
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

IoT-PEN: An E2E Penetration Testing Framework for IoT

Geeta Yadav1,a) Kolin Paul1,b) Alaa Allakany2,3,c) Koji Okamura4,d)

Received: November 8, 2019, Accepted: June 1, 2020

Abstract: The lack of inbuilt security protocols in cheap and resource-constrained Internet of Things (IoT) devices
give privilege to an attacker to exploit these device’s vulnerabilities and break into the target device. Attacks like Mirai,
Wannacry, Stuxnet, etc. show that a cyber-attack often comprises of a series of exploitations of victim device’s vulner-
abilities. Timely detection and patching of these vulnerabilities can avoid future attacks. Penetration testing helps to
identify such vulnerabilities. However, traditional penetration testing methods are not End-to-End, which fail to detect
multi-hosts and multi-stages attacks. Even if an individual system is secure under some threat model, the attacker can
use a kill-chain to reach the target system. In this paper, we introduced first-of-its-kind, IoT-PEN, a Penetration Testing
Framework for IoT. The framework follows a client-server architecture wherein all IoT nodes act as clients and “a
system with resources” as a server. IoT-PEN is an End-to-End, scalable, flexible and automatic penetration testing
framework for discovering all possible ways an attacker can breach the target system using target-graphs. Finally, the
paper recommends patch prioritization order by identifying critical nodes, critical paths for efficient patching. Our
analysis shows that IoT-PEN is easily scalable to large and complex IoT networks.

Keywords: internet of things security, penetration testing

1. Introduction

The fifth generation wireless systems (5G) are expected to pro-
vide an Internet of things (IoT) specific connectivity interface [1].
IoT provides a platform to connect the physical devices and ev-
eryday objects over the internet. Most of the IoT devices use very
cheap sensors/ actuators, which are unlikely to be secure. There-
fore, over time, IoT is creating a completely new and complex
set of problems for the security community. Different from en-
terprise systems, securing large scale, resource-constrained IoT
devices is a very challenging task. If we analyze some of the
recent attacks on IoT, they exploit a series of vulnerabilities on
different systems to reach the target system, e.g., WannaCry, in
2017, was initially carried out using a malicious PDF (malware
embedded). It further exploited the vulnerability of the SMBv2
protocol that executed a dropper code and made a connection to
an unregistered IP address. Also, it created a mssecsvc2.0 service
and made an entry in the registry. It leads to encrypting local files
and asking a ransom note for $300 in Bitcoin [2].

In 2016, a DDoS attack on the Dyn DNS company and French
service provider OVH exhibited that an attacker can turn the In-
ternet of Things into the Internet of Vulnerabilities (IoV) [3]. The
attacker exploited default passwords and the outdated TELNET
service to get control of millions of web cameras that were man-

1 Indian Institute of Technology, New Delhi, India
2 Cybersecurity Center, Kyushu University, Fukuoka 819–0395, Japan
3 Faculty of Computers and Information, Kafrelsheikh University, Egypt
4 Research Institute for Information Technology Kyushu University,

Fukuoka 819–0395, Japan
a) anjugeeta11@gmail.com
b) kolin@cse.iitd.ac.in
c) alaa 83moh@yahoo.com
d) oka@ec.kyushu-u.ac.jp

ufactured by a specific Chinese company. In 2010, a very sophis-
ticated attack Stuxnet was reported on Iranian nuclear centrifuges
[4], [5]. It entered the network via a USB stick (air-gapped net-
work) and replicated itself to all connected machines running Mi-
crosoft windows. It then searched a specific version of Siemens
Step7 Industrial Control Systems (ICS) and modified the Pro-
gram Logic Controllers (PLC). The main target for Stuxnet was
Siemens Step7 system and it would sit silently on other systems.

A brief study of Wannacry, DDoS, Stuxnet shows that a series
of unrelated attack events that are logically connected can pro-
vide an attack-path to the target node, even though there is no
direct path to the target node. It highlights the need for defining
the notion of usable security for large scale IoT networks.

Definition 1 A Secure SoS, is defined as an SoS where there
is no path from source to target despite all systems having one or
more vulnerabilities.

The system administrator needs to secure the end-to-end sys-
tem. To do a timely detection of vulnerabilities/ possible attacks,
system administrators prefer penetration testing of the systems
periodically. The penetration testing is an authorized simulated
cyber-attack on a computer system.

State-of-the-art penetration tools, i.e., Netsparker, Acunetix,
Probably, BackTrack, Idappcom Metasploit, Nessus, etc. provide
the functionality only to the subscribed users. Open-source tools,
i.e., Wapiti, ZAP (Zed Attack Proxy), Vega, W3af, etc. have min-
imal functionality and are targeted to a particular threat model.
Almost all of these techniques are non-automatic and perform
isolated Pentesting. These solutions fail in the case of IoT, where
the devices are quite heterogeneous. Performing penetration test-
ing manually on a large number of IoT devices is a challenging
task for system administrators. The traditional penetration testing
systems are targeted to the pentesting of a system individually,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

which fails to detect multi-stage multi-host attacks. This high-
lights an urgent need of new algorithms, tools, frameworks for
securing such resource constrained devices.

To overcome these weaknesses, we propose IoT-PEN - A pen-
etration testing framework for IoT. IoT-PEN is an automatic,
flexible and End-to-End (E2E) testing framework. The frame-
work assumes a server-client architecture with “a system with re-
sources” as a server and “IoT nodes” as clients. In IoT-PEN, a
customized script runs over an SoS and finally reports possible
exploitations. Flexible IoT-PEN specifies a plug and play con-
cept for penetration-testing. IoT-PEN consists of different mod-
ules to take into account the heterogeneity of IoT systems. A user
can select the required modules and a customized framework is
generated. Apart from this, the main motivation of IoT-PEN is
the end-to-end penetration framework. Currently, all proposed
approaches focus on the individual system or component test-
ing, which fails to detect multi-host, multi-stage vulnerabilities.
In addition, IoT-PEN recommends the patch prioritization order
by identifying critical nodes, critical paths for efficient patching.
IoT-PEN mainly focuses on securing the target node i.e., an IoT
terminal-node. The proposed framework works well for a well
managed IoT system or Industrial Internet of Things (IIoT). IoT-

PEN penetration testing framework for IoT is based on target-
graphs and the NVD database.

Target graphs are similar to attack-graphs [6] except for that
target-paths start from some random node and try to reach the tar-
get node and target-paths start from the target node and check all
possible sources through which the target can be intruded. Sys-
tem administrators usually evaluate the system security using tar-
get graphs to identify the source of their system’s vulnerabilities
and to decide which security measures should be taken to de-
fend their systems. Each path in a target-graph is a sequence of
exploits that leads to an undesirable state, e.g., obtaining admin-
istrative access to a critical host.

Now, if we observe the target graphs for IoT networks, these
are expected to be very complex and have numerous target-
paths. Patching/Fixing each possible target-path is a challeng-
ing/impossible task and not all target-paths lead to the attacker
getting root privilege of the target system. We need to identify
critical paths, critical nodes and critical vulnerabilities [7], fol-
lowed by the fixing of these critical nodes. Most importantly,
even if we patch the critical severity vulnerabilities, an attacker
can exploit multiple non-critical vulnerabilities and exploit the
targeted system. Therefore, we need a prioritization order to
patch these complex networks efficiently. So, the last stage ofIoT-

PEN is responsible for generating recommendations in terms of
critical vulnerability, node and path.

IoT-PEN uses the NVD database, which is regularly updated
and is a comprehensive database, to identify the possible vulner-
abilities on a particular version of the software. NVD maintains
examined information about software and hardware vulnerabil-
ities of different domains [8]. It considers the product name,
the product version and the vender. It indexed vulnerabilities
to Common Vulnerability Enumeration (CVE) [9] Ids (CVE-ID)
that helps to provide a common name for publicly available vul-
nerabilities. The NVD team analyzes each reported CVE us-

ing the Common Vulnerability Scoring System (CVSS) frame-
work. Each CVE is linked with a Common Platform Enumera-
tion (CPE) also that indicates the vulnerable component. CPE is
a structured naming scheme generally used for information tech-
nology systems, packages and software [10]. Apart from NVD,
a separate, standardized and comprehensive directory Common
Weakness Enumeration (CWEs), which list weaknesses found in
software, has been created by MITRE. The main aim of CWE
is to understand the weaknesses in software and for developing
automated tools for fixing and prevention of the lacunae. The
information provided by NVD and CWE plays a vital role in un-
derstanding trends and patterns in software and hardware vulner-
abilities.

1.1 Contributions
Major contributions of the paper are enumerated below:

(1) IoT-PEN is a novel flexible, scalable, automatic and E2E
Penetration testing framework for the resource-constrained
IoT devices. It identifies all possible paths from where an
attacker can reach to the target node.

(2) We propose a novel mechanism to perform the penetration
testing, particularly for the IoT system using a client-server
architecture without the intervention of the system adminis-
trator. Also, it is capable of identifying the insider as well as
possible outsider attacks.

(3) We evaluated the IoT-PEN performance and scalability in
terms of the execution time vs. the number of nodes, of num-
ber of target-paths generated vs. the number of nodes in the
network, the number of attack paths vs. the vulnerabilities
on the nodes.

(4) We performed extensive experiments to find the prioritiza-
tion order of the vulnerabilities using the following security
metrics, i.e., density-based prioritization, CVSS score based
prioritization, betweenness centrality and PatchRank.

In the next section, we describe an example that mimics a
scaled-down version of an IoT system. This system demonstrates
the problem using reported vulnerabilities on a Philips Hue based
IoT system. We use this system as a running example in the pa-
per. This is followed by the detailed discussion of design and
implementation of IoT-PEN in Section 3. IoT-PEN performance
evaluation is done in Section 4 followed by a brief study of related
work in Section 5.

2. Problem Setup

An IoT system consists of sensors, actuators, bridges, gate-
ways, routers, etc. Each component is itself a complete system.
Therefore, we can consider an IoT network equivalent to an SoS.
We use an example of an actual small IoT system (Phillips Hue
bulbs system) consisting of a smart bulb, Hue bridge, IoT gate-
way, server, mobile application. The communication links be-
tween all these components and reported vulnerabilities (at least
one) are shown in Fig. 1. The generation of prerequisites and
post-conditions for each vulnerability is explained in detail in
Section 3. We follow the Definition 1 to define a secure sys-
tem, i.e., even if each node has one or more vulnerabilities, the
absence of any target-path to the target node (bulb) is sufficient to

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 1 Multi-host, multi-stage vulnerability exploitation example with pre and post condition.

define the target as a secure system.
In this example, the attacker wants to get control of the smart

bulb and she has user-level access on a mobile phone, which has
Philips Hue application running. The attacker can get the cloud
API authentication key by exploiting vulnerability CVE-ID CVE-
2014-0220 on the mobile phone on which the Philips Hue app
is running. The attacker logs into the cloud as an authenticated
user exploiting vulnerability CVE-ID CVE-2015-2883. Now, she
can weave cloud web service for connected device/application
settings followed by the access of execution log exploiting vul-
nerability CVE-ID CVE-2019-4047. Further, she searches for
connected devices and logs in using default user login-passwords
and able to get user-sensitive data exploiting CVE-ID CVE-2018-
18394. She is able to get root access exploiting CVE-ID CVE-
2018-18392. Further, she modifies the data being transmitted to
the bulb, exploiting the vulnerability with CVE-ID CVE-2017-
14797. It specifies that even though an attacker is unable to at-
tack the bulb control directly, it can successfully take control of
the bulb by exploiting multi-host, multi-stage vulnerabilities. It
is not possible to identify these sequences of attacks using in-
dividual system penetration testing only. Therefore, we need a
framework that can handle these scenarios.

In the next section, we discuss the design and implementaion
of IoT-PEN in detail.

3. Design and Implementation

We follow the single responsibility principle, as we divide IoT-

PEN framework into independent micro-services, capable of run-
ning on their own. The modules are mostly hexagonal, follow-
ing the open-closed principle - open to extensibility and closed
to modification. This approach allows for horizontal expansion,
both conceptually and infrastructure-wise. A target node is a ter-
minal node (smart bulb, smart refrigerator, smart lock etc.) in
a hierarchical architecture of IoT, which is to be secured from

an attacker. IoT-PEN focuses on penetesting an IoT application
E2E.

3.1 Design (Target Graph Structure):
We use the following nomenclature along with the correspond-

ing definitions from NVD database.
Locality of the attacker: {Network, adjacent, local, physical}
Authentication = {None, Required}
Privilege required = Privilege gained = {none, user, root}
CPE: {Application, Operating System, Hardware}.
Vul := {vul1, vul2, ..., vulm} is a set of all vulnerabilities from the
NVD dataset.

Target graph is a digraph GA = (P,Q), where P denotes the
set of nodes and Q denotes a set of edges. P := {v = d : dεD},
where D is a list of devices. An edge (pi, p j, vulk), <Source Node,
Target Node> denotes that vulnerability vulk of node p j can be ex-
ploited by an attacker who has gained access of node pi. For this,
pi should satisfy the locality required to exploit the vulnerability
and post-condition of node pi should be sufficient to exploit vulk
on node p j.

A vulnerability is considered as a CVE entry and represented
by a tuple with three elements <CVEID, prerequisite, Postcondi-
tion>.

The prerequisite of a vulnerability vulkεVul, is a function of
{Vulnerability Description, Attack Vector (Locality), Authentica-
tion, Privilege, CPE}. Prerequisite denotes the required attacker
Privilege to enter into the system.

The post-condition of a vulnerability vulkεVul where Vul :=
{vul1, vul2, ..., vulm}, is a function of {Vulnerability Description,
Impact of vulnerability, Privilege, CPE}. Post-condition denotes
the attacker Privilege acquired after exploiting vulk.

3.2 Implementation
The framework consists of 5 stages, a detailed discussion of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

each stage is as follows:
Input: The input given to the IoT-PEN is the network topology.
The Network topology contains the unique id of all devices (in
our case, we are considering Internet Protocol (IP) addresses) and
the direct reachability matrix.

Stage 1 (Pentesting setup installation): In IoT-PEN, we fol-
low a client-server architecture. All the client nodes and server
are prepared for pen-testing. A patch (installation of the vulner-
ability scanner tools, set up to listen to the server command and
act accordingly) is applied to all the nodes in the topology. All
the required libraries/ tools also need to be installed on the server.

Stage 2 (Get current state information of each node): The
server node multi-cast command to all the nodes to be pen tested
to share their current state information. IoT nodes respond with
their state information to the server for further processing. IoT-

PEN can be easily extended to be compatible with IoT proto-
cols. For our experiments section, we used the Nmap vulner-
ability scanner for extracting the vulnerabilities and the MQTT
protocol for sharing the IoT node’s current state information.

Stage 3 (Extract CPE from .xml file generated by Nmap): In
this step, we parsed the XML file generated by the vulnerability
scanner tools and extracted the current state of nodes in terms of
operating system and applications/ services version and vendor
info followed by generating CPE from collected state info. We
locally synched the NVD dataset for fast processing. The NVD
dataset containing CVE-CPE mapping is changed to a dataset
with CPE-CVE mapping for improving the time complexity.

Stage 4 (Prerequistics and post-conditions generation for
all the reported vulnerabilities & Target-graph generation):
In the previous stage, we have collected all the possible vulnera-
bilities on the target systems. The prerequisite of a vulnerability
is a function of privilege required by the attacker, user Interaction
and the locality of the attacker. CVSS provides these parameters
for each reported vulnerability.

In CVSS V3, privilege denotes the privilege level required by
the attacker to exploit a given vulnerability. The values assigned
to this parameter are Low, High and None (user, kernel and none),
where a Low value denotes that only basic user capabilities are re-
quired; a High value denotes that to exploit a given vulnerability
a significant control over the assets is required. None denotes that
no privilege is required to exploit the vulnerability.

The locality of the attacker is defined as “attack vector” in
CVSS V3, which denotes the vicinity of attacker w.r.t. the vul-
nerable component. The values assigned to the locality are “Net-
work, Adjacent Network, Local and Physical”. User Interaction
denotes whether interaction is required or not (None and Re-
quired).

The Post-condition is a function of the privilege gained and the
Network reachability. In the NVD database, there is no parameter
in CVSS analysis, which denotes the privilege gained by the at-
tacker. Therefore, the privilege gained is found out using Impact,
description and vulnerable platform from CPE parameter from
NVD; where Impact in terms of Confidentiality, Integrity and
Availability (CIA) triad denotes damages induced at the target
system. In vulnerability description, we look for keywords (“gain
root”, “gain unrestricted root shell access”, “obtain root”, “gain

Table 1 Rules for generating prerequisites using locality, authentication and
privilege.

Locality of at-
tacker

User interac-
tion

Privilege CPE prerequisite

- - None - None
Local - High OS Admin OS
Local None High App Admin OS
Network Required High OS Admin OS
Local - Low OS User OS
Local None Low APP User OS
Network Required Low OS User OS
Local Required High App Admin App
Network Required High App Admin App
Local Required Low App User App
Network Required Low App User App

unauthorized access”, etc.) as discussed in Table 2. CPE catego-
rizes the vulnerable component into operating systems, firmware
and applications. Correlating all these parameters, we can devise
the privilege gained by the attacker after exploiting a particular
vulnerability. We followed a Modified approach of rule-based
prerequisite and post-condition generation proposed in Ref. [11].
The modified approach for prerequisite and Post-conditions for
these vulnerabilities are based on rules specified in Table 1, Ta-
ble 2 and Table 3. Then we generate target paths using Algo-
rithm 1. Procedure PENTEST NODE describes the individual
node pen-testing. Procedure E2E PREMODULE calculates the
minimum privilege required to login to the systems and the maxi-
mum privilege gained after exploiting multi-stage vulnerabilities.
Procedure E2E MODULE generates the Targetpaths. Multi-stage
attacks are based on the exploitation of the different vulnerabili-
ties on the same host node. In this case, there will be an edge (di,
di, vulk) in the target-graph if the current privilege level of node
di matches with the prerequisite of vulk. The multi-host attack
is based on exploiting vulnerabilities on different nodes. In this
case, an edge (di, d j, vulk) in the target-graph if the current priv-
ilege level of node di matches with the prerequisite of vulk and
devices di, d j are network reachable.

Stage 5 (Analysis of target-paths & Recommendations): In
stage 4, we generated target graphs followed by identifying all
possible target paths to a specific node. Target-graphs generated
from target paths are expected to be very complex for an IoT net-
work. So, patching/Fixing each possible target-path is a challeng-
ing task and all target-paths do not lead the attacker to gain the
root privilege of the target system. Therefore, we need a prior-
itization order to secure critical systems on a priority [7]. This
stage of IoT-PEN is responsible for generating recommendations
in terms of critical vulnerability, node and path. The prioritiza-
tion order considers the criticality of the path, the node and the
vulnerability.
(1) All the possible paths through which an attacker can attack

the Target system.
(2) Optimization techniques for the Target-paths.

(a) Identify Critical (Path, Node, Vulnerability) using vari-
ous approaches explained in Algorithm 2.

(b) Patching order for these vulnerabilities.
For optimizing these target graphs, we define some security

metrics as follows:
Node count based prioritization: In this case, critical target-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 3 Rules for generating post-conditions using the NVD dataset. CPE - O (Operating System), A
(Application) , Impact score (5.9 (All CIA impact value), [3.4 - 5.9))) (Partial CIA impact), <3.4
(Some CIA impact value None)).

Description Impact Score CPE PostCondition
“gain root” or “gain unrestricted, root shell access” or “obtain root” or “gain privilege” or “gain
host OS privilege” or “gain admin” or “obtain local admin” or “obtain admin” or “gain unautho-
rized access” or “to root” or “to the root” or “elevate the privilege” or “elevate privilege” or “root
privileges via buffer overfow” or “unspecified vulnerability” or “unspecified other impact” or
“unspecified impact” or “other impacts” or “buffer overflow” or “command injection” or “write
arbitrary, file” or “command execution” or “execute command” or “execute root command” or
“execute commands as root” or “execute arbitrary” or “execute dangerous” or “execute php” or
“execute script” or “execute local” or “execution of arbitrary” or “execution of command” or
“remote execution” or “execute code” &! “execute arbitrary SQL”

5.9 ANY Admin OS

“obtain password” or “obtain credential” or “sniff ... credentials” or “sniff ... passwords” or
“steal ... credentials” or “steal ... passwords” or “cleartext credential” or “cleartext password” or
“obtain plaintext” or “obtain cleartext” or “discover cleartext” or “read network traffic” or “un-
encrypted” or “unencrypted” or “intercept transmission” or “intercept communication” or “obtain
and decrypt passwords” or “conduct offline password guessing” or “bypass authentication”

5.9 O Admin OS

“gain privilege” or “gain unauthorized access” or “unspecified vulnerability” or “unspecified
other impact” or “unspecified impact” or “other impacts” or “obtain password” or “obtain cre-
dential” or “sniff ... credentials” or “sniff ... passwords” or “steal ... credentials” or “steal ...
passwords” or “cleartext credential” or “cleartext password” or “obtain plaintext” or “obtain
cleartext” or “discover cleartext” or “read network traffic” or “un-encrypted” or “unencrypted”
or “intercept transmission” or “intercept communication” or “obtain and decrypt passwords” or
“conduct offline password guessing” or “bypass authentication” or

3.4 - 5.9 O User OS

“gain admin” or “obtain admin” or “obtain password” or “obtain credential” or “sniff ... cre-
dentials” or “sniff ... passwords” or “steal ... credentials” or “steal ... passwords” or “cleartext
credential” or “cleartext password” or “obtain plaintext” or “obtain cleartext” or “discover clear-
text” or “read network traffic” or “un-encrypted” or “unencrypted” or “intercept transmission”
or “intercept communication” or “obtain and decrypt passwords” or “conduct offline password
guessing” or “bypass authentication” or “SQL injection”

3.4 - 5.9 A Admin App

“hijack the authentication of users” or “hijack the authentication of arbitrary users” or “hijack the
authentication of unspecified victims”

- - User App

- <3.4 - None

Table 2 Rules for generating prerequisites using the description field (A-
Application).

Description CPE Locality
of
attacker

Privilege Prerequisite

“allows local adminis-
trators” or “allow lo-
cal administrators” or
“allows the local ad-
ministrator”

- local High Admin OS

“allows local users” or
“allowing local users”
or “allow local users”
or “allows the local
user”

- local High User OS

“remote authenticated
admin” or “remote
authenticated users
with administrative
privileges”

A Network Low Admin App

“remote authenticated
user” and ! “remote
authenticated users
with administrative
privileges”

A Network Low User App

paths are defined as paths with the least number of nodes. The
critical node on the critical target-path is defined as the node with
the maximum number of target-paths passing. The critical vul-
nerability on the critical node is defined as a vulnerability with
maximum CVSS severity scores.

CVSS based prioritization: CVSS provides an exploitability
score for each reported vulnerability, which depicts the easiness
to exploit a vulnerability and its score lies in (0,10), wherein the
higher the exploitability score, the easier it is to exploit the sys-

tem. A path criticality score is defined as the maximum of the
average severity scores of all nodes in a target path. A node crit-
icality score is defined as the maximum of an average severity
score of all vulnerabilities on that node. The critical vulnerability
on the critical node is defined as a vulnerability with maximum
CVSS scores.

PatchRank based prioritization [12]: This algorithm is based
on an attacker-defender game-theoretical model. It considers an
attacker-defender behavior based on NVD database parameters,
the node priority as well as the network topology to decide the
prioritization list. The attacker-defender scenario is formulated
as a mixed Nash equilibrium scenario, where attackers and de-
fenders compete with each other to increase their payoff. In
this metric, the critical path is defined as a path with the maxi-
mum number of critical nodes. A critical node is identified as a
node with the maximum probability of exploitation considering
the attacker-defender model. A critical vulnerability on a critical
node is identified as a vulnerability with the maximum probability
of exploitation considering the attacker-defender model defined
in Ref. [12].

Betweenness centrality (BC) based prioritization [13]: The
critical node in a critical path is defined as a node through which
a maximum number of target paths cross. A critical vulnerability
is defined as vulnerability that will be exploited in the maximum
number of the target-paths. Therefore, the criticality of a node
relies on the indegree of a node as well as edge weight, leading
us to a BC measure. A critical path is defined as a path with the
maximum number of critical nodes.

In the next section, we analyze the performance & scalability

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Algorithm 1 IoT-PEN Algorithm
Input:

NodeList � List of all the nodes in the network to be pentested.
Nettopology � Network topology provided by the system administrator.

Output:
Targetpaths

procedure IoT PEN(NodeList , Nettopology,)
(1) Scan reports = Pentest node(Nettopology)
(2) (VulPre,VulPost ,Nettopology,minPriv,maxPriv,max f rommin, Target node, vulnerability list, PC, PR) = E2E Premodule(S can reports,NodeList ,Nettopology)

(3) Targetpaths = E2E module(VulPre,VulPost ,Nettopology,minPriv,maxPriv,max f rommin, Target node, vulnerability list, PC, PR)
return Targetpaths

end procedure

procedure PENTEST NODE(Nettopology)
(1) Apply patch to IoT nodes, where patch contains open-source tools installation to get each node state.
(2) Server publishes instructions to IoT nodes to scan their current state of operating system and services.
(3) IoT nodes perform scanning and share the output file (.xml) to the server = Scan reports[node]

return Scan reports[node]
end procedure

procedure E2E Premodule (Scan reports, NodeList , Nettopology)
(1) Parse Scan reports[node] received at server to get CPE for operating system and services for each node = CPElist

(2) NVD data have a mapping of CVE to CPE list. We converted it from CPE to CVE list. Also based on the rules specified in Table 1, Table 2 and Table 3, for each
vulnerability, prerequisite VulPre and post-condition Vulpost are generated .

(3) vulnerability list[node] = Extract CVE ids w.r.t. CPE list in the CPElist for each node.
(4) For each vulnerability j on node i (in nodevullist), find prerequisite (PRi j) and post-condition (PCi j) as generated in Step 2.
(5) For each node in Nettopology find :

(a) minPriv[node] =Minimum privilege needed to exploit any vulnerability on the node.
(b) maxPriv[node] =Maximum privilege gained after exploiting multi-stage vulnerability.
(c) privgainedmaxpre[node] = prerequisite corresponding to maximum privilege gained.
(d) max f rommin[node] Can maximum privilege be achieved by the exploitation of vul-chain?

return (VulPre,VulPost , minPriv, maxPriv, privgainedmaxpre, max f rommin, vulnerability list, PC, PR)
end procedure

procedure E2E module (VulPre,VulPost ,Nettopology,minPriv,maxPriv,max f rommin, Target node, vulnerability list, PC,PR)
(1) current node = Target node.pop(), Target paths = []
(2) while current node! = null do
(3) vullist = vulnerability list[current node]
(4) Extract minPriv[current node],maxPriv[current node], privgainedmaxpre[current node],max f rommin[current node] .
(5) Calculate privilege gained after multi-stage vulnerability exploitation .
(6) neighbournode = Extract nodes reachable from current node using Nettopology

(7) for each node in neighbournode do
(8) vul list = vulnerability[node]

(9) for each vul in vul list do
(10) if maxPossiblefrommin[node] is true and vul.locality == current node.locality then
(11) if minPriv[current node] >PCnode,vul or minPriv[current node] == 0 then Target paths.add(node, current node, vul)
(12) end if
(13) end if
(14) end for
(15) end for
(16) end while

return Targetpaths

end procedure

Algorithm 2 Critical Path, Node, Vulnerability Selection
Input:

Target paths � Target paths generated by Algorithm 1
Target graph � Target graph corresponding to Target paths

Output:
Critical path, Critical node, Critical vulnerability

procedure critical(target graph, target paths, metric)
(1) if metric == Node count

(a) Vulcritical = max (Exploitability score on a critical node) (From NVD Database)
(b) Nodecritical = max (Number of attack paths passing through the node)
(c) Pathcritical = Targetpaths with min (number of nodes in the target paths)

(2) else if metric == CVSS
(a) Vulcritical = max (Exploitability score on a critical node) (From NVD Database)
(b) Nodecritical = max(

∑N
i=1 Vulexploitability/N)

(c) Pathcritical = Target paths with max (
∑M

i=1 Nodeexploitability/M)
(3) else if metric == PatchRank

(a) Vulcritical = max (Probability of exploitation of vulnerability considering attacker-defender model) (From NVD Database)
(b) Nodecritical = max (Probability of exploitation of node considering attacker-defender model)
(c) Pathcritical = max (Number of critical nodes in Target paths)

(4) else if metric == Betweeness centrality
(a) Vulcritical = Attack paths exploiting that vulnerability / Total number of attack paths passing through the node
(b) Nodecritical = Attack paths passing a particular node / Total number of attack paths
(c) Pathcritical = max (Number of critical nodes in Target paths)

return Vulcritical,Nodecritical, Pathcritical

end procedure

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

of IoT-PEN. We also examine various security matrices explained
in Section 3.2 for a complex IoT network.

4. Performance & Scalability

We measured IoT-PEN performance on a Ubuntu Linux ma-
chine (Version - 16.04.1 LTS (Xenial Xerus), 16 GB RAM). For
experiments, we dynamically created nodes and network topolo-
gies. We measured the time taken by individual steps of IoT-PEN

(i.e., Information gathering (Node state using MQTT protocol),
Database Sync, CPE-CVE mapping generation, Prerequisites and
Post-conditions generation and finally target-graph generation) to
verify the applicability of IoT-PEN to a complex IoT network.

The proposed method is evaluated to ensure the applicability
of IoT-PEN in a IoT network. The time taken by each step is
shown in Table 4. To gather information about each node state,
one needs to apply a patch on every node. Afterward, the server
node collects each node states in parallel. We repeated each ex-
periment five times and then took the average to reduce errors in
the experimental values.

For analyzing information gathering time, we used a raspberry
pi-3 (IoT terminal-node). Initially, the server will send a com-
mand to the IoT terminal-node to collect the state information
using the Nmap tool. Nmap generates a .xml file containing in-
formation of all the installed software (version, vendor) and oper-
ating system (name, version). This file is transferred to the server
for further processing. We defined information gathering time
as the time interval between terminal-node state information re-
quest and response received on the server. We measured the time
taken for information gathering on IoT nodes, which takes 20.41
seconds on an average. In parallel, we can execute step 2 that
locally creates a database for NVD CVEs taking 299.23 seconds
the first time; for later steps, we can use a script to sync only the
updated data. For generating CPE-CVE mapping and the gen-
eration of prerequisites and post-condition for each node takes
around 53 and 15 seconds, respectively. Therefore, for the initial
setup, 367.23 seconds are spent for data-sync and converting data
to the desired form.

Next, we observed the time-taken to generates all possible tar-
get paths by varying the number of nodes in the network from
5 to 1,000, as shown in Fig. 2. Each node has five vulnerabil-
ities and these vulnerabilities are randomly assigned from the
NVD database. For a single node, it takes 54 seconds to gen-
erate Target-graphs, which increases linearly with the number of
nodes to 400 nodes. Beyond that, it drastically increases to a
large value, indicating a direct increase in the search space that
increases the probability of a path from a source to a destina-
tion. The number of target-paths generated varies directly with
the number of nodes, as shown in Fig. 3. However, keeping the
number of nodes in network constant and varying number of vul-
nerabilities, the number of target paths is initially low. Then it
suddenly goes high and then linearly varies with the number of
vulnerabilities, as shown in Fig. 4. The sudden increase may be
due to more probability of successful hoping of the attacker from
the end nodes to the target node. However, if we see, target paths
to the root node only, then there is no such variance due to a fixed
amount of vulnerabilities on the target node. Observing Fig. 2, we

Table 4 Time elapsed in various stages.

Step Stage Time elapsed
1 Information gathering (Node state) 20.41 sec (For one

node)
2 Database Sync 299.23 sec
3 CPE-CVE mapping generation 53 sec
4 Pre-Post conditions generation 15sec

Fig. 2 Running time vs. number of nodes (Number of vulnerabilities on
each node = 5).

Fig. 3 Target-paths generated vs. number of nodes (Number of vulnerabili-
ties on each node = 5).

Fig. 4 Number of target-paths vs. number of vulnerabilities (Number of
nodes = 10).

can see that time taken for finding the target-paths to the target
node, with the varying number of nodes keeping vulnerabilities
static. In Fig. 5, the number of vulnerabilities is varying keeping
the number of nodes static. The time taken to find target-paths
in (1 node, ten vulnerabilities) and (10 nodes, 1 vulnerability) is
approximately the same. This is due to the fact that IoT-PEN is
checking multi-host and as well as multi-stage vulnerability ex-
ploitations. However, if we see target paths to the target (root
node) only then, it varies linearly with the number of vulnerabili-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 5 Running time of IoT-PEN vs. number of vulnerability (Number of
nodes = 10).

Fig. 6 Total target-paths to the root node generated vs. number of nodes
(Number of vulnerabilities on each node = 5).

ties on the target node, as shown in Fig. 6.

4.1 Finding the Critical Target-path, Critical Node and
Critical Vulnerability:

Here, we analyzed the prioritization approaches discussed
in Section 3.2, i.e., Node count-based, CVSS based ranking,
PatchRank, BC-based approaches. We compared these ap-
proaches based on the network (dense/sparse) and vulnerabilities
score (same/different). We define the threshold, the state when
all attack paths reaching the target node are patched considering
Definition 1.

For comparing various security matrices explained in Sec-
tion 3.2, we used a complex directed graph, as shown in Fig. 7.
The example tries to show the IoT network complexity, where
the end nodes acts as an IoT sensors node, which further sends
data to aggregators/gateways. Node 0 acts as a server. For gener-
alization, we consider each node has five vulnerabilities that are
randomly assigned from the NVD database. Afterwards, we find
all possible Target-paths from twelve end nodes i.e. (6, 7, 15, 16,
17, 23, 24, 25, 26, 30, 31, 32) to node 0 considering the sen-
sors/actuators are the weakest link in the IoT network. A part of
the large target graph is shown in Fig. 8, where node instance id
is a unique key for each instance consisting of node id and vulner-
ability CVE-ID. An edge from 16 CVE-2018-1184 to 9 CVE-
2017-1225 shows that once the attacker gets into node 16, she
can enter into node 9 after exploiting CVE-ID CVE-2017-1225.
After identifying the possible target-paths to node 1, for a sys-
tem administrator, choosing a node to be patched efficiently is
a challenging task. Even though she has all the information of

Fig. 7 IoT example network.

Fig. 8 A part of target graph of IoT example network.

Target-paths, which can be followed by an attacker to enter into
the target system, it is a non-trivial task to proceed next. So, we
further extended IoT-PEN to finding the critical target-path, the
critical node and the critical vulnerability. We compare various
security matrices and figure out the applicability of an approach
in various scenarios considering all nodes have the vulnerability
of the same severity score and with a different severity score.

All the nodes have vulnerabilities of the same severity
score: In this scenario, if the attacker has got the required priv-
ilege on any leaf node, then depending upon the post-condition,
she can break into the target node. We experimented with this
scenario several times, in case of low and medium severity case,
there were no target paths generated, as the attacker only got ac-
cess to terminal-nodes and failed to proceed next. However, in
the case of high and critical severity scenarios, there were paths
from each end node to node 1. In the following scenario, using
node count based prioritization, the critical path is from node 32
to node 1, the critical node is node 0 and critical vulnerabilities
are a set of vulnerabilities on that node. To reach a secure state,
the administrator needs to patch 11 nodes (one optimal solution
can be: 0, 1, 4, 8, 9, 12, 18, 19, 22, 27, 28). In CVSS prioriti-
zation, the system administrator needs to patch all 33 nodes. In
PatchRank, considering that all nodes have the same severity vul-
nerability, the rank is determined by the weight/importance of the
node, the administrator needs to patch nodes (0, 4, 8, 9, 12, 18,
19, 22, 28). However, varying the weights, the result varies in
case of the PatchRank. In the case of betweenness centrality, all
the target paths pass through target node neighbors. The critical
target-path has maximum number of the node. The criticality of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 9 Various IoT topologies

node is decided by the value of (attack paths passing a particular
node/Total number of attack paths). Here, we need to patch node
four first.

All the nodes have vulnerabilities of different severity
scores: In this scenario, there may be a path from node 32 to
node 21, but not from node 21 to target node. So, prioritiz-
ing vulnerabilities using betweenness centrality and PatchRank
works efficiently by patching the critical vulnerability on critical
first, which will drastically decrease the target-path search space.
However, in the case of experimenting with this, it completely
depends upon the random assignment of vulnerabilities and node
weights/importance factor. Therefore, given a static scenario with
each node vulnerability and node score, the tool gives the recom-
mendations.

In an IoT network, different types of network topologies e.g.,
point, star, mesh exist, which uses a client-server architecture as
described in Fig. 9. In the case of point topology, the attacker
can either directly attack the sensor node or can propagate via
the gateway. In point topology, PatchRank or CVSS will per-
form better as exploitability scores of the vulnerability will deter-
mine a target path. In the case of a star network topology, all the
multi-stage multi-host attacks will involve the gateway always.
Therefore, the betweenness centrality is a better security metric
for a star topology network. In the case of mesh, each node is
connected to another; after reaching the gateway, an attacker can
have a multitude of target paths to the target node. Therefore,
considering betweenness centrality, it gives an order to patch the
system in a cost-efficient way. However, PatchRank will provide
a more secure ordering.

It is evident from the above studies that IoT-PEN is a scalable
solution considering the heterogeneity and scalability of IoT de-
vices. However, IoT-PEN fails in case of zero-day vulnerability-
as it needs locality, authentication privilege, etc. for prerequisite
and post-condition to exploit a particular vulnerability from an
NVD vulnerability analysis.

5. Related Work

There have been some research work for penetration testing. A
manual penetration approach proposed by Denis et al. [14] per-
forms individual system penetration testing using the Kali Linux
for smartphones, blacktooth, etc. PENTOS [15] is a pentest tool

specially designed for IoT devices. It does not apply to heteroge-
neous IoT nodes. Moreover, the framework tests the communica-
tion network for a few specific attacks. Xueqiu et al. in Ref. [16]
propose an automatic generation algorithm combining the pene-
tration graph generation method with the CVSS information to-
gether. However, they did not evaluate their framework in terms
of scalability and IoT applicability. Aksu et al. in Ref. [11] focus
on the prerequisite and post-condition generation for vulnerabili-
ties by rule-based techniques and machine learning. We modified
their rules for our framework. AlGhazo et al. in Ref. [17], pro-
posed a framework which enlists a set of all possible sequences
in which atomic-level vulnerabilities can be exploited to compro-
mise certain system-level security given the networked system
description. Ou et al. in Ref. [18] presented a Prolog program-
ming language based network security analyzer MulVal. Almost
all the works, focus on isolated penetration testing of each system
and are manual and not scalable for complex IoT networks. This
study extends our previous work in Ref. [19]. In this paper, our
focus is on extensive experiments to evaluate the performance
of IoT-PEN and find the prioritization order of the vulnerabili-
ties. We are using the four security metrics; density-based priori-
tization, CVSS score based prioritization, betweenness centrality,
and PatchRank. We also analyzed the impact of network topolo-
gies on IoT-PEN.

6. Conclusion

IoT-PEN is an automatic E2E penetration framework for IoT,
a large and complex network. It works well for resource con-
strained IoT devices, as most of the computation is done on cloud
(servers) rather than IoT devices. The framework uses the open-
source tool for scanning followed by the vulnerability mapping
to CVE-ID. The evaluation of IoT-PEN using a complex graph
verifies the applicability of IoT-PEN to an IoT network. We first
pentest individual systems and find the vulnerabilities present in
those systems. These vulnerabilities are mapped with the NVD
database. Prerequisite and Post-condition w.r.t. that vulnerability
are generated from the NVD database. After identifying all pos-
sible target-paths to the target node, IoT-PEN, recommends the
prioritization of the nodes.

Acknowledgments This research is supported by DST-
JST project “Security in the IoT space”, DST Grant Number

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

RP03321, JST Grant Number JPMJSC16H3.

References

[1] Li, S., Xu, L.D. and Zhao, S.: 5g internet of things: A survey, Journal
of Industrial Information Integration, Vol.10, pp.1–9 (2018) (online),
available from 〈http://www.sciencedirect.com/science/article/pii/
S2452414X18300037〉.

[2] Zimba, A., Wang, Z. and Chen, H.: Multi-stage crypto ransomware
attacks: A new emerging cyber threat to critical infrastructure and in-
dustrial control systems, ICT Express, Vol.4, No.1, pp.14–18 (2018).

[3] Angrishi, K.: Turning internet of things(iot) into internet of vulnera-
bilities (iov): Iot botnets, CoRR, Vol.abs/1702.03681 (2017) (online),
available from 〈http://arxiv.org/abs/1702.03681〉.

[4] Falliere, N., Murchu, L.O. and Chien, E.: W32.stuxnet dossier (2010)
(online), available from 〈https://www.wired.com/images blogs/
threatlevel/2010/11/w32 stuxnet dossier.pdf〉 (accessed 2018-11-13).

[5] Yadav, G. and Paul, K.: Assessment of scada system vulnerabilities,
2019 24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pp.1737–1744 (2019).

[6] Sheyner, O. and Wing, J.: Tools for generating and analyzing attack
graphs, Formal Methods for Components and Objects, de Boer, F.S.,
Bonsangue, M.M., Graf, S. and de Roever, W.-P. (Eds.), pp.344–371,
Springer Berlin Heidelberg (2004).

[7] Mehta, V., Bartzis, C., Zhu, H., Clarke, E. and Wing, J.: Ranking at-
tack graphs, Recent Advances in Intrusion Detection, Zamboni, D. and
Kruegel, C. (Eds.), pp.127–144, Springer Berlin Heidelberg (2006).

[8] Martin, R.A. and Christey, S.: Vulnerability type distributions in
cve (2007) (online), available from 〈https://cwe.mitre.org/documents/
vuln-trends/index.html〉.

[9] NIST: Common vulnerabilites and exposures (online), available from
〈https://cve.mitre.org〉.

[10] NVD: Official common platform enumeration (CPE) dictionary
(2007) (online), available from 〈https://nvd.nist.gov/products/cpe〉.

[11] Aksu, M.U., Bicakci, K., Dilek, M.H., Ozbayoglu, A.M. and Tatli,
E.i.: Automated generation of attack graphs using nvd, CODASPY ’18,
pp.135–142, ACM (online), DOI: http://doi.acm.org/10.1145/
3176258.3176339 (2018).

[12] Yadav, G. and Paul, K.: Patchrank: Ordering updates for scada sys-
tems, 2019 24th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pp.110–117 (Sep. 2019).

[13] Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A. and Ursino, D.:
Measuring betweenness centrality in social internetworking scenarios,
On the Move to Meaningful Internet Systems: OTM 2013 Workshops,
Demey, Y.T. and Panetto, H. (Eds.), pp.666–673, Springer Berlin Hei-
delberg (2013).

[14] Denis, M., Zena, C. and Hayajneh, T.: Penetration testing: Concepts,
attack methods, and defense strategies, 2016 IEEE Long Island Sys-
tems, Applications and Technology Conference (LISAT), pp.1–6 (Apr.
2016).

[15] Visoottiviseth, V., Akarasiriwong, P., Chaiyasart, S. and Chotivatunyu,
S.: Pentos: Penetration testing tool for internet of thing devices, TEN-
CON 2017 - 2017 IEEE Region 10 Conference, pp.2279–2284 (Nov.
2017).

[16] Jia, X.Q., Wang, S., Xia, C. and Lv, L.: Automatic generation algo-
rithm of penetration graph in penetration testing, 2014 9th Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Com-
puting, pp.531–537 (Nov. 2014).

[17] Al Ghazo, A.T., Ibrahim, M., Ren, H. and Kumar, R.: A2g2v: Au-
tomated attack graph generator and visualizer, Mobile IoT SSP’18,
pp.3:1–3:6, ACM (online), DOI: http://doi.acm.org/10.1145/3215466.
3215468 (2018).

[18] Ou, X., Boyer, W.F. and McQueen, M.A.: A scalable approach to at-
tack graph generation, CCS ’06, pp.336–345, ACM (2006).

[19] Yadav, G., Paul, K., Allakany, A. and Okamura, K.: Iot-pen: A pen-
etration testing framework for iot, 2020 International Conference on
Information Networking (ICOIN), pp.196–201 (2020).

Geeta Yadav is a Ph.D. scholar in Amar
Nath & Shashi Khosla, School of In-
formation Technology, Indian Institute of
Technology (IIT) Delhi, India. Her re-
search interests are mainly SCADA sys-
tem security, IoT Security. Before joining
IIT, she worked as a software engineer in
Samsung, India and Samsung, Korea.

Kolin Paul is a professor in the Depart-
ment of Computer Science and Engineer-
ing, Indian Institute of Technology (IIT)
Delhi, India. His research interests focus
on the use of (embedded) systems in the
design of affordable health care and the
security of cyber physical systems. He
received a Ph.D. in computer science and

engineering. He serves as the Microsoft Chair Professor and leads
hardware security and reconfigurable efforts at IIT Delhi.

Alaa Allakany is a department member
in Faculty of Computers and Information,
Kafrelsheikh University, Egypt, He re-
cieved Ph.D. degree from Graduate school
of Information Science and Electrical En-
gineering, Kyushu University, Japan. His
rsearch interest are The Future Internet
Technologies, IoT Security.

Koji Okamura received his B.S., M.S.
and Ph.D. from Kyushu University in
1988, 1990 and 1998, respectively. He be-
came an associate professor of the Com-
puter Center and Graduate School of In-
formation Science and Electrical Engi-
neering in 1998 and a professor at Kyushu
University in 2011. He serves as the direc-

tor of the Cybersecurity Center at Kyushu University and vice di-
rector of the Research Institute for Information Technology, and
vice CISO of Kyushu University. He is a member of IPSJ, IEICE,
IEEE-CSt.

c© 2020 Information Processing Society of Japan

