as the managers do not

collude with each other, the bidders’ bids are kept pri-

vate even after the auction.

Bid binding

Robustness: Malicious behaviors in each phase can be

found and compensated in time.

Public verifiability

Financial fairness: Bidders and managers may abort or

violate the protocol to avoid payment or affect the re-

distribution of wealth. These malicious parties will be

financially penalized, whereas the others will receive

compensations.

－247－

4.2.0.1 The following notations are used in the protocol:

• SC: smart contract.

• M1, M2: managers.

• B: the number of bidders.

• Bi: bidder, i ∈ {1, ...,B}.

• P: the number of bidding prices.

• p j: bidding price, j ∈ {1, ...,P}.

Protocol 1 (Full decryption procedure)

Given a ciphertext Ency1 ·y2 (M) = (U1,U2,C) stored in SC.

(1) For all i ∈ {1, 2}, Ai sends (xiUi, πi) to SC, where the

proof πi is ZKP [xi ≡ xi | (xiUi,Yi = xiG)].

(2) SC validates the proofs π1, π2 and calculates M =

C − (x1U1) − (x2U2).

We use the symbol DECM1 ·M2 [M] to represent the full de-

cryption protocol.

4.3 Auction protocol

To simplify the statement, we assume that every message

sent to SC is verified by SC. If any participant violates the

protocol, SC aborts the protocol and financially penalizes

the violating participant.

4.3.1 Phase 1. Manager initialization:

Assume that the address of M1,M2 and cryptographic pa-

rameters such as p, q, G are set during the deployment of

SC. The public parameter Z = kG, where k ≤ 2, k ∈ Zq and

bidding price list {p j} are also set to SC during the deploy-

ment.

For each manager M, deposit dM amount of ether to SC

as stake and submit its public key Y = xG for the dou-

ble encryption. A proof of knowledge π of x must also be

attached. The protocol is as follows.

(1) For each Mi, send (Yi, πi) and dMi amount of ether to SC

as a stake.

(Yi, πi) = ZKP [xi | xiG]

Yi is the public key and xi ∈ Zq is the secret key.

(2) The initialization ends after SC receives all the neces-

sary information or timeout T1 reached.

4.3.1.1 Success condition:

SC receives valid public keys from all managers.

4.3.2 Phase 2. Bidder joins the auction:

In this phase, the bidder chooses the bid price bi ∈ {1, ...,P}

and uses double encryption to calculate the bidding vector

Vi, which is composed of P ciphertexts. The ciphertext is

in the form of EncY1 ·Y2 (tZ), where t = 1 for the bidding

price the bidder wants to choose, and t = 0 otherwise. The

protocol is as follows.

(1) The bidder Bi sends (Vi) and dBi amount of ether to SC

as stake. Vi is the bidding vector.

Vi =
{
EncY1 ·Y2 (ti jZ)

}
j
, where ti j =

0 if j , bi

1 if j = bi

(2) SC stops receiving new bids after T2.

4.3.2.1 Success condition:

The timeout T2 has passed and more than 2 bidders have

joined.

4.3.3 Phase 3. Bid verification:

To validate the bids, SC, M1, and M2 perform the follow-

ing protocols to ensure each bidder only encrypts one Z and

each encrypted tZ is either 0Z or 1Z without revealing tZ

itself. The protocol is as follows.

(1) SC computes Ui, the product of the bidding vector Vi

for all i ∈ {1, ...,B}.

Ui =

P∑
j=1

EncY1 ·Y2 (ti jZ)

To ensure the sum of {ti j} j equals to 1.

(2) Apply the full decryption procedure described in Def-

inition 1 on Ui.

Vi = DECM1 ·M2 (Ui) =

P∑
j=1

ti jZ

(3) SC verifies all the proofs. The sum of {ti j} j equals to 1

if Vi =
∑P

j=1 ti jZ equals to Z.

(4) Apply the mix and match MixMatch described in Defi-

nition 2 to verify whether the plaintext of EncY1 ,Y2 (ti j)

is in the set {0, 1} for all i ∈ {1, ...,B} and j ∈ {1, ...,P}. In

this stage, M2 is the person who performs the r power

randomization.

MixMatch
[
EncY1 ,Y2 (ti j), {0, 1}

]
(5) SC stops receiving new messages after T3. Assume that

Bh bidders have passed the verification and those who

have not passed are penetrated and removed from the

bidder array B.

4.3.3.1 Success conditions:

The following conditions must all satisfied before timeout

T3.

－248－

(1) The sum of each bidder’s bid is well decrypted.

(2) The decrypted message equals to Z.

(3) The mix and match is valid.

4.3.4 Phase 4. Second-highest-bid decision:

In this phase, we find the second highest bid by aggre-

gating the bidding vector by bidding price. This makes the

bidding vector becomes a decremented array. Therefore, we

can use binary search to speedup the search when applying

MixMatch[C j, {0, 1}] to find the largest j where C j < {0, 1}.

In this stage, M2 is the person who performs the r power

randomization. The protocol is as follows.

(1) SC computes

(a) Ai j for all i ∈ {1, ...,Bh}.

By this transformation, Ai j = 1 if there exists ti j = 1

for all j ∈ { j, ...,P}.

Ai j =

P∑
k= j

EncY1 ·Y2 (tikZ) = EncY1 ·Y2 (
P∑

k= j

tikZ)

According to this calculation, a bid whose value is

less than the bid price bi has a ciphertext of Z.

(b) C j for all j ∈ {1, ...,P}.

C j =

Bh∑
i=1

EncY1 ·Y2 (Ai j) =

Bh∑
i=1

EncY1 ·Y2 (
P∑

k= j

tikZ)

= EncY1 ·Y2 (
Bh∑
i=1

P∑
k= j

tikZ)

The smart contract uses the homomorphic prop-

erty of double encryption to calculate the product

of each bid for a specific bidding price.

(2) Use the binary search described in Definition 1 to

{C j}, j ∈ {1, ...,P} to find the largest j where C j < {0, 1}.

Let S j = MixMatch
[
C j, {0, 1}

]
. Define the compare func-

tion cmp as

jwin = BiSearch[{C j}, cmp]

cmp(j) =

1 if S j is not a valid proof

−1 if S j is a valid proof

where jwin is the second highest bidding price. If

jwin = Bh, there are more than one bidder’s bid equals

to P. In this case, the managers should adjust P and

re-run the protocol.

Note that the ZKP in this step is necessary to hide the

highest bid price.

(3) SC stops receiving new messages after T4.

4.3.4.1 Success condition:

In BiSearch procedure, L + 1 ≡ R.

4.3.5 Phase 5. Winner decision:

In this phase, we simply decrypt all Ai j for j = jwin. The

bidder who holds the plaintext Z is the winner of the auc-

tion. The protocol is as follows.

(1) Apply the full decryption procedure described in Def-

inition 1 on {Ai, jwin+1}i.

∆i = DECM1 ·M2 ({Ai, jwin+1}i) =

P∑
k= j

tikZ

Let iwin be the i for which ∆i = Z. The bidder Biwin wins

the auction.

(2) SC stops receiving new messages after T5.

4.3.5.1 Success condition:

The jwin + 1 bid of bidder Biwin is decrypted and the mes-

sage equals Z.

4.3.6 Phase 6. Payment:

The bidder who wins the auction sends dp jwin
amount of

ether to the seller through SC. The protocol is as follows.

(1) The bidder Biwin sends dp jwin
amount of ether to SC.

(2) SC sends dp jwin
amount of ether to the seller and refunds

the initial deposits to all the honest parties within T6.

4.3.6.1 Success condition:

The deposited stakes of all the managers and bidders are

all refunded.

4.4 Features and Security

In this section, we discuss the features and security of

our auction. Our scheme satisfies the security requirements

unless the managers collude with each other.

Financial fairness: This protocol guarantees financial fair-

ness in each step. Participants who violate the protocol

will be detected. Manager initialization: The manager

who generates an invalid key will be detected if he can-

not provide a valid proof. Bidder joins the auction: A

malicious bidder who generates illegal bids (use differ-

ent Z or use ti j < {0, 1}) will be detected by the manager

during the bid verification phase. Bid verification: If

M2 is malicious, it will be detected by the verifiable

mix-and-match and decryption. If both a bidder and

M2 are malicious, M1 can use the verifiable decryption

to prove bidder and M2 are malicious. Second-highest-

bid decision phase and winner decision phase: As in

－249－

{bi} =

1

5

3

 , {ti j} =

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

 , {Ai j} =

1Z 0Z 0Z 0Z 0Z
1Z 1Z 1Z 1Z 1Z
1Z 1Z 1Z 0Z 0Z

 , {C j} = [3, 2, 2, 1, 1],

jwin = 3, iwin = 2, Biwin = B2

Fig. 1 Example of {bi}, {ti j}, {Ai j}, {C j}, jwin, iwin and Biwin for N = 3 and P = 5. The bidder B2 wins

and pays p3 to the seller.

the previous phase, verifiable mix-and-match and de-

cryption can detect any malicious behaviors.

Secrecy of bids: No party knows the bids, including the

highest bid, unless the managers collude with each

other. The bidders’ bid are encrypted by the public

key of M1 and M2. Thus, neither M1 nor M2 knows

the bid price. This property is secured by the ElGamal

encryption (under the DDH assumption).

Anonymity of the second-highest-bid: All the bids are

encrypted by double encryption using M1 and M2. Nei-

ther M1 nor M2 can identify the bidder who offered the

second-highest-bid, as the bid is encrypted by the pub-

lic key of another manager. The only information the

managers can obtain is the sum of the bids. There-

fore, the identity of the bidder who placed the second

highest bid is kept secret.

Public verifiability: In each phase, every calculation re-

sult based on a secret must be submitted to SC with a

valid proof. Therefore, the correctness of the protocol

is publicly verifiable.

Posterior privacy: As mentioned previously, secrecy and

anonymity are ensured even after the auction, as long

as the managers do not collude with each others.

Robustness: If a bidder submits an invalid bid, M1 and

M2 can fully decrypt the bid using verifiable decryp-

tion. The fraud behavior is thereby detected. If both a

bidder and M2 are malicious, the fraud behavior will be

detected during verifiable decryption by M1. If a bid-

der and M1 are malicious, the manager cannot forge a

valid proof due to the soundness of the zero-knowledge

proof. Consequently, a bidder cannot proceed in an

auction with an invalid bid unless the managers col-

lude with each other.

5. Implementation and Optimization

In this section, we introduce our implementation, opti-

mization, and benchmarks. Systematically, there are two

parts in this protocol, smart contract and client. Our smart

contract *1 is implemented by solidity 0.6.10. The exper-

imental ABIEncoderV2 *2 supports struct in struct, array

of struct and array of struct in struct, which make codes

more clear and more readable. We also used the “solidity-

BigNumber” library *3 for big number computation, which

is the only efficient open-source library we can found. In the

client part, we use Python and web3.py *4 for better support

of big number computation and cryptographic libraries.

The computational costs of discrete logarithm problem

(DLP) based algorithms are usually significantly affected by

the key size. Figure 2 shows the gas usage by using 1024-,

2048- and 3072-bit DLP. A common way to solve this prob-

lem is to use elliptic curve cryptography (ECC). Our ECC

contract used the “elliptic-curve-solidity”*5 library, which is

well tested and provides common NIST series curves such

as secp256r1(P256). As an Ethereum virtual machine al-

ways uses 256-bit integers, the gas consumption should not

have significant differences between P192, P224, and P256.

Table 1 lists the gas usages of both DLP 3072 and ECC P256

and the corresponding gas reduction percentage between

them. The ECC version can save 75% to 90% gas in each

stage and save 81% gas on average.

6. Comparison

In this section, we compared the performance of our

scheme with those of the M+1st [1], Second-price [7], and

Sealed-Bid [4] scheme in terms of memory usage, time com-

plexity, and interactions. Our scheme does not use TTP

in contrast to the other schemes. Our memory usage is as

good as that of the M+1st scheme and better than that of the

Second-price scheme. The time complexity of our manager

is as good as that of the M+1st and Second-price schemes.

*1 https://github.com/tonypottera24/m second price auction sol
*2 https://solidity.readthedocs.io/en/v0.6.10/layout-of-source-

files.html#abiencoderv2
*3 https://github.com/zcoinofficial/solidity-BigNumber
*4 https://github.com/ethereum/web3.py
*5 https://github.com/witnet/elliptic-curve-solidity

－250－

A1 A2 Bi Bwin
0

500

1,000

1,500

2,000

2,500

109
297

11 23

408

1,058

17 33

1,024

2,606

24 45

ga
s

(M
w

ei
)

1024 bit
2048 bit
3072 bit

Fig. 2 Gas usages of 1024-, 2048- and 3072-bit DLP (3 bidders and 5

bidding prices)

Table 1 Gas usages of DLP 3072 and ECC P256 (Mwei) (3 bidders

and 5 bidding prices)

DLP 3072 ECC 256

Phase M1 M2 Bi M1 M2 Bi

1 12 13 - 2 (83%) 1 (92%) -

2 - - 24 - - 4 (83%)

3.1 73 73 - 9 (88%) 9 (88%) -

3.2.1 - 1, 149 - - 286 (75%) -

3.2.2 750 797 - 149 (80%) 158 (80%) -

4.1 - 385 - - 61 (84%) -

4.2 106 106 - 12 (89%) 12 (89%) -

5 83 82 - 10 (88%) 10 (88%) -

6 - - 21 - - 2 (90%)

Sum 1, 025 2, 606
24

45
182 (82%) 537 (79%)

4 (83%)

6 (87%)

Table 2 Comparison of previous works and our scheme (P: the num-

ber of bidding prices, B: the number of bidders, M: the

number of challenges and responses) ct: ciphertexts, enc:

encryptions, pf: proofs, cm: commitments, h: hash

TTP Memory Manager Bidder Interaction

M+1st Yes
BP ct

BP pf
O(BP)

P enc

P + 1 pf
O(log P)

Second-

price
No

2BP ct

2BP h

BP pf

O(BP) 2P enc O(log P)

Verifiable

Sealed-Bid
Yes BM cm O(BM)

1 cm

1 enc
O(B)

Our

scheme
No

BP ct

BP pf
O(BP) 2P enc O(log P)

The time complexity of our bidder is as good as Second-

price. Last but not least, our round of interaction is as good

as that of the M+1st and Second-price scheme and better

than that of the Verifiable Sealed-Bid scheme.

7. Conclusion

We proposed an efficient and secure second-price auction

protocol that guarantees financial fairness through the in-

troduction of smart contracts, does not leak any information

to the manager, and verifies the correctness of the auction.

Acknowledgments This work is partially supported by

enPiT(Education Network for Practical Information Tech-

nologies) at MEXT, and Innovation Platform for Society 5.0

at MEXT.

References

[1] Masayuki Abe and Koutarou Suzuki. “M + 1-st Price

Auction Using Homomorphic Encryption”. In: Pub-

lic Key Cryptography. Springer, 2002, pp. 115–124.

isbn: 978-3-540-45664-3.

[2] Jon Louis Bentley. “Multidimensional binary search

trees used for associative searching”. In: Communi-

cations of the ACM 18.9 (1975), pp. 509–517.

[3] Taher ElGamal. “A public key cryptosystem and a

signature scheme based on discrete logarithms”. In:

IEEE transactions on information theory 31.4 (1985),

pp. 469–472.

[4] Hisham Galal. “Verifiable Sealed-Bid Auction on the

Ethereum Blockchain”. In: Mar. 2018.

[5] Markus Jakobsson and Ari Juels. “Mix and match:

Secure function evaluation via ciphertexts”. In: In-

ternational Conference on the Theory and Application of

Cryptology and Information Security. Springer. 2000,

pp. 162–177.

[6] A. Kosba et al. “Hawk: The Blockchain Model of

Cryptography and Privacy-Preserving Smart Con-

tracts”. In: 2016 IEEE Symposium on Security and Pri-

vacy (SP). 2016, pp. 839–858.

[7] Kazumasa Omote and Atsuko Miyaji. “A Second-

price Sealed-bid Auction with the Discriminant of

the p0-th Root”. In: Financial Cryptography, 6th In-

ternational Conference, FC 2002. Vol. 2357. Springer,

2002, pp. 57–71.

[8] Torben Pedersen and Bent Petersen. “Explaining

gradually increasing resource commitment to a for-

eign market”. In: International Business Review 7.5

(1998), pp. 483–501.

－251－

