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ドメイン敵対学習を用いた
Wi-Fi CSIによるドアイベント認識

Kim Heng†1 尾原和也†2 前川卓也†1 原隆浩†1 村上友規†3 アベセカラヒランタ†3

Domain-Adversarial Training for Door Event Detection
Using Wi-Fi Channel State Information

Abstract: Door event detection has been actively studied as it has many applications such as heating, ventilation,
air conditioning control, home automation, and intrusion detection, etc. However, existing method on door event
detection using Wi-Fi signals rely on a large amount of training data collected in a target environment. In this pa-
per, we present a deep learning-based method for door event detection using domain-adversarial training to extract
environment-independent features of door events from Wi-Fi CSI. It can recognize door events without employing la-
beled training data collected in a target environment. To achieve recognition across different environments, we leverage
domain-independent features of door events, namely, differential and dynamic event features, which capture inherent
changes in signal propagation caused by door events regardless to the environment. We evaluated the effectiveness
of our proposed method through experiments in real environments. The experimental results demonstrated that the
method can achieve the state-of-the-art performance without using labeled training data from a target environment.
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1. Introduction

Context recognition techniques for indoor environments are

crucial for developing ubiquitous computing systems such as

elder care systems, home automation, and life logging. Ded-

icated sensor systems have been used to detect indoor events

such as the use of everyday objects and phenomena such as am-

bient temperature and illumination. In particular, sensor sys-

tems for detecting events of indoor objects such as open/close

doors and windows have been actively studied by researchers

as they have many applications such as heating, ventilation, and

air conditioning (HVAC) control, home automation, intrusion

detection, and monitoring elder people. Studies on leveraging

off-the-shelf sensory devices for indoor event detection have

been conducted recently to reduce the installation cost of dedi-

cated sensor systems.
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For example, Mahler et al. [11] and Dissanayake et al.

[4] employed disused smartphones to detect door open/close

events. Other studies employed commodity Wi-Fi access

points (APs) providing their pervasiveness in our daily lives.

For example, Ohara et al. [12] used deep learning for detecting

door open/close events based on Wi-Fi channel state informa-

tion (CSI) describing how a signal propagates from a trans-

mitter to a receiver in an environment. Overall, the majority

of studies on door event detection employ supervised machine

learning requiring labeled training data from a target environ-

ment. For example, Ohara et al. [12] used labeled training data

containing hundreds of instances of open/close events for each

door in the studied environment.

In contrast, this study proposes a new method for door event

detection based on transfer learning that does not require la-

beled training data from a target environment. According to

the proposed method, a door event detector (neural network)

is trained on labeled training data from source environments in

advance; it is then used to recognize door events in the target
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図 1: Illustration of the differences in signal propagation between

door close and open states

environment. The challenge for such a transfer learning-based

approach lies in the complexity of observed CSI, which con-

tains data about various phenomena in the environment and is

significantly affected by noise. To tackle this challenge, trans-

fer learning is performed based on inherent phenomena that

are commonly observed in CSI when door open/close events

occur. In particular, this study extracts two types of inherent

features related to door events: differential event features and

dynamic event features. These two types of features are ex-

plained below in turn.

Here we consider two door states, closed and opened (Figure

1). In the closed state, signals from the transmitter are reflected

by the door. In contrast, in the opened state, the signals re-

flected by the door in the closed state are propagated to the out-

side environment. Therefore, when comparing the signals re-

ceived by the receiver between the closed and opened states, a

significant attenuation of signals from the angle of the door can

be observed in the opened state. Similarly, a gradual attenua-

tion of signals from the angle of the door can be observed dur-

ing the door opening. These differences across the door states

can be treated as inherent phenomena of door events. Note that

similar phenomena can be observed when other indoor events

occur, e.g., movement of a person or a cabinet. In this study,

a domain-adversarial neural network [5] is employed to extract

inherent temporal dynamics of door events hidden in respec-

tive signal changes. As above, differential event features used

in the event detector are extracted based on the difference in

arriving signals between different states. In addition, the move-

ment speed and direction of the door are computed as dynamic

event features from CSI based on the Doppler shift. Although

these dynamic features are recently used for recognizing indoor

events such as human activities and positions [14], [15], [20],

these features have not yet been used for recognizing door

events. We believe that they are also useful for distinguish-

ing between open and close events. In summary, differential

and dynamic features containing inherent information of door

events are extracted to accelerate transfer learning based on

domain-adversarial training [5]. By combining the differen-

tial and dynamic features and domain-adversarial training, our

method robustly recognizes door events even when other in-

door events such as walking events occur.

The contributions of this paper are:

• We propose a new method for recognizing door events us-

ing transfer learning and Wi-Fi CSI. The proposed method

does not require labeled training data from a target envi-

ronment. To our knowledge, this is the first study on CSI-

based door event detection that does not require labeled

training data from a target environment.

• We propose to use domain-independent features of door

events, namely, differential and dynamic event features,

To achieve recognition across different environment.

2. Related Work

2.1 Indoor Event Detection
Small distributed sensors such as switch sensors, RFID tags,

vibration sensors, and accelerometers have been used to de-

tect events of indoor objects, including door open/close events

[11]. Recently, detection systems relying on small numbers of

sensors have been actively studied to reduce their installation

cost. Barometric pressure sensors have been used to recognize

door open/close events by detecting pressure changes caused

by the events. Wu et al. [22] focused on the fact that a sharp

pressure change can be observed in a building with HVAC sys-

tems when a door in the environment is opened and employed

a smartphone barometer to detect the door events. Dissanayake

et al. [4] employed smartphone active/passive sound sensing to

detect door open/close events.

2.2 Context Recognition Based on Radio Frequencies
2.2.1 Wi-Fi Channel State Information

In a wireless network, the orthogonal frequency-division

multiplexing (OFDM) systems can be modeled as

Yi = HiXi + Ni

where Xi and Yi are the MT -dimensional transmitted signal

vector and MR-dimensional received signal vector for the ith

subcarrier, respectively, with MT denoting the number of trans-

mitting antennas and MR denoting the number of receiving an-

tennas in an MT×MR MIMO system; Ni is the MR-dimensional

noise vector, and Hi is the MT × MR-dimensional channel ma-

trix known as the CSI for the ith subcarrier. Let hmn be element

of Hi. It denotes the CSI for the pair of the mth transmitting

antenna and nth receiving antenna. Note that hmn is a complex

value represented as

hmn = ||hmn||e j∠hmn

where ∠hmn denotes the phase of hmn.
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2.2.2 Activity Recognition
Wi-Fi CSI has also been used to achieve device-free activity

recognition. For example, Wang et al. [21] attempted to detect

primitive actions using CSI and estimate activities comprising

primitive actions using multi-class support vector machines. In

[20], the authors proposed two models for quantitatively corre-

lating CSI dynamics and human activities: a CSI-speed model

that correlates CSI dynamics with the movement speed and a

CSI-activity model that correlates the movement speed of dif-

ferent body parts with a specific activity.

Device-free fall detection for elder care support is another

typical application of Wi-Fi CSI. For example, the WiFall sys-

tem proposed by [6] employs the time variability and spatial di-

versity of CSI to detect falls in residential settings, while Anti-

Fall [25] employs the CSI phase difference over two antennas

and uses amplitude information to distinguish the fall activity

from fall-like activities.

2.2.3 Door Event Detection
Ohara et al. [12] employed Wi-Fi CSI to recognize events

of everyday objects, including door open/close events. A deep

learning model was used to automatically extract efficient clas-

sification features. Shi et al. [18] employed FM-radio sig-

nal receivers to recognize the indoor situations “empty room,”

“opened door,” and “walking person” based on the fact that

changes in an environment impact the propagation of radio

waves. Xu et al. [24] employed Wi-Fi CSI to recognize door

events based on features extracted from channel frequency re-

sponse (CFR) and a classifier using dynamic time warping.

The authors [23] also attempted to detect door events through

a wall by employing the time-reversal technique and dedicated

RF devices based on CSI.

This study attempts to recognize door events without using

labeled training data collected in a target environment.

2.2.4 Transfer Learning for CSI-based Context Recogni-
tion

To reduce the cost of collecting training data, several studies

used transfer learning for CSI-based context recognition. For

example, Rao et al. [16] employed transfer learning for CSI-

based indoor positioning to learn feature representations as fin-

gerprints by minimizing the distribution differences between a

fingerprint database and test samples. Bu et al. [3] converted

CSI data into image data and pre-trained an activity recognition

model using a public image dataset for object recognition (Ima-

geNet). Similar to our study, Jiang et al. [7] employed domain-

adversarial training for activity recognition, while Wang et al.

[19] employed domain-adversarial training for in-car activity

recognition. In this study, inherent features of door events are

extracted to accelerate domain-adversarial training, which oth-
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図 2: Overview of the proposed method
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図 3: Relative phase between receiving antennas obtained using ac-

tual devices when the angle of arrival is 0 degrees.

erwise would be difficult due to the dependence of CSI data

related to door events on target environments.

3. Proposed method

3.1 Overview
Time-series CSI data capturing door open/close events from

the receiver in the source environments were obtained and la-

beled in advance. Each label specified the start and end times

of an event and its class (i.e., open or close class). The time-

series CSI data collected in the target environment were left

unlabeled.

We assume that the floor plan of each environment contain-

ing information about the positions of the receiver and doors,

orientation of the receiver antenna, and type of each door (in-

ward opening or outward opening) were available. Since door

events were recognized using unlabeled training data from the

target environment based on the angle of arrival (AoA) infor-

mation, positional information about the receiver and doors, as

well as information about the orientation of the antenna was

required to distinguish between multiple doors in the environ-

ment.

Figure 2 shows an overview of the proposed method for rec-

ognizing door events in the target environment using unlabeled

training data from that environment. The proposed method in-
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cludes the training and test phases. In the training phase, CSI

data from the source environments are preprocessed first. Dy-

namic and differential event features are then extracted from

the preprocessed data. An event detection model (neural net-

work) is trained on the preprocessed data with ground truth

labels using domain-adversarial training. In the test phase, CSI

data from the target environment are preprocessed first, and

features are then extracted from the preprocessed data. The

time-series of the extracted features are first recognized using

the trained detection model and then processed to remove spo-

radic errors. Finally, each detected event is associated with a

door in the target environment using AoA information.

3.2 Preprocessing
For both the training and test phases, the observed CSI data

are preprocessed first since they include offsets that affect the

estimation of several parameters (e.g., AoA). One of the offsets

is the initial phase offset between receiving antennas. When

the AoA of the Wi-Fi signal is 0 degrees, the relative phases

between receiving antennas should be 0 under an ideal condi-

tion. However, the relative phases collected by actual devices

significantly shift from 0 due to the initial phase offset (Figure

3).

For that, a transmitter is placed close to a receiver so that the

transmitter is in front of the receive antenna array, i.e., the AoA

of the direct path is 0 degrees. The initial phase offset θinit can

be calculated based on the collected CSI as

θinit = −∠
 1

P

P∑
p=1

1
NS

NS∑
s=1

exp( j∠(hs(p, n, s)hs(p, 1, s)))

 ,(1)

where hs(p, n, s) denotes the CSI collected in the static environ-

ment for the pth packet, nth receiving antenna, and sth subcar-

rier; P and NS denote the number of packets and subcarriers,

respectively. Then, the offset is removed as follows:

hcalib(t, n, s) = exp ( jθinit) ho(t, n, s), (2)

where hcalib denotes the calibrated CSI and ho denotes the CSI

including the initial phase offset.

3.3 Feature Extraction
3.3.1 Dynamic Event Feature: Doppler Velocity

The Doppler velocity corresponding to the velocity of the

moving object can be estimated based on phase change of CSI.

Furthermore, the dynamic AoA corresponding to the direction

of the moving object can be estimated using the receiving an-

tenna array. In this section, the Doppler velocity and dynamic

AoA were simultaneously estimated from preprocessed CSI

data based on [15].

Let θi, τi, and vi denote the AoA, time of flight (ToF),

and Doppler velocity of the ith propagation path, respectively.

Then, the CSI element of the nth receiving antenna and sth

subcarrier at time t can be described as

h(t, n, s) =
P∑

i=1

Ai(t, n, s) exp (− jϕi(t, n, s)) , (3)

where ϕi(t, n, s) = 2π
(
ϕi0 + (s − 1) fδτi +

fcvit
c +

fc(n−1)d sin θi
c

)
,

ϕi0 denotes the phase of h(0, 1, 1) at the ith propagation path,

c f denotes the center frequency of Wi-Fi signals, and fδ de-

notes the difference in frequencies between subcarriers. For

simplicity, let x = (t, n, s), Θ = (Ai, τi, θi, vi)P
i=1. Θ can be

estimated using the space alternating generalized expectation

maximization (SAGE) algorithm that maximizes the following

log-likelihood function Λ(Θ; h):

Λ(Θ; h) = −
∑

x

∣∣∣h(x) − ĥ(x,Θ)
∣∣∣2 , (4)

where h(x) denotes the obtained CSI and ĥ(x,Θ) denotes the

CSI computed from the estimated parameters Θ using Equa-

tion 3.

The SAGE algorithm iterates over the expectation and maxi-

mization steps. Each iteration optimizes the parameter of each

propagation path. The expectation step computes signal Pi for

the ith propagation path as

P̂i(x, Θ̂) = Pi(x, Θ̂) + (h(x) − ĥ(x, Θ̂)), (5)

where Θ̂ denotes the estimated parameters in the previous iter-

ation. The maximization step optimizes the parameters of the

ith propagation path as

τ̂′i = argmax
τ

{∣∣∣z(τ, θ̂i, v̂i; P̂i(x, Θ̂))
∣∣∣} , (6)

θ̂′i = argmax
θ

{∣∣∣z(τ̂i
′, θ, v̂i; P̂i(x, Θ̂))

∣∣∣} , (7)

v̂′i = argmax
v

{∣∣∣z(τ̂i
′, θ̂i
′
, v; P̂i(x, Θ̂))

∣∣∣} , (8)

Â′i =
z(τ̂i

′, θ̂i
′
, v̂i
′; P̂i(x, Θ̂))

MRNS T
, (9)

where T denotes the number of packets and

z(τ, θ, v; Pi) =
∑
x

Pi(x) exp( jϕi(x; τ, θ, v)). (10)

After convergence, vi is estimated as the Doppler velocity,

while θi is estimated as the dynamic AoA.

Figure 4 illustrates an example time-series of the Doppler

velocity when doors are opened/closed. For example, when

Door1 opens, a positive velocity can be observed. In contrast,

when Door1 closes, a negative velocity can be observed.

3.3.2 Differential Event Feature: Angle of Arrival Spec-
trum Difference

As described in the Introduction section, the AoA of sig-

nals can change after a door event occurs. First, the AoA-ToF
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図 4: Example of the Doppler velocity

spectrum for each CSI measurement is obtained with super-

resolution estimation based on [9].

The multiple signal classification (MUSIC) algorithm is em-

ployed in this study to compute the AoA-ToF spectrum from

signal X. First, the eigenvalues and eigenvectors of XXH

are computed. Then, the eigenvectors whose eigenvalues are

smaller than a threshold are extracted. The MUSIC algorithm

computes the MUSIC spectrum p(θ, τ) using these eigenvec-

tors EN as

p(θ, τ) =
1

aH(θ, τ)EN EH
N aH(θ, τ)

where θ and τ denote the candidates of the AoA and ToF, re-

spectively. When there are n′ antennas and k′ subcarriers, steer-

ing vector a(θ, τ) can be defined as

a(θ, τ) =
[
1,Ω, . . . ,Ω(s′−1),Φ,ΦΩ, . . .ΦΩ(s′−1), . . . ,Φ(n′−1)Ω(s′−1)

]
,

where

Φ = exp
(
− j2π

d fc sin θ
c

)
Ω = exp (− j2π fδτ) .

Here, d denotes the distance between consecutive receiving

antennas, fc denotes the center frequency of Wi-Fi signals, c

denotes the speed of light, and fδ denotes the difference in fre-

quencies between consecutive subcarriers. By computing the

value for each θ and τ, a two-dimensional AoA-ToF spectrum

is obtained for each packet (Figures 5(a) and 5(b)).

The AoA spectrum differences are computed from a series

of AoA-ToF spectra as follows. The reference time tr when no

door event occurs is selected as a time when the rolling stan-

dard deviation of the AoA-ToF spectra within a sliding time

window is below a threshold, i.e., when the AoA-ToF spec-

trum is static. Next, the AoA-ToF spectrum at each time t

is subtracted from that at tr. Figures 5(a) and 5(b) illustrate

examples of the AoA-ToF spectrum before and after a door

open event. It can be noticed from the figures that the door

event alters signal propagation. Figure 5(c) shows the differ-

ence (pixel-wise subtraction) between the spectrum illustrated

(a) Closed state (b) Opened state

(c) Spectrum difference

図 5: AoA-ToF spectrum and spectrum difference computed by sub-

tracting the sepctrum of open state from that of the close state
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図 6: Architecture of the neural network

in Figure 5(a) and that in Figure 5(b), which is called the AoA

spectrum difference in this study.

A series of AoA spectrum differences represents the dynam-

ics of the changes in AoA from the reference time. The rolling

standard deviation of the series of spectrum differences can

then be computed and fed into the event detector (neural net-

work) along with the Doppler velocity.

3.4 Domain-adversarial Training
The event detection model was trained on labeled training

data from the source environments using domain-adversarial

training.

The model architecture of the proposed method is illustrated

in Figure 6. The input of the model is a segment of dynamic

and differential event features within a sliding time window.

The model has two types of outputs: domain estimate and class

estimate. The domain estimate is an identifier of the estimated

environment, where the input segment is observed. The class

estimate is the estimated event class label of the input segment.

Since the environment can have multiple doors and different

types of doors (inward opening or outward opening), the input

segment is first classified into none class, approaching class,
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図 7: Example of dynamic AoA
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図 8: The environment where AoA data illustrated in Figure 7 were

collected

or receding class to reduce the complexity of the network task.

The none class means that no door events occurred. The ap-

proaching class means that an event of door movement towards

the receiver occurred. The receding class means that an event

of door movement away from the receiver occurred. An event

is classified into approaching, when the receiver is in the room

and an inward opening door opens into the room or an outward

opening door closes. In contrast, an event is classified into re-

ceding, when an inward opening door in the room closes or an

outward opening door opens.

The LSTM layers in the feature extraction block extract

features, which are used to output the domain estimate and

class estimate. The gradient reversal layer [5] is introduced

to make the neural network be agnostic to domains (environ-

ments). This layer multiplies the gradient with a negative con-

stant value during the training of the network using the back-

propagation algorithm [17], enabling the LSTM layers in the

feature extraction block to extract features that are indifferent

to domains but sensitive to classes.

The model is trained to minimize the error of the class esti-

mates and maximize the error of domain estimates.

3.5 Post-processing
The above procedure outputs a series of class estimates

(none, approaching, or receding). To remove sporadic errors

and smooth out the series of estimates, the median filter is ap-

plied to each sliding time window.

Door

Door
Door

RXRX

図 9: Environments of data collection

3.6 Door Identification
In this procedure, each detected door event (belonging to ap-

proaching or receding class) is associated with a door existing

in the environment.

The dynamic component of the AoA (Section 3.3.1) is calcu-

lated for each event, associated with a door located in the direc-

tion of the dynamic component. Figure 7 illustrates an example

of the series of dynamic AoAs computed from data collected in

an environment shown in Figure 8. The figure shows the mea-

surement of the AoA (dynamic component of AoA) for each

time slice (blue dot). For the open and close events of Door2,

many measurements of the AoA in the direction of around 70

degrees can be found. This means that an object movement oc-

curred in the direction of around 70 degrees. For the open and

close events of Door1, many measurements of the AoA in the

direction of around 45 degrees can be found.

Let a segment between time tn and time tm be classified into

the approaching class (or receding class). The histogram of

AoA measurements within the segment is first calculated using

the dynamic AoA. The AoA measurements are obtained within

a segment of an event, a histogram of the AoA measurements

with a bin size of five degrees is calculated, and a bin with the

highest frequency is found. The angle corresponding to the

found bin is an estimate of the direction of the event. Finally,

the door, whose angle with respect to the receiver is the clos-

est to the estimated direction of the event, is selected. The class

label as estimated by the neural network (approaching or reced-

ing) can then be associated with the door event (open or close)

by referring to the information about the door type (inward or

outward).

4. Evaluation

4.1 Dataset
Sensor data were collected in seven real environments. Table

1 shows information about the environments. A Wi-Fi trans-

mitter and a receiver with Intel 5300 NIC were installed in each

environment. Figure 9 shows example frames captured by the

cameras in the environments.

Throughout each session, a volunteer randomly walked in

the environment to generate noises caused by a person living

in the environment in our sensor data. Each session included

approximately twenty door events for each door.
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表 1: Experimental environments

Environment Type # Doors # Sessions Description

A House 1 (wood) 10 Sofa is available in the environment

B Meeting room 1 (metal+glass) 10 Desks and chairs are present

C Meeting room 1 (metal+glass) 10 Desks and chairs are present

D Corridor 1 (metal+glass) 8 Tables and chairs are present

E Conference room 1 (metal) 8 Desks and chairs are present

F Conference room 2 (metal) 10 Desks and chairs are present

G Conference room 2 (metal) 10 Desks and chairs are present

4.2 Evaluation Methodology
The performance of the proposed method was evaluated for

each environment using the leave-one-environment-out cross-

validation. The following methods were employed for compar-

ison.

• Proposed: The method proposed in this paper.

• DANN-Raw: This method performs domain-adversarial

training using data from the source environments. It di-

rectly employs raw CSI data as the neural network inputs.

• Source: This method employs labeled data from the

source environments to train an LSTM network and does

not perform domain-adversarial training. It uses dynamic

and differential event features as the inputs.

• Source-Raw: The same as Source except that it uses raw

CSI data as the neural network inputs.

• Target: This method employs training data from the tar-

get environment. It uses dynamic and differential event

features, and exhibits the upper bound of the event recog-

nition accuracy.

• Target-Raw: The same as Target except that it uses raw

CSI data as the neural network inputs.

• W/o Dynamic: This is the proposed method without con-

sidering the dynamic event features.

• W/o Diff: This is the proposed method without consider-

ing the differential event features.

Classification accuracy for each of the above methods was

calculated based on the recognition results per window of data.

4.3 Results
4.3.1 Classification Accuracy for the Tested Methods

Figures 10 and 11 show the classification accuracy and

macro-averaged F-measure for the tested methods, respec-

tively. It can be noticed from Figures 10 and 11 that the

proposed method (Proposed) achieved high performance about

86% accuracy and 83% F-measure on average despite not using

any labeled data from the target environment.

According to Figure 11, the F-measure of the proposed

method in Environment A is poorer than its F-measures in

the other environments. This can be because Environment A

is very different from the other environments (e.g., doors are

made of wood).

However, introducing the differential event features im-

proved the F-measures in Environment A as demonstrated by

the results of Proposed and W/o Diff illustrated in Figure 11.

The F-measure of Proposed in Environment F is also slightly

poorer than its F-measures in the other environments. In con-

trast, the F-measure of W/o Diff in Environment F is higher

than that of Proposed, indicating that the differential event fea-

tures did not work well in this environment. We believe that

the extracted differential event features could not capture the

attenuation of signals from angles around the door because the

angle between the receiver antenna and the door in Environ-

ment F was large, and it was close to the outside of the value

range (sensing range) of the AoA prediction.

4.3.2 Contribution of the Proposed Event Features
It can be noticed from Figure 11 illustrating the F-measure

of DANN-Raw that using raw CSI instead of the proposed

features decreases the F-measure by about 40%, even when

domain-adversarial training was employed. This means that it

is difficult to extract environment-independent event features

from raw CSI. The F-measure of Source-Raw is also very poor

because features of raw CSI data significantly depend on the

environment. These results indicate that the proposed features

could capture environment-independent door event informa-

tion.

4.3.3 Contribution of the Dynamic Event Features
It can be noticed from Figure 11 that the F-measure of W/o

Dynamic is lower than that of Proposed by about 30%. This

result indicates that we could successfully identify the door

events from the noisy data.

4.3.4 Contribution of the Differential Event Features
It can be noticed from Figure 11 that the F-measure of W/o

Diff is lower than that of Proposed by about 6%. The contribu-

tion of the differential event features is smaller than that of the

dynamic event feature. However, in Environments A and B, the

F-measures improved by about 10–20% by introducing the dif-
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図 10: Classification accuracy scores achieved by the tested methods
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図 11: F-measure scores achieved by the tested methods
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図 12: Classification accuracies for door identification when using

ground-truth of door event or outputs of door event recogni-

tion (Proposed)

ferential event features. We consider that the differential event

features are effective when source and target environments are

greatly different (Environment A).

4.3.5 Contribution of Domain-adversarial Training
It can be noticed from Figure 11 that the F-measures of

Source and Proposed are about 77% and 83%, respectively. In-

troducing the proposed domain-adversarial neural network im-

proved the accuracy by about 6%. Significant improvements

(5%–10%) can be observed in Environments A, F, and G when

domain-adversarial training was employed.

4.3.6 Accuracy of Door Identification
It can be noticed from Figure 12 that the identification ac-

curacy is very high (about 93% on average) when the ground

truth data of door event recognition are employed (note that

each estimate was performed for each door event). The aver-

age accuracy is about 88% when the estimates (outputs) of the

proposed method are used.

4.4 Discussion on Number of Source Environments
We investigate the effect of the amount of training data on the

classification accuracy. Figure 13 shows the changes in the av-

erage accuracy/F-measure with the number of source environ-

ments. (We randomly selected source environments. The com-

puted accuracies/F-measures are the averages of three runs.)
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図 13: Changes in the accuracy/F-measure with the number of

source environments (Proposed)

As shown in the figure, using four source environments yields

the upper bound of the classification accuracy.

5. Conclusion

This study proposed a new method for detecting door events

using Wi-Fi CSI data. The method does not require labeled

training data from a target environment as it relies on an event

detection model trained using labeled data from source envi-

ronments. Since our preliminary experiments revealed that a

model trained on raw CSI data does not work well in target

environments, new features capturing inherent information of

door events were introduced to accelerate transfer learning em-

ployed in the proposed method.
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