
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Improvement of Neural Reverse Dictionary by Using
Cascade Forward Neural Network

YuyaMorinaga1,a) Kazunori Yamaguchi1,b)

Received: February 21, 2020, Accepted: August 7, 2020

Abstract: A reverse dictionary maps a description to the word specified by the description. The neural reverse dic-
tionary (NRD) learns to map word embeddings for an input definition into an embedding of the word defined by the
definition using neural networks. Such a function encodes phrasal semantics and bridges the gap between them and
lexical semantics. However, previous NRD has a limitation in accuracy due to its insufficient capacity. To solve this
problem, we used novel combinations of neural networks, which are effective in neural machine translation and im-
age processing, with sufficient capacities. We found that, an LSTM output adjustment by using a multi-layer fully
connected network with bypass structures (CFNN) was more effective for reverse dictionary tasks than using more
complicated LSTM. BiLSTM+CFNN was comparable to the commercial system OneLook Reverse Dictionary in
some metrics, and noised biLSTM+CFNN which we tuned by a noising data augmentation outperformed OneLook
Reverse Dictionary in almost all metrics. We also examined the reasons for the success of biLSTM+CFNN and re-
vealed that a bypass structure of the CFNN and balance in the capacity of LSTM and the CFNN contribute to the
improved performance of the NRD.

Keywords: neural reverse dictionary (NRD), long short-term memory (LSTM), cascade forward neural network
(CFNN), convolutional neural network (CNN), data augmentation, noising input

1. Introduction

A dictionary maps a word to its definition, while a reverse dic-
tionary maps a description to the word specified by the descrip-
tion. Direct reverse dictionary applications include the tip-of-the-
tongue problem [1] and cross word problem [2]. A reverse dictio-
nary can map an input sentence to its meaning. Such a function
encodes phrasal semantics and bridges the gap between them and
lexical semantics [2].

One of the difficulties in developing a reverse dictionary is that
we cannot exhaustively enumerate descriptions for a word. For
example, the definition of the word “brother” in WordNet [3] is
“a male with the same parents as someone else”, but a reverse
dictionary should also be able to map the description of “son of
my parents” to “brother”.

To achieve this, a reverse dictionary should be able to calcu-
late the similarity between unseen inputs and candidate words.
Several studies have proposed models for reverse dictionaries.
One study [4] used a lexical database, and others [5], [6], [7], [8]
used Wordnet. These studies proposed hand-engineered features
of sentence and heuristics to search words from an input sen-
tence. Another study [2] used word embeddings as neural lan-
guage models [9] to create a reverse dictionary (we call it the
Neural Reverse Dictionary/NRD). That study also used machine
learning.

1 Department of General Systems Studies, The University of Tokyo,
Meguro, Tokyo 153–8902, Japan

a) morinaga-yuya@g.ecc.u-tokyo.ac.jp
b) yamaguch@g.ecc.u-tokyo.ac.jp

The NRD [2] converts the word embeddings of word2vec [10]
for an input description into a vector using a linear transformation
or recurrent neural network. This reverse dictionary was claimed
by Ref. [2] to perform similar to that of OneLook Reverse Dictio-
nary, which is a commercial specialty reverse dictionary system
indexed with 1,061 dictionaries, at the moment of its evaluation.
We improved the NRD by filtering candidate words by the esti-
mated category of the target word [11].

The NRD has a substantial advantage in that it can generate re-
verse dictionaries from dictionaries without human intervention.
However, in 2018, the performance of the NRD of Refs. [2], [11]
was far inferior to that of OneLook Reverse Dictionary.

We investigated the cause of the low performance of the NRD
and found that its capacity is insufficient; thus, with controlled
increase in model capacity, we can improve its performance. We
tested several neural network models for the NRD. The combi-
nation of bidirectional long short-term memory and the cascade
forward neural network (biLSTM+CFNN) was the most accu-
rate and that the NRD even outperformed the OneLook Reverse
Dictionary in some metrics. We could improve the performance
of the NRD from limited resources to match the performance
of OneLook Reverse Dictionary, which can access enormous re-
sources and can be tuned by experts.

We also examined reasons for the success of using biLSTM+
CFNN. We then revealed the following three facts: 1) LSTM
structure’s output adjustment by a multi-layer fully connected
network can be effective for reverse dictionary tasks, 2) the by-
pass structure in a multi-layer fully connected network is essen-
tial to properly learn the NRD, and 3) the balance in capacity

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 1 Network architectures. (left) LSTM part: ADD, LSTM, biLSTM, and stacked-LSTM are overlaid.
(right) Fully connected part: bow, FNN, and CFNN are overlaid. See Table 1 for combinations.

of LSTM and the multi-layer fully connected network improve
the performance of the NRD. BiLSTM+CFNN satisfies all these
conditions.

We also tuned our best combination, i.e., biLSTM+CFNN us-
ing two techniques that are effective for reverse dictionary or
other natural language processing (NLP) tasks. The first is cate-
gory inference of the target word by using a convolutional neural
network (CNN), which we previously showed to be effective for
reverse dictionary tasks [11]. The second is data augmentation by
noising inputs, which was shown to be beneficial for some NLP
tasks, e.g., autoencoder [12], [13] and back translation [14]. Both
techniques boosted the performance of biLSTM+CFNN. We also
attempted fine-tuning the pre-trained NLP model BERT [15] for
the NRD and revealed that this approach did not work well under
limited computational resources for training.

The rest of this paper is organized as follows. We explain the
NRD and discuss an empirical study on its performance charac-
teristics in Section 2. In Section 3, we compare our new model
combinations having improved capacities over the previous mod-
els. In Section 4, we explain the experiments we conducted and
present the results. We present our best model combination, i.e.,
biLSTM+CFNN, in Section 5. We give a conclusion and mention
future work in Section 6.

2. Previous NRD Models and Their Limita-
tions

We explain the previous NRD models and examine their limi-
tations in Sections 2.1 and 2.2, respectively.

2.1 Previous NRD
The NRD outputs words sorted by rank determined by the

cosine similarity between the vector calculated from an input

Table 1 Combination of the network architectures. See Fig. 1 for the net-
work architectures.

LSTM part Fully-connected
part

BOW none (ADD) bow
LSTM forward bow
FNN none (ADD) fnn
CFNN none (ADD) cfnn
biLSTM bidirectional bow
stacked-LSTM stacked bow
biLSTM + CFNN bidirectional cfnn
stacked-LSTM + CFNN stacked cfnn

description and the vectors of candidate words. The NRD is
based on a neural language model [9]. Word embeddings may
be learned independently from or learned simultaneously with
NRD parameters. Hill et al. [2] reported that there was almost
no difference in the results obtained in either case. Hence, we
used a pre-trained word2vec for word embeddings. Dataset and
preprocessing for pre-training word2vec are the same as those in
our previous study [11]. Training conditions are using continuous
bag-of-words and hierarichical softmax, a window size of 5, sam-
pling rate of 10−5, min-count threshold of 10, and 10 iterations.

Next, we explain the neural networks of the NRD used in pre-
vious studies [2], [11]. We show these models’ architectures in
Table 1 and Fig. 1.
2.1.1 word2vec Add (ADD)

Hill et al. [2] used the sum of the word embeddings of words in
a description as the approximation of its meaning. We call such
a model the word2vec add model (ADD). No learning is needed
with the ADD when pre-trained word embeddings are used. In
our experiments, we omitted word embeddings of stop words
in the summation, as in our previous study [11]. This omission
slightly improves the accuracy of the ADD. We used this im-
proved ADD as the baseline in our study.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

2.1.2 Bag of Words (BOW)
The bag of words distributed representation model (BOW) [2]

outputs a linearly transformed summation of the vectors of input
words. The order of words is ignored with this model. The cosine
distance is used as a cost function.
2.1.3 Long Short-Term Memory (LSTM)

Hill et al. [2] also used long short-term memory [16] (LSTM),
which takes the word order into account. The activation func-
tion of the LSTM output is tanh and that of LSTM gate (recurrent
activation) is hard sigmoid *1.
2.1.4 CNN based Category Inference NRD

In our previous study [11], we introduced a convolutional
neural network (CNN)-based category-inference into the NRD,
which combines the previous vector generator with inference
on the category of the target word. We trained this CNN by a
word category and the description of the word. BOW or LSTM
searches the target word in the categories predicted with the
trained CNN.

2.2 Empirical Study on NRD with Previous Models
In this section, we discuss the possible limitations of the previ-

ous models for the NRD.
2.2.1 Training Data

We used about 937k word and definition pairs obtained from
Wordnik API *2. This pairs include about 260k kinds of defined
words (approximately 4 definitions per word). We used 1% of
the data as the validation data to determine early stopping and the
remaining 99% for actual training. Selection of this 1% substan-
tially affected the performance of the NRD, but detailed exami-
nation is beyond the scope of this paper.

For the CNN training, we used about 120k lexname and def-
inition pairs in Wordnet. We used 10% of the training data for
validation.

This data were already tokenized, and we did not pre-process
(lemmatization, stemming, and so on) them further.
2.2.2 Test Data and Evaluation Metrics

There are two possible evaluation metrics: the precision of the
unseen dictionary data (word and description pairs) not used in
the training, and the precision of the user description (target word
and its description pairs). From the former, generalization perfor-
mance can be measured using the data having the same character-
istics as the training data; thus, we could determine whether the
training was successful. This is appropriate for model validation
in the learning phase, so we used unseen dictionary data only for
the NRD model validation (see also Section 2.2.1), but not for
the NRD model test. From the latter, the performance in the in-
tended use for an actual reverse dictionary can be measured. This
is appropriate for the NRD model test. We employed the user
description as test data for the NRD evaluation.

We searched for a word from a description using the NRD to
evaluate and determine the precision from the rank of the target
word in the candidate word list generated using the NRD. We
used the metrics accuracy @ 1/10/100 *3, which are the rates at

*1 Linear approximation of sigmoid.
*2 http://developer.wordnik.com
*3 accuracy@1 is new for this paper.

Table 2 Performance of NRD with previous models and OneLook Reverse
Dictionary.

Model accuracy@1/10/100 median
ADD 0.02 / 0.25 / 0.60 52
BOW 0.03 / 0.30 / 0.67 38
CNN + BOW 0.06 / 0.32 / 0.69 31
LSTM 0.10 / 0.30 / 0.65 37
CNN + LSTM 0.12 / 0.33 / 0.67 36
OneLook 0.34 / 0.55 / 0.76 6

Table 3 Comparison of construction conditions of the NRD and OneLook
Reverse Dictionary.

NRD OneLook
resources (at most five) freely avail-

able dictionaries
almost 1,000 dictionaries

available user data none user search logs
openness most codes are publicly

available
architecture and codes are
not publicly available

which the target word is included in the candidate word list up to
the 1st/10th/100th in rank, and the median of the ranks. We used
all the words defined in Wordnet as target words vocabulary be-
cause the category information is only given to words in Wordnet.
This was not a restriction because all the target words in the user
descriptions were in Wordnet.
2.2.3 Evaluation and Findings

We re-implemented the previous NRD models *4 and evalu-
ated their performances. The results are listed in Table 2, where
CNN+BOW and CNN+LSTM mean the combination of CNN
category inferences mentioned in Section 2.1.4 with these mod-
els.

The models with learning, BOW, CNN+BOW, LSTM, and
CNN+LSTM, performed better than that without learning, i.e.,
the ADD. Thus, neural network transformations are effective in
reverse dictionary tasks. However, the NRD with CNN + LSTM,
which is the best of the previous NRD models, performed much
worse than OneLook Reverse Dictionary.

There are several differences in the amount of lexical resources,
availability of user data at their constructions *5 and openness
of the system between the NRD with the previous models and
OneLook Reverse Dictionary, as shown in Table 3.

From these differences, we consider that there are two possi-
ble reasons for the poorer performance with the previous NRD
models.
(1) The training data are insufficient.
(2) The models do not have sufficient capacity.

First, the relationship between the training data size and accu-
racy of LSTM is shown in Fig. 2, where ‘val’ means the validation
by using the dictionary data and ‘user’ means the test by using the
user descriptions *6. Similar results were obtained for BOW.

*4 The code will be available at https://gitlab.com/morinagy/
neuralreversedictionary morinaga.

*5 The NRD cannot access to any user data during training phase under our
experimental conditions.

*6 In Fig. 2, we see that the ‘val’ accuracies are lower than ‘user’ accuracies,
which is contradictory to the intuition that it is more difficult to predict
for out-of-domain data than in-domain data. This counter-intuitive result
comes from differences in targets contained each data. We picked (a)
200 definitions from training data of which targets are same to the user
descriptions, and (b) random 200 definitions from the training data. The
LSTM accuracy@10 for (a) was 0.42, while that for (b) was only 0.22.
Dictionaries define many uncommon words, and accuracies for them are
relatively low.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 2 Accuracy vs. training data size (LSTM).

Fig. 3 Accuracy vs. training data size (CNN category classifier).

We see that validation accuracies are saturated with the amount
of training data in Fig. 2. This means that the training data are suf-
ficient for learning with the previous NRD models. This refutes
possible reason 1.

Possible reason 2 remains after the first reason was refuted.
Next, we studied the relationship between the amount of train-

ing data and accuracy of CNN category inference, as shown in
Fig. 3. With more training data, the classification accuracies for
both validation data and the user description increased. This sug-
gests that the poor performance of category inference is due to
possible reason 1.

We focused on possible reason 2 and improved the NRD mod-
els in this paper.

3. Proposed Neural Network Models for NRD

In this section, we introduce new types of models for reverse
dictionary in addition to the those introduced in Section 2.1. We
show each of our model’s architecture in Table 1 and Fig. 1, along
with the previous models.

3.1 Feed-forward Neural Network (FNN)
It is natural to extend BOW (a single layer perceptron) to a

multi-layered perceptron when more capacity is required. We
used a feed-forward neural network (FNN) consisting of multi-
ple layers of densely connected networks. Our FNN consists of
5 layers. We used a rectified linear unit (ReLU) as an activation
function.

3.2 Cascade Forward Neural Network (CFNN)
We also tested the CFNN, which is an FNN augmented with

additional connections between non-adjacent layers. These addi-
tional connections are based on the cascade-correlation learning

architecture [17]. We call these additional connections the bypass

structure. The CFNN is similar to widely used densely connected
CNNs [18], but the CFNN has no pooling nor softmax layers be-
cause its output is used as an approximation of the target vector.
Our CFNN consists of 5 layers. We also used a ReLU as an acti-
vation function.

3.3 Bidirectional LSTM (biLSTM)
Because the function of the NRD resembles that of machine

translation, we tested neural networks used in neural machine
translation. Bidirectional LSTM (biLSTM) [19] is a combination
of two LSTMs using input in the forward and backward direc-
tions. We used hard sigmoid as a recurrent activation function
and tanh as another activation functions.

3.4 BiLSTM + CFNN
The combination biLSTM+CFNN uses biLSTM for the first

layer, and the concatenation of the outputs of forward LSTM and
backward LSTM is fed into the second layer of the CFNN. BiL-
STM is intended to extract the context vector of the input descrip-
tion and the CFNN is intended to transform the context vector into
the target vector. We focused on biLSTM + CFNN in our experi-
ment. The order of the input sequence is captured using biLSTM
and complex vector adjustments is carried out using the CFNN.
This combination of biLSTM and CFNN worked the best in our
experiment.

3.5 Stacked-LSTM
Stacked-LSTM is a network consisting of multiple LSTM

structures with stacked LSTM blocks as in Fig. 1. We used tanh
as an activation function.

3.6 Stacked-LSTM + CFNN
Stacked-LSTM + CFNN is a combination of stacked-LSTM

and the CFNN. We used stacked-LSTM because it can extract
better context than biLSTM. Other models, such as densely
connected-LSTM [20], were not tested because their computa-
tional cost is too high.

4. Experiments and Results

In this section, we explain the experimental conditions (Sec-
tion 4.1), present the experimental results (Section 4.2), and pro-
vide further discussion (Section 4.3).

4.1 Experimental Condition
We used two types of datasets for training. The first is the

dataset introduced in Section 2.2.1, which is the same as the
training dataset we previously used [11], and is 937k pairs. The
Second, is the first dataset plus the Oxford Dictionary *7 and has
1,181k pairs. Conditions for the data were the same as those men-
tioned in Section 2.2.1. The loss function was cosine distance,
optimizer was Adam [21], learning rate was 0.001, and batch size
was 500. The total numbers of trainable parameters for the mod-
els are summarized in Table 4.

*7 https://www.oxforddictionaries.com

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 4 Trainable parameters and convergence time for each model (* in-
dicates the previous models).

MODEL trainable parame-
ter

convergence time
(hour(s))

* BOW 250,000 0.03
* LSTM 2,002,000 1
FNN 5,000,000 0.05
CFNN 15,250,000 0.05
biLSTM 13,008,000 3
stacked-LSTM 32,516,000 9
biLSTM + CFNN 78,008,000 4
stacked-LSTM + CFNN 87,516,000 10

Table 5 Accuracy @1/10/100 (denoted as @1, @10, and @100 in column
titles) and rank median of each model for test dataset. “l / r” means
score of l of model trained on dataset (a) and score r of model
trained on dataset (b). Scores averaged over four runs are shown
except for NRD with previous models (*) and OneLook Reverse
Dictionary.

MODEL @1 @10 @100 median
* LSTM 0.07 / 0.07 0.32 / 0.34 0.68 / 0.72 33.0 / 26.0
FNN 0.16 / 0.12 0.41 / 0.38 0.68 / 0.68 19.0 / 28.0
CFNN 0.10 / 0.15 0.41 / 0.43 0.74 / 0.71 18.5 / 17.5
biLSTM 0.14 / 0.18 0.43 / 0.52 0.74 / 0.77 15.5 / 9.8
biLSTM +

CFNN
0.20 / 0.24 0.52 / 0.58 0.77 / 0.82 9.3 / 6.3

stacked-
LSTM

0.19 / 0.20 0.50 / 0.52 0.78 / 0.79 11.3 / 9.0

stacked-
LSTM +

CFNN

0.21 / 0.22 0.51 / 0.52 0.76 / 0.77 9.8 / 8.5

OneLook
(2018)

0.34 0.55 0.76 6.0

4.2 Experimental Results
The experimental results are listed in Table 5. Considering

randomness, the averaged scores over four runs are shown. All
of our models performed better than the previous models, for
both training datasets (a) and (b). Particularly, biLSTM + CFNN
substantially outperformed the previous models. The NRD with
this model trained on dataset (b) even outperformed commercial
OneLook Reverse Dictionary in accuracy@10/100.

Almost all the NRD models that contain LSTM structures were
more accurate when being trained on dataset (b) than on (a). The
difference between datasets (a) and (b) is only the Oxford Dictio-
nary. Dataset (a) is a large dataset (937k pairs) that contains only
old free dictionaries, while dataset (b) contains the Oxford Dic-
tionary as well, which is not so large (1,181k−937k = 244k pairs)
compared to dataset (a) but still now maintained commercial dic-
tionary. LSTM structures take into account word orders, so those
performance gaps may be due to dictionary-data quality rather
than from its quantity. Our NRD models were far more accurate
than the previous ones under the same training data conditions
(dataset (a)) to that of a previous study, and performed better on
dataset (b). Below are only the results of the NRD models trained
on dataset (b).

4.3 Additional Experiments
4.3.1 Target Category Inference by CNN for NRD

We previously showed that the category inference of the target
word by using a CNN can be used to improve the NRD’s perfor-
mance [11], and this category inference can be used to improve
our models further. We used the category inference system us-

Table 6 Accuracy @1/10/100 (denoted as @1, @10, and @100 in titles)
and rank median of biLSTM + CFNN with and without CNN cat-
egory inference.

MODEL @1 @10 @100 median
biLSTM + CFNN 0.24 0.58 0.82 6.3
biLSTM + CFNN
with CNN

0.26 0.59 0.81 5.8

Table 7 Accuracy@1/10/100 (denoted as @1, @10, and @100 in column
titles) and rank median of noised and non-noised models.

MODEL @1 @10 @100 median
biLSTM + CFNN 0.24 0.58 0.82 6.3
noised biLSTM +
CFNN

0.25 0.62 0.81 5.3

noised biLSTM +
CFNN with CNN

0.26 0.62 0.82 5.0

OneLook (2018) 0.34 0.55 0.76 6.0

ing a CNN (called CNN in the following) that was trained as in
our previous study [11]. We combined our biLSTM+CFNN with
CNN as follows.
(1) BiLSTM + CFNN searches candidate words from an input

definition.
(2) The CNN predicts probabilities for each category (45 types)

from the input definition.
(3) If there is a category that has an estimated probability higher

than 0.95 by the CNN, choose the candidate words in the
category. Otherwise, choose all the candidate words.

The accuracy@1, accuracy@10, and rank median were im-
proved with the category inference as shown in Table 6.
4.3.2 Data Augmentation by Noising Definitions

Adding noise to input sentences has been shown to be a very
effective data augmentation technique for some NLP tasks, such
as autoencoder [12], [13] and back translation [14]. We noised
training data definitions by deleting words with probability 0.1,
replacing words with an <unk> token with probability 0.1, and
moving one word per sentence to no further than three positions
apart following a previous study [14].

Table 7 lists the results of this experiment. Noising input sub-
stantially improved accuracy @10 and the rank median of biL-
STM+CFNN. Therefore, noising is also effective for the NRD.
CNN in Section 4.3.1 can be combined to improve this noised
biLSTM+CFNN further.
4.3.3 Pre-trained Language Representation Model for NRD

BERT [15] is a general purpose pre-trained language represen-
tation model that is based on Transformer [22] and can be fine-
tuned with one additional output layer to create state-of-the-art
models for a wide range of tasks.

For a reverse dictionary task, we added one fully connected
layer to a pre-trained BERT-Base *8 model. BERT-Base out-
puts positional embeddings and segment embeddings, then po-
sitional embeddings are added and pass through the additional
fully connected layer. We dismissed segment embeddings be-
cause an NRD model requires only one sentence as its input. Be-
cause BERT-Base is a large model (even though the BERT-Base
is smaller than BERT-Large), we cannot make a batch size larger
than 5 in our training environment. After fine-tuning up to three
epochs, this model failed to learn appropriate networks to solve

*8 Distributed in https://github.com/google-research/bert

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

the reverse dictionary task (the median is over 20,000). This fail-
ure seems to have been caused by the extremely small batch size,
because with such a small batch size, even our model cannot learn
anything. Reverse dictionary tasks require an individual regres-
sion for each type of target word to be solved, so training the
NRD on a small batch size seemingly results in local solutions.

5. Analysis

In this section, we discuss on the reason of the good perfor-
mance of biLSTM + CFNN, which performed the best among
the models we presented in Section 4.

5.1 Which Factor Makes biLSTM+CFNN so Accurate?
To understand what factor makes biLSTM+CFNN so accurate,

we conducted further experiments under different conditions. The
results are listed in Table 8. The following notations are used in
the table.
FNN (default) : FNN introduced in Section 4.2
FNN (complex) : FNN having almost the same number of pa-

rameters as the CFNN
X (fixed) + Y : the model in which pre-trained and fixed model

X is connected to model Y

As shown in Table 8, FNN (default) (1) was less accurate than
the CFNN (3), but FNN (complex) (2) had almost the same ac-
curacy as the CFNN. This means that the difference in accu-
racy between an FNN and the CFNN is due to just their capac-
ity but not from their network structure. Among biLSTM+FNN
(default) (5), biLSTM+FNN (complex) (6), and biLSTM+CFNN
(9), only biLSTM + CFNN had higher accuracy than biLSTM
(4). Both biLSTM (fixed) + FNN (complex) (8) and biLSTM
(fixed) + CFNN (10) had higher accuracy than biLSTM (4), but
biLSTM + CFNN (9) was more accurate than those models. BiL-
STM (fixed) + FNN (default) (5) had almost the same accuracy
as biLSTM (4). Therefore, we can say that biLSTM combined
with a multi-layer fully connected network with sufficient capac-
ity can complete reverse dictionary tasks. However, the entire
model cannot be learned properly without the bypass structure of

Table 8 Accuracy@1/10/100 (denoted as @1, @10, and @100 in column
titles) and rank median of each models.

MODEL @1 @10 @100 median
1. FNN (default) 0.12 0.38 0.68 28.0
2. FNN (complex) 0.16 0.45 0.70 16.0
3. CFNN 0.15 0.43 0.71 17.5
4. biLSTM 0.18 0.52 0.77 9.8
5. biLSTM + FNN
(default)

0.21 0.48 0.79 13.0

6. biLSTM + FNN
(complex)

0.16 0.42 0.75 17.0

7. biLSTM (fixed) +
FNN (default)

0.21 0.52 0.76 10.0

8. biLSTM (fixed) +
FNN (complex)

0.24 0.54 0.77 8.0

9. biLSTM + CFNN 0.24 0.58 0.82 6.3
10. biLSTM (fixed)
+ CFNN

0.24 0.54 0.76 7.0

11. stacked-LSTM 0.20 0.52 0.79 9.0
12. stacked-LSTM +
CFNN

0.22 0.52 0.77 8.5

13. stacked-LSTM
(fixed) + CFNN

0.20 0.54 0.78 8.0

the multi-layer fully connected network. Separate training of biL-
STM and a multi-layer fully connected network is less effective
probably because training the biLSTM alone may cause overfit-
ting. The bypass structure is essential for learning in the lower
layers when lower and higher layers are simultaneously trained.

Some image-processing neural networks, such as ResNet [23]
and DenseNet [24], have similar bypass structures. These by-
pass structures are introduced to deepen learnable CNN networks.
Also, ResNet behaves like ensemble learning because of its by-
pass structure [25]. Our bypass structure serves a somewhat dif-
ferent function from the others.

Stacked-LSTM (11) was more accurate than biLSTM (4), but
both stacked-LSTM + CFNN (12) and stacked-LSTM (fixed) +
CFNN (13) were less accurate than biLSTM + CFNN (9). The
possible reason for these facts is that stacked-LSTM has too much
capacity and learns what the multi-layer fully connected network
can learn more effectively.

We now summarize the analysis. We can construct a neural
network model to complete reverse dictionary tasks by using biL-
STM followed by a multi-layer fully connected network with the
bypass structure. To train this network properly, two conditions
are crucial.
(1) LSTM and a multi-layer fully connected network should be

trained simultaneously.
(2) LSTM should not have too much capacity.
That is, the balance between LSTM and a multi-layer fully con-
nected network is important for constructing a better performing
NRD.

Among our models, biLSTM + CFNN has the highest accu-
racy. This is because the capacity of biLSTM matches that of
the CFNN, as shown in Table 4, and the bypass structure of the
CFNN makes it possible to train the entire model at once.

We now discuss the reason of these observations in various as-
pects.

5.2 How does CFNN works in biLSTM + CFNN?
BiLSTM+CFNN performed substantially better than biLSTM.

To understand the reason for this, we formed the following hy-
pothesis on the function of the CFNN in biLSTM + CFNN: the
CFNN draws the biLSTM-generated embedding of multiple de-
scriptions, which are explaining same word, more similar direc-
tions.

To verify this hypothesis, we plotted the cosine similarity of
the embedding at various layers of biLSTM and CFNN in Fig. 4
(Left).

We plotted the similarity of the following combinations.
• train-train mean: A centroid of definitions and a definition

in the dictionaries for the 200 words in the user descriptions
were used. The results are averaged.

• train-test mean: A centroid of definitions in the dictionaries
and a user description for the 200 words in the user descrip-
tions are used. The results are averaged.

• train-train word “forget”: A centroid of definitions and a def-
inition for the word “forget” in the dictionaries are used.

• train-train word “identify”: A centroid of definitions and a
definition for the word “office” in the dictionaries are used.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 4 Cosine similarity of the centroid of definitions and a definition (or description) of (Left) one word,
(Right) different words. Vertical axis is along the cosine similarity. Horizontal axis is along the
layers. n-th layer of CFNN is denoted as “DENSE n”.

Fig. 5 (Left) Training loss for each epoch. (Right) Validation loss for each epoch. biLSTM, biLSTM +
CFNN, stacked-LSTM, and stacked-LSTM + CFNN were used.

• train-test word “forget”: A centroid of definitions in the dic-
tionaries and one in user description for the word “forget”
are used.

• train-test word “identify”: A centroid of definitions in the
dictionaries and one in user description for the word “office”
are used.

In contrast, we plotted those for two different words in Fig. 4
(Right). “rand-train word forget” in this figure means a centroid
of definitions for a randomly selected (and different from “for-
get”) word in the dictionaries and a definition for the word “for-
get” are used, and others as well.

Comparing these figures, we can see that only definitions for
one word are drawn nearer by CFNN, and definitions for differ-
ent words are not. This is remarkable for the training data, but it
is also seen for the test data. This result supports the hypothesis
that the CFNN draws the biLSTM-generated embedding of the
descriptions for one word nearer.

5.3 Why stacked-LSTM+CFNN does not perform better
than biLSTM + CFNN?

Stacked-LSTM performed better than biLSTM, but stacked-
LSTM+CFNN did not perform better than biLSTM + CFNN,
and we found that “LSTM should not have too much capacity”, as
mentioned in Section 5.1. To understand this reason, we plotted
the training loss and validation loss in Fig. 5.

From this figure:
• Connecting biLSTM before the CFNN substantially im-

proves learning efficiency and generalization capability for
the validation data much.

Table 9 Accuracy @1/10/100 (denoted as @1, @10, and @100 in titles)
and rank median of biSLTM + CFNN, stacked-LSTM + CFNN,
stacked-LSTM (fixed) + CFNN evaluated in the reverse dictionary
task.

MODEL @1 @10 @100 median
biLSTM + CFNN 0.24 0.58 0.82 6.3
stacked-LSTM +

CFNN
0.22 0.52 0.77 8.5

stacked-LSTM
(fixed) + CFNN

0.22 0.54 0.78 8.0

• Connecting stacked-LSTM before the CFNN slightly im-
proves learning efficiency and generalization capability for
the validation data.

• The generalization capability of biLSTM + CFNN and
stacked-LSTM + CFNN are the same for the validation data
(but not for the test data).

From these observations, we argue that there are mainly two
cases for the poor performance of stacked-LSTM in stacked-
LSTM+CFNN.
Case A Because stacked-LSTM has more capacity, the learning

of it is slow and the training of it is incomplete.
Case B Because stacked-LSTM has more expressive power, it

consumes the rules that are better learned using the CFNN
and degrades overall performance. That is, stacked-LSTM
learns the rules that are valid only in dictionary data (train-
ing and validation) and not in user (test) descriptions.

To test Case A, we trained stacked-LSTM first then the CFNN
later. We denote this model as stacked-LSTM (fixed) + CFNN.
The results of this and those for biLSTM+CFNN and stacked-
LSTM+CFNN are listed in Table 9. Stacked-LSTM+CFNN and
stacked-LSTM (fixed) + CFNN did not perform better than that

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 10 Three test examples for reverse dictionary task evaluation. Our biLSTM+CFNN was superior
for “prefer”, Hill’s LSTM was superior for “knowledge”, OneLook Reverse Dictionary was
superior for “east”. OneLook Reverse Dictionary only returned top 1,000 words, so we denote
rank of target word not found in returned result by OneLook Reverse Dictionary as 1,000<.

Target Description Model Target
Rank

Top 10 Candidates

prefer
to like one thing more
than another thing

biLSTM
+ CFNN

1 prefer, choose, simply, either, or, preferred, preferable,
certain, choosing, rather

LSTM 106 so, even, simply, make, do, whatever, but, be, ignore,
always

OneLook 1,000< inclination, this, inclinnation, quantity, number, odds,
into, genitive, better, excess

east
one of the directions
on a compass that
points right when you
look at it

biLSTM
+ CFNN

15 eastward, westward, straight, southward, northward,
westwards, eastwards, north, northwards, direction

LSTM 6,319 angle, curve, directions, diagonal, compass, angles,
vertical, diagonally, angled, direction

OneLook 1 east, point, orientation, aspect, west, projection, orien-
tate, orient, oriented, pole

knowledge
all of the information
or facts that somebody
might have in their
head

biLSTM
+ CFNN

13,569 head, heads, back, front, then, arm, hand, out, down,
off

LSTM 47 merely, simply, clearly, therefore, particular, necessar-
ily, indeed, actually, rather, otherwise

OneLook 151 know, selection, record, mind, recorded, mindfulness,
credit, right, interview, diary

of biLSTM+CFNN. The pre-training of stacked-LSTM did not
improve performance. Thus, because Case A does not hold, we
argue that Case B, i.e., stacked-LSTM consumes the rules that are
better learned using the CFNN and degrades overall performance,
holds.

5.4 Qualitative Analysis
We manually inspected 200 test examples for our biLSTM +

CFNN, Hill’s LSTM, and OneLook Reverse Dictionary.
Compared with OneLook Reverse Dicitonary in terms of target

ranks, biLSTM + CFNN was better for 87 examples, worse for
82 examples, the same for 26 examples, and unknown *9 for 5 ex-
amples. BiLSTM + CFNN has similar performance, and seemed
to work complementarily to OneLook Reverse Dictionary. From
Table 10, biLSTM + CFNN performed better than OneLook Re-
verse Dictionary for the target word “prefer”, and conversely for
the target word “east”.

Compared with LSTM in terms of target ranks, biLSTM +
CFNN performed better for 138 examples, worse for 49 exam-
ples, and same for 13 examples. BiLSTM + CFNN performed
mostly better than LSTM. When LSTM had better target rank
than other reverse dictionaries, we found that other highly ranked
words were not suitable for the context of the input description.
For example, LSTM had better rank for the target word “knowl-
edge” than biLSTM + CFNN and OneLook Reverse Dictionary
as shown in Table 10, but the other top 10 candidates by LSTM
were completely irrelevant to the target meaning. On the other
hand, OneLook Reverse Dictionary failed to name the target word
“knowledge”, but the other top 10 candidates were relevant to the
target meaning.

6. Conclusion

We pointed out that the previous neural network models of the

*9 OneLook Reverse Dictionary returns only top 1,000 words. In case of
a target word found in neither of OneLook Reverse Dictionary output
words nor biLSTM + CFNN output top 1,000 words, we cannot deter-
mine which target rank is higher. This is the “unknown” case.

NRD may have insufficient capacity; thus, we improved the per-
formance of the NRD by using novel combinations of neural net-
work models with sufficient capacities. We also confirmed that
data augmentation by noising inputs is beneficial for the NRD,
as for other NLP tasks. We applied this data augmentation and
combined CNN category classification, which has been shown
to be effective for the NRD, to biLSTM+CFNN (noised BiL-
STM+CFNN with CNN). Noised biLSTM + CFNN with a CNN,
is our best model for the NRD; thus, the NRD outperformed the
OneLook Reverse Dictionary in all our metrics except accuracy
@1. The performance of the NRD with our models matched that
of OneLook Reverse Dictionary, which can access a large amount
of resources (1,061 indexed dictionaries) and can be tuned by ex-
perts.

The LSTM structure’s output adjustment by a multi-layer fully
connected network with the bypass structure is more effective
for reverse dictionary tasks than using complicated LSTM. This
model might perform well in other NLP tasks. This investigation
is for future work.

We have another future work: to investigate how the NRD
bridges the gap between known dictionary definitions and un-
known user descriptions. We suggested that just complicated
LSTM networks does not improve the NRD performance. To
reveal generalizing mechanism of the NRD will help to improve
its performance.

References

[1] Schwartz, B.L. and Metcalfe, J.: Tip-of-the-tongue (TOT) states: Re-
trieval, behavior, and experience, Memory & Cognition, Vol.39, No.5,
pp.737–749 (2011).

[2] Hill, F., Cho, K., Korhonen, A. and Bengio, Y.: Learning to Under-
stand Phrases by Embedding the Dictionary, Trans. Association for
Computational Linguistics, Vol.4, pp.17–30 (2016).

[3] Miller, G.A.: WordNet: A lexical database for English, Comm. ACM,
Vol.38, No.11, pp.39–41 (1995).

[4] Dutoit, D. and Nugues, P.: A Lexical Database and an Algorithm to
Find Words from Definitions, Proc. 15th European Conference on Ar-
tificial Intelligence (ECAI2002), pp.450–454 (2002).

[5] El-kahlout, I.D. and Oflazer, K.: Use of Wordnet for Retrieving Words
from Their Meanings, Proc. Global Wordnet Conference (GWC2004),

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

pp.118–123 (2004).
[6] Méndez, O., Calvo, H. and Moreno-Armendáriz, M.A.: A Reverse

Dictionary Based on Semantic Analysis Using WordNet, MICAI 2013:
Advances in Artificial Intelligence and Its Applications - 12th Mexican
International Conference on Artificial Intelligence, Part I, pp.275–285
(online), DOI: 10.1007/978-3-642-45114-0 22 (2013).

[7] Shaw, R., Datta, A., VanderMeer, D. and Dutta, K.: Building a scal-
able database-driven reverse dictionary, IEEE Trans. Knowledge and
Data Engineering, Vol.25, No.3, pp.528–540 (2013).

[8] Thorat, S. and Choudhari, V.: Implementing a Reverse Dictionary,
based on word definitions, using a Node-Graph Architecture, Proc.
COLING 2016, the 26th International Conference on Computational
Linguistics, pp.2797–2806 (2016).

[9] Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C.: A neural
probabilistic language model, Journal of Machine Learning Research,
Vol.3, No.Feb, pp.1137–1155 (2003).

[10] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J.: Dis-
tributed representations of words and phrases and their composition-
ality, Advances in Neural Information Processing Systems, pp.3111–
3119 (2013).

[11] Morinaga, Y. and Yamaguchi, K.: Improvement of Reverse Dictionary
by Tuning Word Vectors and Category Inference, ICIST 2018, CCIS
920, pp.533–545 (2018).

[12] Hill, F., Cho, K. and Korhonen, A.: Learning Distributed Repre-
sentations of Sentences from Unlabelled Data, Proc. NAACL-HLT,
pp.1367–1377 (2016).

[13] Lample, G., Conneau, A., Denoyer, L., et al.: Unsupervised Machine
Translation Using Monolingual Corpora Only, International Confer-
ence on Learning Representations (ICLR) (2018).

[14] Edunov, S., Ott, M., Auli, M. and Grangier, D.: Understanding Back-
Translation at Scale, Proc. 2018 Conference on Empirical Methods in
Natural Language Processing, pp.489–500 (2018).

[15] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K.: BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing, Proc. 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp.4171–4186 (2019).

[16] Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural
Computation, Vol.9, No.8, pp.1735–1780 (1997).

[17] Fahlman, S.E. and Lebiere, C.: The Cascade-Correlation Learn-
ing Architecture, Advances in Neural Information Processing Sys-
tems 2, Touretzky, D.S. (Ed.), Morgan-Kaufmann, pp.524–532 (1990)
(online), available from 〈http://papers.nips.cc/paper/207-the-cascade-
correlation-learning-architecture.pdf〉.

[18] Huang, G., Liu, Z., van der Maaten, L. and Weinberger, K.Q.: Densely
Connected Convolutional Networks, 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp.2261–2269 (online),
DOI: 10.1109/CVPR.2017.243 (2017).

[19] Bahdanau, D., Cho, K. and Bengio, Y.: Neural machine translation by
jointly learning to align and translate, arXiv preprint arXiv:1409.0473
(2014).

[20] Godin, F., Dambre, J. and De Neve, W.: Improving Language Model-
ing using Densely Connected Recurrent Neural Networks, Proc. 2nd
Workshop on Representation Learning for NLP, pp.186–190 (2017).

[21] Kingma, D.P. and Ba, J.: Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980 (2014).

[22] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, Ł. and Polosukhin, I.: Attention is all you need,
Advances in Neural Information Processing Systems, pp.5998–6008
(2017).

[23] He, K., Zhang, X., Ren, S. and Sun, J.: Deep residual learning for
image recognition, Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pp.770–778 (2016).

[24] Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q.:
Densely connected convolutional networks, Proc. IEEE Conference
on Computer Vision and Pattern Recognition, pp.4700–4708 (2017).

[25] Veit, A., Wilber, M.J. and Belongie, S.: Residual networks behave like
ensembles of relatively shallow networks, Advances in Neural Infor-
mation Processing Systems, pp.550–558 (2016).

Yuya Morinaga received his B.A. and
M.A. degree from the University of
Tokyo, in 2016 and 2019, respectively. He
is a Ph.D. candidate in the University of
Tokyo.

Kazunori Yamaguchi received his B.S.,
M.S., and Doctor of Science degrees in in-
formation science from the University of
Tokyo, in 1979, 1981, and 1985, respec-
tively. Currently, he is a professor of the
University of Tokyo. His research inter-
ests are in data models and data analysis.
He is a member of IPSJ.

c© 2020 Information Processing Society of Japan

