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How Far Can We Go with Scene Descriptions
for Visual Question Answering?
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Abstract:
Visual question answering (VQA) is the task of answering questions about an image’s visual content. To represent
images, the bounding box-based visual representations have been widely used as the de-facto standard. In contrast, the
recent progress in Transformer language models has made it possible to represent simultaneously inter-relationships
between two consecutive sentences as well as intra-relationships between the individual words in a sentence. The
outstanding performance of such language models in multiple language-based tasks inspired us to consider textual
representations of images for VQA. Thus, instead of using visual features directly extracted from images, we propose
to generate scene descriptions by using state-of-the-art recognition models. Results on VQA-CP v2 show our proposed
textual descriptions have the potential to be a faithful representation for VQA. Even so, our experiments reveal there
is still room for improvement in our generated scene descriptions.
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1. Introduction
Vision and language is a research area that has been increas-

ingly drawing more attention. One of the main tasks of vision and

language is visual question answering (VQA) [1, 2]. VQA aims

to answer questions about an image’s visual content, requiring

a computer system to understand both a question and an image.

For understanding the visual content, the bounding box (region)-

based visual representation has been used as the de-facto standard

due to bottom-up attention’s success [3]. However, by handling

the visual features extracted from bounding boxes independently,

a machine often fails to describe the visual relationships, or, even

if the prediction is correct, he regions that should be paid attention

to answer the question are not appropriate [4].

On the other hand, the recent progress in Transformer language

models [5,6] outperform previous techniques on various key NLP

datasets such as GLUE [7] and SQuAD [8]. For this reason, tex-

tual representation of images might be a powerful tool when un-

derstanding visual contents, providing a deep understanding of,

e.g., interactions among objects in images. Image captioning [9],

which is the process of generating textual description according

to the content observed in an image, is one of the major tasks to
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Fig. 1: Typically, VQA models use deep visual feature vectors

extracted based on object detectors as the representation of an

image (left). Our model generates a scene description instead of

the visual feature vectors. (right)

generate textual representation of an image. However, currently,

most work on VQA is focused on leveraging bounding box-based

visual representation, and application of textual representations

of images to VQA is underexplored.

In this work, we delve into the effectiveness of textual repre-

sentation of images. Specifically, as shown in Fig. 1, we explore

to generate scene descriptions as the representation of an image

by leveraging state-of-the-art image recognition techniques. The

generated scene descriptions and a question are jointly fed into a
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Fig. 2: Model overview.

pre-trained Transformer language model to answer a given ques-

tion. We extensively evaluate our model on a well-known dataset,

VQA-CP v2 [10]. Additionally, we analyze our experimental re-

sults in detail. For the current progress, our scene description

is not competitive with the existing deep visual features. Still,

we found that textual descriptions have potential benefits that can

represent the relationships among objects more directly than pre-

vious visual features.

2. Related Work
We develop a model for VQA that takes advantage of image

content by generating scene descriptions. In what follows, we

first review work on image representations for various vision and

language tasks, such as VQA, and we introduce Transformers.

2.1 Image Representations
Deep Visual Features In vision and language tasks, visual fea-

tures have played a key role in leveraging the visual content of im-

ages. Most VQA methods use deep visual features extracted by

vision models pre-trained on ImageNet [11] and Visual Genome

(VG) [12]. There are roughly two types of deep visual features

obtained by vision models: 1) grid-based visual features and 2)

bounding box (region)-based visual features. Grid-based visual

features are convolutional feature maps typically from VGG [13]

or ResNet [14]. Grid-based visual features are vectors, each of

which represents a uniform grid region in the image, without be-

ing aware of its content. On the other hand, bounding box-based

visual features, which is extracted by object detectors, such as

Faster R-CNN [15], are a set of prominent image regions, with

each region represented by a pooled convolutional feature vector.

Bounding box-based visual features possibly allow to pay atten-

tion to the critical parts in the image.

Cross-Modal Representation Building on top of the recent

progress in language models, some work has adapted Trans-

former language models to fuse visual and textual information

for vision and language tasks. Recent studies [16–20] pre-train

multi-layer Transformers by concatenating bounding box-based

visual features and text features as input. These models can actu-

ally learn general cross-modal representations and result in state-

of-the-art results in downstream vision and language tasks.

Textual Representation There are some methods that use tex-

tual representation of images or videos for VQA. They can suc-

cinctly encode the necessary information to answer the questions.

Garcia et al. [21] generates video scene descriptions in an unsu-

pervised manner by first generating scene graphs to represent the

video scene’s content. The generated video scene descriptions are

then fed into a Transformer to make a prediction. Sariyildiz et

al. [22] proposes a proxy task to learn visual representations from

scratch given image-caption pairs, based on the observation that

captioned images are easily crawlable. As a result, visual rep-

resentations that can be transferred well to various downstream

tasks. Wu et al. [23] generates image descriptions that contain in-

formation directly relevant to a particular VQA question, and the

descriptions are exploited to help answer a specific visual ques-

tion. Ramachandran et al. [24] answers questions by first translat-

ing an image to natural language text-based on dense captioning

and then answering the question based on the text. The use of

textual representation can improve accuracy in the sense that it

can easily include attributes and relationships of multiple objects

in sentences.

However, almost all of VQA methods described above leverage

deep visual features, while few rely only on textual representation

for the representation of images. In this paper, we only use tex-

tual representations for the visual features of images. We rely on

object relationships in images to generate scene descriptions.

2.2 Transformers
Transformers [25] are extensively used for language model-

ing and entirely rely on self-attention mechanisms to compute

representations of their input and output without using sequence-

aligned RNNs or convolution. Additionally, pre-trained Trans-

formers can be fine-tuned easily, achieving state-of-the-art per-

formance in many natural language processing tasks [5, 6].

Given the input sequence of word tokens, the input sequence is

processed before entering the model by 1) inserting a [CLS] to-

ken at the beginning of the first sentence and [SEP] tokens at the
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Fig. 3: Example of generated scene description.

end of each sentence, 2) adding segment embeddings and posi-

tion embeddings. [CLS] is the classification token used to obtain

the output representation. [SEP] is the separator token for sep-

arating sentences. The processed input sequence is transformed

into learned vector representation of each word and added seg-

ment embeddings and position embeddings to get an input em-

bedding. In each self-attention layers of a Transformer, the input

embedding is encoded into a representation that holds the learned

information for that entire sequence.

3. Our Method
The structure of our model, which aims at answering questions

by leveraging scene descriptions, is shown in Fig. 2. Given an

image and question as input, we first generate a scene description

of the image [21]. The scene description and the question are

encoded through a Transformer with several self-attention layers.

Then, the output from the Transformer is fed into a classifier.

3.1 Scene Description Generation
We use textual representation for the representation of images.

We propose a way to generate scene descriptions of images built

on top of state-of-the-art image recognition techniques. There are

two techniques we use for scene descriptions: place classification

and object relationship detection. We generate scene descriptions

from the results of these techniques. Below, we first explain the

image recognition techniques and describe the detail of the scene

descriptions generation process.

Place Classification Place classification is a task to identify a

location in an image. As the model to detect where the scene in

an image is located, we use the pre-trained Place365 [28] network

with ResNet50 [14] backbone. There are 365 scene categories,

and we use the network’s output as the predicted place.

Object Relationship Detection Object relationship detection

is a task to detect the objects that occur in an image and their re-

lations. We use the large-scale visual relationship understanding

(VRU) [29] pre-trained on the VG200 dataset [30], a subset of

VG with 150 object and 50 relation categories. VRU takes an im-

age as input and predicts multiple relationships and localizes the

objects in the image, producing a list of subject-relation-object

triplets, bounding boxes, and a prediction score for each triplet.

Scene Description Generation Scene descriptions are gen-

erated from the output of place classification and object rela-

tionship detection. We obtain the predicted place, P, from pre-

trained Place365, and a list of N subject-relation-object triplets,

T = {Ti | i = 1, ...,N} with Ti = (S i, Ri, Oi) and S i, Ri, and Oi

denote subject, relation, and object respectively from object re-

lationship detection. We generate a sentence, “This place is P.”

for a place description. We also generate sentences, “S i Ri Oi.”

from the results of the triplets. Specifically, we generate sen-

tences “S i Ri Oi.” by removing the duplicate triplets. The max-

imum number of the sentences is set to ten. We concatenate all

sentences to generate scene descriptions. Examples of the scene

descriptions are shown in Fig. 3.

3.2 Structure Input Text
In our proposed model, a question and a scene description are

the input of the Transformer. The input string of the Transformer

s is as below:

s = [CLS] + description + [SEP] + question + [SEP], (1)

where the description is a scene description generated from an

image, and + represents a concatenation of sentences. An input

string is generated for each question.

The string s is tokenized to obtain a sequence of n tokens x =
[x1, ..., xn], and fed into a Transformer network to obtain a repre-

sentation V that contains the information of the entire sequence.

x = tokenize(s) (2)

V = Transformer(x). (3)

3.3 Prediction
When making a prediction, the representation corresponding

to the [CLS] token V0 is fed into a classifier for the final joint

representation f . Finally, the answer with the maximum score is

selected as the final prediction

f = Classifier(V0). (4)
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Table 1: Accuracies (%) on VQA-CP v2 test set.

Model Feature Type OverAll
Answer Type

Yes/No Number Other

Question-Only Text 20.95 41.06 13.26 11.77

5 Captions Text 36.19 45.54 16.66 36.43

UpDn [3] Vector 37.94 42.27 11.93 46.05

RUBi [26] Vector 44.23 64.85 11.83 44.11

LMH+CSS [27] Vector 58.95 84.37 49.42 48.21
Scene Descriptions Text 27.56 41.32 12.41 24.23

w/o actions Text 27.37 41.08 12.75 24.20

w/o spacial Text 27.74 41.40 12.63 24.52

w/o prepositions Text 27.96 41.37 12.35 25.11
w/o non-actions Text 28.08 41.45 12.32 25.09

4. Evaluation
4.1 Experimental Settings

We present experimental results on the VQA-CP v2 dataset

[10], containing 658,111 questions about 219,158 images, of

which the training set contains 438,183 questions for 120,932 im-

ages and the test set has 219,928 questions for 98,226 images.

VQA-CP v2 has a different answer distribution for each question

type to evaluate the model’s robustness to question biases. An-

swers in the dataset are divided into three types: Yes/No, Num-

ber, and Other. The answer vocabulary is determined based on

the number of occurrences of each unique answer in the dataset.

Specifically, we include a phrase into the answer vocabulary if

the phrase occurred nine times or more. This resulted in the vo-

cabulary with 3,129 phrases. The standard performance metric

for VQA is accuracy [1]. We followed this standard.

We use the BERTbase uncased model [5,31] as our Transformer

language model, which has 12 layers, 768 hidden sizes, 12 self-

attention sizes, and 110 million parameters. This model does

not differentiate uppercase and lowercase tokens. The maximum

number of tokens per sequence is set to 128. Our classifier is

a multi-layer perceptron (MLP) with two fully-connected (FC)

layers. The ReLU activation function is inserted between the FC

layers. The number of outputs is set to the size of the answer

vocabulary. We use softmax cross entropy over the answer vo-

cabulary for the loss function. We train our models with Adam

optimizer [32]. We use the learning rate of 2× 10−5 and the batch

size of 128.

4.2 Results
Comparison with state-of-the-art In Table 1, we com-

pare our approach against the state-of-the-art on VQA-CP v2.

The state-of-the-art models are Bottom-Up and Top-Down At-

tention (UpDn) [3], RUBi [26], and Learned-Mixin+H+CSS

(LMH+CSS) [27]. These state-of-the-art models all use deep vi-

sual features of images (denoted as Vector in Table 1). As for

comparison with state-of-the-art, which uses deep visual features,

our approach that uses scene descriptions as input of the Trans-

former (Scene Descriptions) reaches an average overall accuracy

of 27.56%. This accuracy corresponds to a loss of −31.39 per-

centage points over the current state-of-the-art LMH+CSS [27].

It also corresponds to a loss of −10.40 percentage points over

UpDn [3].

Comparison of Textual Representations For comparison, we

also report the results of a model with the same architecture as

the proposed model, but with only questions as input (Question-

Only) and with five ground-truth captions from COCO dataset

[33] attached to each image as input (5 Captions). In the same

architecture, compared with Question-Only, Scene Descriptions

reaches +6.61 percentage improvement, and also compared with

5 Captions, 5 Captions outperforms Scene Descriptions, which

corresponds to a gain of +8.63 percentage. From these results,

we can say that our scene descriptions are useful to answer the

questions, but not so much than 5 Captions. Even so, the cap-

tions are using ground-truth data annotated by humans, while our

scene descriptions are automatically generated. Hence, our scene

descriptions have certain advantage over the captions.

Types of Predicate Comparison We manually divide predi-

cate classes into four categories: actions (e.g. riding), non-actions

(e.g. has), spatial (e.g. behind), and prepositions (e.g. with). To

evaluate each category’s impact, we remove one category out of

four when generating scene descriptions and compare the results.

The results show that we gain the best accuracy when removing

predicates in the non-actions category. Conversely, the accuracy

when removing predicates in the actions category is worst. From

this observation, we found that predicates in the non-actions and

prepositions have a negative effect. Hence, we may say that the

input can be improved by cleaning the descriptions.

5. Discussion
Overall Comparison As the experimental results of the com-

parison with state-of-the-art show, state-of-the-art models outper-

form our proposed model that uses scene descriptions of images.

This means that our textual representation, which is scene de-

scriptions, is not competitive with CNN’s deep visual features

yet. Besides, comparing the result of Scene Descriptions with

that of 5 Captions, it can be said that our scene descriptions are

not enough to represent the images. Thus, it is needed to add or

change the descriptions to describe the content of images more

efficiently.

Evaluation with Answer Types The accuracy of our model for

each answer type shows that the accuracy is the worst when the

answer type is Number, which our model with scene descriptions

suffer a performance drop from Question-Only. Some of other

models also suffer from that kind of questions. We remove dupli-

cates of triplets when we generate scene descriptions and don’t
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Fig. 4: Qualitative examples of questions which start with “How many ...”.

Fig. 5: Qualitative examples of questions which answer type is Yes/No.

do anything to count objects in an image. Hence, it is reasonable

that the result when the answer type is Number is bad. Note that

number questions are still challenging problem, and even most

state-of-the-art methods struggle to answer number questions.

The biggest difference between our model and LMH+CSS is

the accuracy when the answer type is Yes/No. Our model’s accu-

racy is almost the same as when choosing an answer randomly,

whereas LMH+CSS can correctly answer with over 80 % accu-

racy.

Qualitative Analysis To see how the generated scene descrip-

tions work, we show some examples of successful and unsuc-

cessful predictions of our model. In the VQA-CP v2 dataset, the

correlations between question types and answers are very differ-

ent in the train set than the test set. “2” is a common answer to

“How many...” questions in the train set, but it is rare for such

questions on the test set. However, as mentioned above, we do

not do anything to count objects in an image, so our model learns

to answer “2” when the question starts with “How many...”. In

Fig. 4, we show examples of the failures when the questions be-

gin with “How many...”. We find that our model’s prediction is

“2”, regardless of the scene description or content of the image.

In other words, our model is likely to have learned the bias of the

dataset. We should think of the way to deal with this situation.

As we mentioned above, there is the biggest gap of accuracy

between our model with scene descriptions and the state-of-the-

art model when answering the questions whose answer type is

Yes/No. In Fig. 5, we show some examples of unsuccessful pre-

dictions of our model when answer type is Yes/No. We find that

generated scene descriptions miss some critical information to

answer the questions correctly. For example, focusing on the ex-

ample at the bottom, the question is, “Did the man hit the ball?”

so we need to know the relationship between the man and the

ball. However, there are not descriptions about the ball; thus, we

do not have critical information to answer the question. From this

observation, it can be said that the model tends to fail to answer

correctly when a scene description is missing critical information,

e.g., objects.

Additionally, in Fig. 6, we show some examples of success-
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Fig. 6: Qualitative examples of questions which answer type is Other.

Fig. 7: Qualitative examples of questions asking about actions in the images.

ful and unsuccessful predictions of our model when the answer

type is Other. The example at the top is asking about the build-

ing’s color, but we cannot generate descriptions of objects with

attributes in our method. Hence, the model cannot answer the

question correctly. On the other hand, in the example at the bot-

tom, our model can accurately predict because there are some

descriptions about the relationship between snow and the moun-

tains. Hence, we can say that the model can answer the questions

well when the scene descriptions contain the necessary informa-

tion to answer the questions.

We also show the successful examples of our model in Fig. 7.

In both examples, the questions ask about actions in the images,

and our model’s predictions are correct. This is because the scene

descriptions can describe the actions in the images. For instance,

looking at the example at the top, there is the description “man

riding motorcycle” which contains the objects and their relation

in the question. According to this fact, there is a possibility that

textual descriptions can represent the relations between objects

well. In other words, textual descriptions may be able to express

the relationships more directly than deep visual features because

they are a natural language.

6. Conclusion
In this paper, we proposed the method to generate scene de-

scriptions of images and the model to use the generated descrip-

tions as the input of the Transformer. The experimental results

show that our model has not been competitive with state-of-the-

art models that leverage deep visual features. However, through

the qualitative analysis, we found that there is a possibility that

textual descriptions can render the contents of images. In future

work, we would like to explore the potential benefits of textual

descriptions.
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Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. HuggingFace’s Transformers: State-of-the-art natural
language processing, 2020.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Mi-
crosoft COCO: Common objects in context. In ECCV, pages 740–755,
2014.

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-CG-180 No.11
Vol.2020-DCC-26 No.11

Vol.2020-CVIM-223 No.11
2020/11/5


