
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Safe Design of Flow Management Systems Using Rebeca

Giorgio Forcina1,a) Ali Sedaghatbaf1,b) Stephan Baumgart2,c) Ali Jafari3,d)

Ehsan Khamespanah4,3,e) PavleMrvaljevic1,f) Marjan Sirjani1,g)

Received: November 8, 2019, Accepted: June 1, 2020

Abstract: Track-based flow management systems like transportation systems and traffic control systems play a crucial
role in our daily life. Safety and performance are among the most important quality requirements for these systems.
This paper presents AdaptiveFlow as a framework for modeling, safety checking and performance analysis of track-
based flow management systems. AdaptiveFlow is based on the Hewitt actors computation model. In particular, tracks
are modeled as actors and moving objects as messages. Timed Rebeca is used for modeling, and the model checking
tool Afra is used for safety verification and performance evaluation in AdaptiveFlow. To react to dynamic changes in
the environment, AdaptiveFlow provides support for three adaptive policies, which can be examined and compared in
different scenarios. To demonstrate the applicability of AdaptiveFlow, we consider the Electric Site Research Project
of Volvo Construction Equipment as a case study. In this project, a fleet of autonomous haulers is utilized to transport
materials in a quarry site. Furthermore, to show the reusability of the framework for other flow management scenarios,
an experiment on an urban garbage collection system is presented.

Keywords: track-based flow management, actor model, model checking, safety verification, performance evaluation

1. Introduction

Track-based flow management systems such as warehouse
management systems and public transportation systems play a
crucial role in our daily life. All of these systems include a set of
moving objects which travel on predefined tracks e.g., aisles, rail-
ways and roads. We see a common pattern among these systems.
In fact, we have trains on rails, cars on roads, automated vehicles
in aisles of a warehouse, and airplanes in predefined airspace-
tracks. As the majority of these systems are mission critical,
there is a need for assuring their safety, and optimizing their per-
formance from different aspects e.g., resource consumption and
operational time.

In this work, we consider a generalised view to the flow man-
agement systems. Our focus includes a wide range of applica-
tions consisting of flowing entities that are distributed, operate
independently, and move around to accomplish a mission. In
our view, the flowing entities are machines e.g., buses, trains
or haulers that move around some environments e.g., streets,
railways or quarry roads, transporting some assets e.g., pas-
sengers, packages or stones, between some points of interest
(PoIs) e.g., bus/metro stations or loading/unloading stations. We

1 Mälardalen University, Västerås, Sweden
2 Volvo Construction Equipment AB, Eskilstuna, Sweden
3 Reykjavik University, Reykjavik, Iceland
4 University of Tehran, Tehran, Iran
a) giorgio.forcina@gmail.com
b) ali.sedaghatbaf@mdh.se
c) stephan.baumgart@volvo.com
d) ali@ru.is
e) e.khamespanah@ut.ac.ir
f) pmc19001@student.mdh.se
g) marjan.sirjani@mdh.se

present a formal framework which provides a common abstrac-
tion for movement scenarios in these systems, and utilizes model-
checking to verify their safety and analyze their performance.
This framework is called AdaptiveFlow and was first introduced
in the conference paper [1]. This paper is an extension of
Ref. [1],and provides more implementation details including the
input format and the formal model, and adds a new case study to
demonstrate the reusablity of the proposed framework for differ-
ent kinds of flow management systems.

AdaptiveFlow is based on Timed Rebeca [2], which is an ex-
tension of Rebeca [3] with timing primitives. Rebeca is an actor-
based modeling language well-suited for modeling and analy-
sis of asynchronous communications and event-driven computa-
tions. The model checking tool Afra [4], [5] facilitates developing
(Timed) Rebeca models, verifying their correctness and check-
ing safety and progress properties. Deadlock freedom and dead-
line misses are examples of properties that can be verified using
this tool. The idea of building AdaptiveFlow is rooted in differ-
ent projects on flow management using actors and is explained
in Ref. [6]. These projects include routing packets in network-
on-chip [7], smart urban planning and managing the resources in
transportation hubs [8], and rerouting and rescheduling flights in
a track-based traffic control system [9].

In addition to typical safety properties, AdaptiveFlow enables
checking correctness properties important for flow management
systems. These properties include collision avoidance, being on
the correct track for the mission, and running out of resources
or fuel. Furthermore, AdaptiveFlow is capable of measuring the
amount of consumed fuel, emitted pollution, operational time and
transported assets. It provides an easy to use interface for spec-
ifying the input parameters which include system configuration

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

and topology, and environment characteristics. Hence, the de-
signer can explore the design space by changing the input pa-
rameters and analyze the effects of those changes on safety and
performance. Additionally, AdaptiveFlow allows the designer to
specify policies for adapting the system behavior with respect to
possible changes in the environment. Sudden changes like block-
ing of a track, or change of a point of interest like a charging
station being out of order can be modelled, too.

To show the applicability of AdaptiveFlow for designing flow
management systems, we use the case study of the Electric Site
Research Project of Volvo Construction Equipment (VCE) [10] In
the Electric Site project, a fleet of self-driving autonomous elec-
trified vehicles (haulers) transport materials in the quarry site.
Since vehicles are electrified and equipped with batteries they
need to be charged at chargers in the site. There are two load-
ing points which are each independent systems, and an unload-
ing point. The missions are currently supervised by a central
unit. The plan is to move towards a more distributed control. We
used AdaptiveFlow to explore the design space and check differ-
ent configurations where we can have the optimum transportation
paths for haulers which for example reduces power consumption,
and at the same time guarantees the safety of each vehicle and the
overall system safety.

In addition to the VCE project and in order to show the
reusability of AdaptiveFlow for different kinds of flow manage-
ment scenarios, we also present a study on an urban garbage col-
lection system. The outcomes of this study indicate the usefulness
of the proposed framework for designing a safe flow management
system with optimal performance.

In Section 2 we introduce Timed Rebeca, and in Section 3 we
explain the VCE Electric Site example. In Section 4 the Adaptive-
Flow framework is described. In Section 5, we present compara-
tive experiments with different configurations that help designers
make proper decisions. Section 6 is dedicated to the study on a
garbage collection system to demonstrate the reusability of the
proposed framework. Section 7 discusses about the research con-
tributions related to this work. Finally, in Section 8, we conclude
the paper and outline the future directions.

2. Rebeca and Timed Rebeca Languages

Rebeca (Reactive Object Language) [11], [12] is an actor-based
language. Actors are introduced by Hewitt [13] and promoted
as a concurrent object-based functional language by Agha [14].
Rebeca is designed to be a bridge between the formal methods
community and software engineers, it is designed as an impera-
tive language, with Java-like syntax, and is supported by a model
checking toolset.

Actors are units of concurrency, with no shared variables, com-
municating by asynchronous messages. There is no explicit re-
ceive statement, and send statements are non-blocking. There is
only one single thread of execution in each actor and one message
queue. The actor takes a message from the top of its message
queue, and executes the corresponding method (called message

server) non-preemptively.
In Timed Rebeca (the real-time extension of Rebeca) [2], [15],

[16], instead of a message queue we have a message bag, where

messages are tagged with their time-stamps. There is a concept
of synchronized local clocks throughout the model for all the ac-
tors (which can be considered as a global time). The sender tags
a message with its own local time, at the time of sending.

A Rebeca model consists of a number of reactive classes, each
describing the type of a certain number of actors (called rebecs).
Each reactive class declares the size of its message buffer, a set
of state variables, and the messages to which it can respond. The
local state of each rebec is defined by the values of its state vari-
ables and the contents of its message buffer. Each rebec has a set
of known rebecs to which it can send messages. Each reactive
class has a constructor with the same name. This constructor is
responsible for initializing the state variables and putting initially
needed messages in the message buffer.

The way a rebec responds to a message is specified in a mes-

sage server. The state of a rebec can change during the execution
of its message servers through assignment statements. A rebec
makes decisions through conditional statements, communicates
with other rebecs by sending messages, and performs periodic
behavior by sending messages to itself. Since communication
is asynchronous, each rebec has a message buffer from which it
takes the next incoming message. A rebec takes the first mes-
sage from its message buffer, executes its corresponding mes-
sage server in an isolated environment, takes the next message
(or waits for the next message to arrive) and so on. A message
server may have a non-deterministic assignment statement which
is used to model the non-determinism in the behavior of a mes-
sage server. Finally, the main block is used to instantiate the
rebecs of the model.

Timed Rebeca adds three primitives to Rebeca to address tim-
ing issues: delay, deadline and after [2]. Each primitive is used
as follows:
• Delay: delay(t) models the passage of time for a rebec dur-

ing execution of a message server, it increases the value of
the local clock of the respective rebec by the amount t. Note
that all other statements of Timed Rebeca are assumed to
execute instantaneously.

• After: The keyword after is used in conjunction with a
method call and indicates that it takes n units of time for
a message to be delivered to its receiver.

• Deadline: The keyword deadline is used in conjunction with
a method call and expresses that if the message is not taken
in n units of time, it will be purged from the receiver’s mes-
sage bag automatically (timeout).

These primitives provide the syntax to cover timing features
that a modeler might need to address in a message-based, asyn-
chronous and distributed setting, including computation time (de-

lay), message delivery time (after), periods of occurrences of
events (after), and message expiration (deadline).

3. Volvo Construction Equipment Electric Site

As an industrial case study, we consider the Volvo CE elec-
tric quarry site, where gravel of different granularity is produced.
This gravel is typically used for building construction, road work
or railway beds (see Fig. 1). The rocks are blasted in one area
of the quarry and the big blocks are crushed into smaller trans-

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 1 Volvo construction equipment electric site.

Fig. 2 Schema of the volvo construction equipment electric site.

portable rocks using a movable crusher (primary crusher). The
crushed material is then transported to a stationary crusher (sec-
ondary crusher) where the material is crushed into the target gran-
ularity. In the electric site research project at Volvo Construction
Equipment, material transportation from the primary crusher to
the secondary crusher is done by a fleet of autonomous haulers
(called HX).

In Fig. 2 tracks for the autonomous haulers are shown. The
haulers are loaded at the Primary Crusher (PCR) or by a human
operated wheel loader (WL). The primary crusher is fed by a hu-
man operated excavator (EXC). Once the haulers are loaded, they
travel to the secondary crusher (SCR) where they dump the load.
Since the haulers are electrified and equipped with batteries, they
need to be charged at the chargers (CH). The missions in this site
are set by a central site control unit, which is supervising all activ-
ities. So, different queuing points are necessary where the haulers
receive their next mission. In order to make decisions for optimal
production, the haulers queue at the main decision point (MDP),
and once a loading mission is assigned, the haulers will move to
the assigned loading position. The fleet of haulers can be parked
or maintained at the parking area (PA).

Compared to automated guided vehicle (AGV) applications in
predefined environments like warehouses, the AGVs in the quarry
site are exposed to harsh environmental conditions, which can
change rapidly. Therefore, the site control system must be able to
adjust the fleet of haulers based on the changed conditions.

4. AdaptiveFlow Framework

AdaptiveFlow is built based on Timed Rebeca and its model
checking tool, Afra (see Ref. [17]). Each flow management sys-
tem is a network of independent systems, and the Timed Rebeca
model in AdaptiveFlow captures the communication pattern and
protocol among these systems. Afra is used in AdaptiveFlow to
formally verify the properties specified as assertions or temporal
logic formulas. While performing model checking, Afra gener-
ates the state space of the Timed Rebeca model. In AdaptiveFlow

the generated state space is explored and the designer is provided
with performance metrics that can be used for design space ex-
ploration and optimisation purposes.

4.1 Timed Rebeca Model in AdaptiveFlow
The Timed Rebeca Model of the flow management system is

built based on the features of interest in the system. Here we
explain the problem domain which is the basis for building the
model.

The infrastructure (or the environment) is modelled as a collec-
tion of segments each characterised by a unique identifier and a
coordinate. Each segment (cell) is linked with its neighbour cells
and may differ from others in terms of length, allowed speed,
and capacity. The cells can be either available, in case they can
be traversed, or unavailable, in case there is an obstacle block-
ing them. A segment knows its adjacent cells. The maximum
number of neighbours is eight, one for each cardinal position (i.e.
north, north-east, east, south-east, south, south-west, west, north-
west). The topology shows the positions within the environment
in which the vehicles can perform their tasks (e.g., picking up
passengers at a bus station, loading stones in a quarry, charging
fuel, etc.), namely Points of Interest (PoI). Each PoI is charac-
terised by its unique identifier (i.e., id), its position on the map
(i.e., x and y), its type and its operating time. The operating time
represents the time needed for performing the specific task at the
current PoI. For example, for the VCE Electric Site, we have the
following PoIs: the Parking Station where the fleet of vehicles are
parked when they are not operating, the Charging Station where
vehicles can recharge, and the Loading-Unloading Point where
vehicles can either load or unload materials.

In addition to the environment and the topology we need infor-
mation regarding the vehicles, and the configuration of the sys-
tem. For the Electric Site case study, each vehicle has its own
identifier, its own mission, and its own type. The mission speci-
fies the initial location of the vehicle, and the path it has to take.
The type of the vehicle declares several features like capacity of
the fuel tank, fuel consumption rate, average speed, CO2 emis-
sion, and load capacity.

For the configuration we can set different parameters includ-
ing the number of operating vehicles, the safety distance between
vehicles, and the level of fuel that should be reserved.

Communications are modeled through asynchronous message
passing in AdaptiveFlow. In particular, whenever a vehicle wants
to move to an adjacent cell, the host cell sends a request message
to the target cell. This message can represent a query from the
central control unit, which is supervising all activities (as in the
VCE site), or alternatively it can model a periodic checking of the
surroundings by the vehicle itself.

The request may get rejected because the adjacent cell may
be occupied by another vehicle, or blocked due to some problem
like an obstacle or a hole created by rain. So, the request needs
to be resent periodically. The period for re-sending the rejected
request is an important parameter that can be set. During the anal-
ysis phase, this period can be adjusted to find a safe and also more
efficient configuration.

Another important feature is configuring the adaptive policies.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

We can configure AdaptiveFlow so that it knows which adaptive
policy to use, and when to switch to another policy. More details
follow.

Adaptive Policies. Dynamic behaviour and adaptability are
among the main features of flow management systems. In
our Timed Rebeca model we have event handlers (or message
servers) that handle adaptation. In the current implementation,
the model has been equipped with three adaptive policies to man-
age the situation in which some segments are temporarily unavail-
able. The policies are defined based on the different decisions
available for the haulers. These decisions include the following:
(1) wait for the blocked segment to be available again, (2) by-
pass the blocked segment and continue on the predefined route,
and (3) run a routing algorithm and continue based on a complete
new route. Accordingly, AdaptiveFlow supports the following
three policies:
• Policy 1 (postpone) allows the vehicle to postpone its

planned movement by an amount of time that is equal to the
re-sending period value specified in the input configuration.
In case the Segment is unavailable for a number of attempts
greater than the max attempts value, the re-route policy is
applied.

• Policy 2 (overpass), lets the vehicle bypass the segment that
is occupied, allowing it to overpass that position according
to the current environment and obstacles, and then continue
on the route pre-specified in the mission plan.

• Policy 3 (re-route) uses the Dijkstra shortest path algo-
rithm [18] to calculate an alternative path from the current
position to the destination PoI, taking into consideration the
current situation of the environment including both static and
dynamic obstacles.

In Section 5 we compare the above policies from different
viewpoints, but note that the main purpose here is not to prove
the effectiveness of a policy against other policies, but to show
that in AdaptiveFlow it is possible to design, implement and anal-
yse different adaptive policies according to the context or user’s
needs.

Lagrangian and Eulerian Rebeca Models.
AdaptiveFlow supports two design patterns to build the Timed

Rebeca model. One pattern is modelling each mobile system as
an actor, and the other is modelling each track of the environ-
ment as an actor. These two patterns reflect the two general views
for flow analysis, inspired from fluid mechanics [6]. In fluid me-
chanics, two well-known alternative ways to model fluid flow are
Lagrangian and Eulerian models [19]. In the Lagrangian model
of a fluid, the observer follows an individual fluid parcel as it
moves through space and time. In the Eulerian view, the observer
fixes on a region of space and observes fluid mass passing through
that space. For example, in studying the flow of a river, the La-
grangian view is like sitting in a boat and floating down the river,
whereas the Eulerian view is like sitting on the bank and watching
the boats float by.

The Eulerian model, where each track of the environment is
modelled as an actor, seems less faithful to the flow management
system we are modelling. In this model, the mobile systems are
modelled as messages or packets passing through the tracks. For

Fig. 3 AdaptiveFlow modules and processes.

the Electric Site case study, each packet represents a hauler, and
has its own identifier, its own mission, and its own type. The
request re-sending period may represent the same phenomena in
both patterns. So, we still can model the main features of the
independent vehicles in the Eulerian approach. More in-depth
discussion on this topic is outside the scope of this paper.

4.2 AdaptiveFlow Modules and Analysis Process
The architecture of AdaptiveFlow is based on Ref. [20] and can

be seen in Fig. 3. Accordingly, AdaptiveFlow consists of three
modules for (1) pre-processing and building the Timed Rebeca
model from a more friendly input, (2) running Afra, performing
formal verification and generating the state space, and (3) post-
processing through state-space analysis. These three modules are
elaborated in the following.
4.2.1 Pre-processing

Pre-processing is for model generation. In the pre-processing
phase, AdaptiveFlow generates the Timed Rebeca model that de-
picts the one provided by the user by means of the input files
based on the input data provided by the user. The user is sup-
posed to provide three input filesin Extensible Markup Language
(XML) format. These files include environment, topology, and
configuration data.

The file environment.xml includes data about the segments of
the environment that vehicles are supposed to move in. An ex-
ample environment specification is presented in Listing 1. This
example includes two segments each characterized by a unique
identifier, links to its surrounding segments, its coordinates, avail-
ability, length, capacity and speed limit. Accordingly, both seg-
ments can hold at most one hauler at a time, and only the second
segment is available in the initial state.

The file topology.xml contains data about PoIs. An example of
the structure of topology specification is provided in Listing 2.

This example includes one instance for each type of PoI sup-
ported by AdaptiveFlow. The parking and charging stations are
located on the same row, and the time needed to (un)load materi-
als is five times the time needed to charge fuel.

The third AdaptiveFlow input file (i.e., configuration.xml) in-
cludes two sections: (1) the configuration of the system, and (2)
the properties of the transportation vehicles. The first section
comprises the following:
• resendingPeriod: the time for re-sending a segment request

in case of a negative response,
• numbervehicles: the number of operating vehicles,
• safeDistance: the safe distance between vehicles,
• fuelReserve: the level of running out of fuel,
• policy: the adaptive policy in case of re-planning,
• maxAttempts: number of attempts before re-planning.
For what concerns the specification of the vehicles (Listing 3),

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

<segment id=”seg 0 0” N=”null” NE=”null” E=”seg 0 1” ES=”seg 1 1”
S=”seg 1 0” SW=”null” W=”null” WN=”null” available=”false ”
x=”0” y=”0” capacity=”1” length=”200” freespeed=”6”/>

<segment id=”seg 1 1” N=”seg 0 1” NE=”null” E=”null” ES=”null” S=”null”
SW=”null” W=”seg 1 0” WN=”seg 0 0” available=”true” x=”1” y=”1”
capacity=”1” length=”200” freespeed=”6”/>

Listing 1 Example of the environment specification.

<topology>
<POIs>
<poi id=”0” x=”1” y=”3” type=”ParkingStation”/>
<poi id=”1” x=”3” y=”3” type=”ChargingStation” chargingTime=”0.1”/>
<poi id=”5” x=”6” y=”7” type=”LoadUnloadingPoint” loadTime=”0.5”/>

</POIs>
</topology>

Listing 2 Example of the topology specification.

<vehicles>
<vehicle id=”0” type=”hauler” leavingTime=”10” fuelCapacity=”7000”

fuelConsumption=”1” speed=”6” emission=”6” capacity=”100”
unloadTime=”0.1”>

<tasks>5,3,2,4,5,3,0 </tasks >
</vehicle > <\vehicles>

Listing 3 Example of vehicles’ configuration.

the user can specify:
• id: the unique identifier of the vehicle,
• type: the typology of the simulated vehicle,
• leavingTime: the time in which the vehicle leaves the park-

ing and gets operational,
• fuelCapacity: the capacity of the vehicle’s fuel tank,
• fuelConsumption: the fuel consumption of the vehicle,
• speed: the average speed of the vehicle,
• emission: the CO2 emissions,
• capacity: the load capacity of the vehicle,
• unLoadTime: the time needed to discharge the transported

material.
Moreover, each vehicle comes with a sequence of tasks to per-

form in order to conclude its daily operating cycle. For instance,
moving from the parking slot and reaching the loading station.

A Python script processes the content of the above files and
generates the input for the next module (i.e. the Timed Rebeca
model). Listing 4 illustrates a sketch of the Timed Rebeca model
generated for the VCE Electric Site (the complete implementa-
tion can be accessed from AdaptiveFlow Web page [21]). This
model includes a set of environment variables which declare im-
portant properties of the quarry, vehicles and stations. These
properties are extracted from the input files. Number of segments,
maximum speed and battery consumption rate are among these
properties.

The Time Rebeca model consists of only one reactive class,
which defines an environment segment. The definition of the
knownrebecs section indicates that each segment knows and in-
teracts with its eight surrounding segments. The statevars section
includes declaration of the segment id, its position on the map,
its capacity at each moment, and its type. Listing 4 includes the
declaration of the most important message servers of the segment
actor. The implementation details of these message servers are
eliminated due to space limitation.

Message server startMovingVehicles starts moving the vehicles
by checking the capacity of the segments and running the Dijk-
stra path-finding algorithm for each vehicle. This algorithm is
implemented by another message server called initRouteWithDi-

jkstra. After the path is determined, each segment hosting a vehi-
cle will ask the next segment in the path for entrance permission.
Permission acquisition is performed by message server givePer-

mitionForVehicle. This message server checks the availability of
the target segment, and if it is available, invokes getPermission

to move the vehicle and informs the target segment by invoking
vehicleEntered. Otherwise, it means that there is an obstacle, and
message server segmentNotFree is invoked which uses the con-
figured adaptive policy to identify the next segment to ask per-
mission.
4.2.2 Formal Verification and State-space Generation

The Timed Rebeca model generated from the pre-processing
phase is model checked using Rebeca Model Checker (RMC),
which is the model checking engine of the Afra tool. RMC con-
verts the Timed Rebeca model to a set of C++ files. These files
are then compiled to an executable file. Running the executable
file, RMC applies the model checking algorithm and generates
the verification results. RMC automatically verifies if the model
is deadlock free.

In addition,AdaptiveFlow is able to check the following prop-
erties:
• if the vehicles are out of fuel,
• if the vehicles are moving correctly on the predefined path,
• if the vehicles crash into each other or obstacles,
• if the current configuration may lead to a deadlock situation.

Moreover, running RMC results in the generation of the whole
state-space of the model, as input for the next module.
4.2.3 Post-processing

In the post-processing phase, the state-space generated from
the previous module is evaluated with a Python script. In partic-
ular each state of the system is analysed and those variables that
are meaningful for the analysis of the system are extracted. Once
these values are collected, they are organised such that the useful
data can be extracted for vehicles and the system. These data in-
clude the amount of consumed fuel, moved material and emitted
CO2, and also the operational time of each vehicle.

5. Experimental Results

In order to demonstrate the applicability of AdaptiveFlow, we
describe the experimental results for the VCE Electric Site case
study in the following. Figure 4 shows the graphical represen-
tation of the scenario we are interested to model and analyse. In
this scenario, the environment is composed of 100 segments in 10
rows, and 10 columns. There are six PoIs, including one parking
station (PS, id: 0), four loading/unloading points (LUP with id:
2, 3, 4 and 5), and one fuel charging station (CS, id: 1). The in-
put files that define the environment, the topology, and the system
configurations are available on the AdaptiveFlow web page [21].

In order to analyze the safety and performance of this scenario,
we performed two sets of experiments. In the first set, the goal
was to evaluate how the PoI positions and the adaptive policies
would affect the safety and performance of the vehicles. In the

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

env int RESENDING_PERIOD = 15; // time to wait

before ask again the availability of a segment

env int NUMBER_VEHICLES = 5; // number of simulated

vehicles

env int SAFE_DISTANCE = 20; // meters

env int BATTERY_LIMIT = 1000; // battery reserve

env int MAX_ATTEMPTS = 2; // max attempts on the

same segment

/* Used adaptive policy: 1 wait, 2: overpass, 3:

change route, 4: rong */

env int POLICY = 1;

/* Fuel configuration: tank size and costs, wat/km

for each vehicle */

env double[5] VEHICLES_BATTERIES = {7000, 7000,

7000, 7000, 7000}; // watt

env int[5] VEHICLES_SPEED = {6, 6, 6, 6, 6}; // m/s

env double[5] BATTERY_CONSUMPTION = {1, 1, 1, 1, 1};

// max battery consumption: watt/meter

/* CO2 emissions per vehicles grams per 100 meters */

env double[5] CO2_EMISSIONS = {6, 6, 6, 6, 6}; //

grams/100 meters

env int OBSTACLE_OCCURRENCES = 5;

env int OBSTACLE_NUMBER = 4;

/* Location of PoIs */

env int[1][2] PARKING_STATION_POSITIONS = {{1,3}};

env int[1][2] CHARGING_STATION_POSITIONS = {{3,3}};

env int[4][2] LOAD_UNLOAD_POSITIONS =

{{3,1},{8,1},...}; // Vehicles can load or

unload at each point

env int[6][2] PoIs_LOCATION={{1,3},{3,3},...};

env int NUM_OF_PARKING_STATIONS = 1;

env int NUM_OF_CHARGING_STATIONS = 1;

env int NUM_OF_LOAD_UNLOAD_STATIONS = 4;

env int NUM_OF_SEGMENTS = 100;

env int NUM_OF_ROWS = 10;

env int NUM_OF_COLUMNS = 10;

...

reactiveclass Segment(6) {

knownrebecs{

Segment N, E, S, W, NE, ES, SW, WN; //the

eight surrounding segments

}

statevars{

int id;

int currCapacity; // current capacity

int[2] coord; //(x, y) coordinates

boolean isParkingStation, isChargingStation,

isLoadUnloadLocation;

}

Segment(int sid, int x, int y){

id = sid;

coord[0] = x;

coord[1] = y;

}

msgsrv startMovingVehicles(...){...} //Starts

moving the vehicles

msgsrv initRouteWithDijkstra((...){...} //Creates

the route from a PoI to the next one

msgsrv givePermisionForVehicle(...){...} //The

preceding segment asks this segment to allow

the vehicle to enter it

msgsrv getPermision (...){...} //the next segment

grants permission to the vehicle

msgsrv segmentNotFree(...){...} //The segment

denies the vehicle to enter it

msgsrv startSendingToNext(...){...} //The segment

selects the next segment for the vehicle

msgsrv vehicleEntered(...){...} //The preceding

segment informs the segment that the vehicle

has entered

msgsrv changeRouteWithPolicy2(...){...}

//overpasses the obstacle

msgsrv changeRouteWithPolicy3(...){...} //finds a

new route using Dijkstra

}

main{

Segment sg11(..., sg12, ...):(1, 4, 5);

Segment sg12(..., sg11, ...):(2, 6, 3);

...

}

Listing 4 A sketch of Timed Rebeca model in AdaptiveFlow.

Fig. 4 The environment used in experiments.

second set of experiments, we considered two types of vehicles
working in the quarry with different speed, fuel consumption,
load capacity, fuel capacity, and CO2 emissions. The aim was to
evaluate how replacing vehicles of type A with vehicles of type
B would affect the performance.

Here, we discuss the results of the two sets of experiments dis-
cussed above. Values shown in the figures refer to the consumed
fuel, the emitted CO2 and the time needed for executing all the
given tasks. Moreover, the configurations are compared with re-
spect to the adaptive policies. The results related to each policy
are presented with a different colour.

For what concerns model checking, in all the experiments the
properties mentioned in Section 4 are satisfied, confirming that
the models with the given configurations did not violate the re-
quirements. It is worth saying that the first three properties were
satisfied by model design, i.e., the behavior of the Segment rebec
was defined such that these crucial needs were respected. Regard-
ing the last property, (i.e., deadlock freedom), the current design
of AdaptiveFlow does not support configurations in which two
PoIs are adjacent, unless each PoI can provide service to more
than one vehicle simultaneously.

An example of this situation is shown in Fig. 5. The red vehicle
has just finished charging fuel at (0, 0) and it is approaching the
loading point at (1, 1). The blue vehicle needs to reach the charg-
ing station, since it almost ran out of fuel after having loaded
materials at (1, 1). These two vehicles want to move to the other
PoI simultaneously, and the first adaptive policy (i.e., postpone)
is applied by both of them. Therefore, they will wait until the PoI
becomes available again, which will never happen and we will
have deadlock.

5.1 Experiment 1: Changing PoI Positions
Here, the goal is to evaluate how the PoI positions, as well as

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 5 Example of a configuration which leads to starvation.

Fig. 6 Exp.1-Fuel consumption comparison.

Fig. 7 Exp.1-CO2 emission comparison.

Fig. 8 Exp.1-Operating time comparison.

the adaptive policies, affect the performance of the vehicles. We
change the positions of the charging and parking stations, while
all the other parameters remain unchanged. Dynamic obstacles
are generated randomly during the pre-processing phase, and the
model is executed 45 times. The output of the post-processing
module helps the designer to select the configuration most suit-
able for her needs (e.g. minimising operational times, reducing
fuel consumption, etc.).

Figures 6, 7, and 8 show the outcomes of the first set of exper-
iments. Accordingly, the positions that optimise all the evaluated
measures are those located in the center of the site (i.e., x and y
are between 4 and 5). Considering the role played by the adap-
tive policies, the one that minimizes the operating time is the third
policy. With this policy, a vehicle’s route is re-computed when-
ever it reaches an obstacle. This means that it will follow the
shortest path from the current position to the PoI, while avoiding
the obstacle. As expected, the first policy (i.e., postpone) imposes
the highest operating time. However, the fuel consumption is the
lowest for this policy, since vehicles do not consume fuel when
they are waiting. This is not the case for CO2 emission, since we
assume that waiting vehicles produce a little amount of pollution.
It is worth saying that these assumptions can be changed without
much effort and in accordance with the system to be simulated.

Table 1 Characteristics of haulers A and B.
Type Fuel Capacity Fuel Consumption CO2 Emission Speed Load Capacity

A 7000 W 1 W/m 60 g/km 6 m/s 100 ql.
B 10000 W 2 W/m 120 g/km 8 m/s 150 ql.

Fig. 9 Exp.2-Fuel consumption comparison.

Fig. 10 Exp.2-CO2 emission comparison.

Fig. 11 Exp.2-Operating time comparison.

5.2 Experiment 2: Changing Vehicle Types
In the second set of experiments, we consider two types of ve-

hicles working in the quarry. They differ in terms of speed, fuel
consumption rate, load capacity, fuel capacity, and CO2 emis-
sions. Table 1 shows the characteristics of these types of vehicles.
The aim is to evaluate how replacing vehicles of type A with ve-
hicles of type B affects the throughput of the VCE quarry site.
Moreover, we gradually increased the permitted traversing speed
on segments from 6m/s up to 8 m/s, so that vehicles of type B
could exploit their higher velocity. All these configurations were
evaluated with the three adaptive policies and the model was ex-
ecuted 54 times.

In the second set of experiments, considering the results shown
in Figures 9, 10, and 11, we notice that replacing vehicles of
type A with type B increases both fuel consumption and CO2

emissions. On the other hand, the operating time decreases with
the increase in the number of vehicles of type B. This is true
only when the maximum speed for each segment is greater than
6 m/s allowing vehicles of type B to exploit their higher veloc-
ity. It is also worth remarking that in contrast to the first set of
experiments in which all the runs ended with a total amount of
transported material that is equal to 1,500 quintals, employing
vehicles with higher transportation capacity led the system to be
more productive. Indeed, the greater the number of type B vehi-
cles, the higher the amount of moved material, i.e., 1,500, 1,650,
1,800, 1,950, 2,100, and 2,250 quintals for configurations with 0,
1, 2, 3, 4, and 5 vehicles of type B, respectively.

From the adaptive policy point of view, the results indicate that
fuel consumption is almost the same for all the three policies, and
using either policy 2 or 3 instead of policy 1 would significantly

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

reduce both CO2 emissions and operating time.

5.3 Scalability
In all of the experiments discussed above, the size of the en-

vironment and the number of obstacles were kept constant. In
fact, the environment included 100 segments in 10 rows and 10
columns and four obstacles were generated by the Python script
in each experiment.

In order to analyze the scalability of AdaptiveFlow, we re-
peated the experiments by gradually increasing the environment
size and the number of obstacles. We noticed that the amount of
memory consumed by the model checker increased linearly with
respect to the environment size. We also observed that policy 3
led to the least amount of memory consumption but the most ex-
ecution time for model checking. We also observed that the sys-
tem ran out of memory for an environment with 225 segments.
This event is well known as the state-space explosion problem
in the model checking domain. To tackle this problem, several
techniques have been proposed in the past two decades. Partial
order reduction and bounded model checking are among these
techniques [22].

Our past experiences with compositional modeling and anal-
ysis [23], [24] indicate that it is an effective means to reduce
the complexity and improve the scalability of actor-based ap-
proaches. Extending AdaptiveFlow with compositional analysis
is considered as future work.

6. Reusability

In this section, we show the reusability of AdaptiveFlow by an-
alyzing the safety and performance of a Garbage Collection (GC)
system as another flow management system. In particular, the
purpose of the experiments discussed in this section is to demon-
strate the applicability of AdaptiveFlow to any kind of flow man-
agement scenario in which we are interested to assure the safety
of some objects flowing around some environment, and analyze
their performance.

Urban garbage collection is a public service that municipalities
provide to citizens, and consists of collecting the garbage that we
generate every day and transporting it to centralized treatment
plants. Here, we consider a scenario in which two collectors are
supposed to collect garbage from three loading stations and trans-
port them to a treatment plant. Similar to the experiments in Sec-
tion 5, the environment that the collectors operate in is divided
into a set of segments. As depicted in Fig. 12, the environment
consists of 72 segments in 6 rows and 12 columns. There are
three loading stations, one parking station and one charging sta-
tion. We performed a set of experiments to analyze the effects of
the adaptive policies on the safety and performance of the collec-
tors. The input files used in these experiments can also be found
on the AdaptiveFlow web page [21].

From the safety point of view, the design of the Timed Rebeca
model assures satisfaction of all of the four properties specified
in Section 4. For performance analysis, we defined the goal as to
find the optimal positions for the charging/parking stations.The
places that we chose for the parking/charging station are high-
lighted with blue/yellow background in Fig. 12.

Fig. 12 The garbage collection environment.

Fig. 13 GC-Fuel consumption comparison.

Fig. 14 GC-CO2 emission comparison.

Fig. 15 GC-Operating time comparison.

Figures 13, 14 and 15 show the performance analysis results
for all positions considered for the charging station with respect
to each adaptive policy. These results indicate that (3, 7) is the
optimal position for the charging station if the postpone policy
is applied. However, for the re-route and overpass policies, both
(3, 6) and (3, 7) are optimal. Furthermore, it is evident that the
re-route policy leads to the minimum operating time in all cases,
and the postpone policy leads to the maximum CO2 emissions.

These experiments indicate that the generality of Adaptive-
Flow makes it usable for analyzing different kinds of flow man-
agement systems.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

7. Related Work

Bagheri et al. proposed a coordinated actor model in Ref. [9]
that can be used to model track-based traffic control systems in
which the traffic flows through pre-specified sub-tracks and is
coordinated by a traffic controller. In comparison to Ref. [9],
AdaptiveFlow supports the decentralised implementation of con-
trol systems and there is no need for a centralised coordinator.
Moreover, we provide model checking facilities while the coor-
dinated actor model is supported by Ptolemy II [25] simulator.

Some researchers have contributed to using formal methods
for the analysis of path-finding in AGVs (Automated Guided Ve-
hicles). Authors in Ref. [26] propose an approach for AGVs to
explore an unknown grid-based environment and find a path to
a destination. They model the problem using timed automata
and analyse it using UPPAAL. To make the analysis possible,
they show how the grid-based environment can be decomposed
to a smaller area while the analysis result is valid for the original
model.

Smith et al. in Ref. [27] addressed robot path planning us-
ing weighted transition systems for the model specification and
generalised LTL formula for goal specification. Their approach
shows how in every environment model, and for every formula, a
robot trajectory which minimises the cost function is computed.
Modelling in this approach is at a lower level of abstraction com-
pared to the work of Ref. [26]. Authors in Ref. [28] have a similar
approach for analysing A∗ algorithm, using Z modelling language
and its corresponding toolset. Authors in Ref. [29] model a vehi-
cle and consider different features, such as position localisation,
human and obstacle detection, collision avoidance. This model
is then analyzed to avoid fatal accidents. In particular, they use
timed automata to model the vehicle’s control system, including
the abstracted path planning and collision avoidance algorithms
used to navigate a vehicle, and model check it using UPPAAL.

The implicit assumption in the above methods is that no time
constraint is associated to plan specifications. To provide sup-
port for path planing under time constraints, Zhou et al. propose
a method based on metric interval temporal logic and timed au-
tomata [30]. All the above mentioned contributions are focused
on path-finding in one machine while we consider a set of col-
laborating machines and address the interference of activities of
different machines.

Authors in Ref. [31] address the safe path planning problem
in the multi-robot configuration. They use mCRL2 to specify
robots and the environment, and check if the collective behaviour
of a group of robots satisfies certain desired properties. They il-
lustrate the applicability of their approach using a simple path
planning algorithm which conducts a set of robots from their ini-
tial positions to their destinations on a planar surface. Moving
objects in Ref. [31] look into their neighbouring cells in each step
and proceed one step while they do not have specific missions or
plans to reach their destinations. In addition, based on what the
authors mention in the experimental results, they couldn’t check
models with many robots and big environments. This problem
is tackled using the same approach and facing the same short-
ages with timed automata in Ref. [32] and with hybrid automata

in Ref. [33]. For the latter, they show how the generated hybrid
automata can be embedded into automata which can be model
checked using SMV. They discuss that such an embedding does
not change the result of verification for reachability properties.

Another category of research work related to the scope of this
paper is safe path synthesis using formal methods. As an exam-
ple, Fainekos et al. [34] propose a method to generate trajectories
for mobile robots. These trajectories satisfy temporal logic for-
mulas specifying goal configurations, synchronization and tem-
poral ordering of different motions. This work was then extended
in Ref. [35] to support sensor specifications. The path planning
method presented in Ref. [36] is another work in this category,
which specifically addresses dynamic obstacles. In comparison
to our work, these contributions do not consider optimisation is-
sues; i.e. although they provide safe paths, they do not consider
other possible optimal paths.

8. Conclusion and Future Work

In this paper, we present AdaptiveFlow, a design platform for
modelling and analysing collaborating systems, in the domain of
traffic management systems and track-based flow management.
The model can capture independently operating and autonomous
mobile systems that transport assets (e.g., passenger, material,
etc.) among a number of systems at dedicated locations (e.g., train
stations, airports, loading stations, etc.). Each system may have
different features, like capacity and speed limit, and mobile sys-
tems need to refuel at some charging stations. The models are
written in Timed Rebeca, and the Rebeca model checking tools
are used both for checking property violations and also for per-
formance evaluation. AdaptiveFlow allows users to easily cus-
tomize the system by means of user-friendly input files, and to
evaluate how their decisions can affect the throughput of the mod-
elled system. Moreover, the model is designed in such a way that
the movements of machines can adapt to the unexpected changes
of the environment. The platform also supports modelling and
analysis of cost parameters, like fuel consumption and CO2 emis-
sions. This is done automatically by AdaptiveFlow thanks to the
chain of modules explained in Section 4.

As future work, we plan to enrich AdaptiveFlow with more
adaptive policies to handle other unexpected changes in the envi-
ronment. In particular, we will add a policy that avoids machines
getting stuck in situations like the one explained in Section 5.
Moreover, we will implement the adaptive algorithm named
Dipole flow field described in Ref. [37] and used by Ref. [29]. We
are also working on generating ROS (Robot Operating System)
code from the Timed Rebeca models of AdaptiveFlow.

Acknowledgments The work of a subset of authors is partly
supported by KKS DPAC Project (Dependable Platforms for Au-
tonomous Systems and Control), KKS SACSys Synergy project
(Safe and Secure Adaptive Collaborative Systems), and Self-
Adaptive Actors: SEADA (nr 163205-051) project from the Ice-
landic Research Fund.

References

[1] Sirjani, M., Forcina, G., Jafari, A., Baumgart, S., Khamespanah,
E. and Sedaghatbaf, A.: An actor-based design platform for system

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

of systems, 43rd IEEE Annual Computer Software and Applications
Conference, COMPSAC 2019, Vol.1, pp.579–587 (2019).

[2] Reynisson, A., Sirjani, M., Aceto, L., Cimini, M., Jafari, A.,
Ingólfsdóttir, A. and Sigurdarson, S.: Modelling and Simulation of
Asynchronous Real-Time Systems using Timed Rebeca, SCP, Vol.89,
pp.41–68 (2014).

[3] Sirjani, M., Movaghar, A., Shali, A. and de Boer, F.S. : Modeling
and verification of reactive systems using rebeca, Fundam. Inform.,
Vol.63, No.4, pp.385–410 (2004).

[4] Khamespanah, E., Sirjani, M., Viswanathan, M. and Khosravi, R.:
Floating Time Transition System: More Efficient Analysis of Timed
Actors, Formal Aspects of Component Software - 12th International
Symposium, FACS 2015 (2016).

[5] Khamespanah, E., Khosravi, R. and Sirjani, M.: An efficient TCTL
model checking algorithm and a reduction technique for verification
of timed actor models, SCP, Vol.153, pp.1–29 (2018).

[6] Lee, E.A. and Sirjani, M.: What good are models?, Proc. Formal As-
pects of Component Software - 15th International Conference, FACS
2018, Lecture Notes in Computer Science, Bae, K. and Ölveczky, P.C.
(Eds.), Vol.11222, pp.3–31, Springer (online), DOI: 10.1007/978-3-
030-02146-7 (2018).

[7] Sharifi, Z., Mosaffa, M., Mohammadi, S. and Sirjani, M.: Functional
and performance analysis of network-on-chips using actor-based mod-
eling and formal verification, ECEASST, Vol.66 (2013).

[8] de Berardinis, J., Forcina, G., Jafari, A. and Sirjani, M.: Actor-based
macroscopic modeling and simulation for smart urban planning, Sci.
Comput. Program., Vol.168, pp.142–164 (2018).

[9] Bagheri, M., Sirjani, M., Khamespanah, E., Khakpour, N., Akkaya, I.,
Movaghar, A. and Lee, E.: Coordinated actor model of self-adaptive
track-based traffic control systems, Journal of Systems and Software,
Vol.143, pp.116–139 (2018).

[10] Volvo, Innovation at volvo construction equipment (2018) (online),
available from 〈https://www.volvoce.com/global/en/this-is-volvo-ce/
what-we-believe-in/innovation/〉.

[11] Sirjani, M., Movaghar, A., Shali, A. and de Boer, F.: Modeling and
Verification of Reactive Systems using Rebeca, Fundamenta Infor-
matica, Vol.63, No.4, pp.385–410 (Dec. 2004).

[12] Sirjani, M. and Jaghoori, M.M.: Ten years of analyzing actors: Re-
beca experience, Formal Modeling: Actors, Open Systems, Biological
Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her
70th Birthday, pp.20–56 (2011).

[13] Hewitt, C.: Description and theoretical analysis (using schemata) of
PLANNER: A language for proving theorems and manipulating mod-
els in a robot, MIT Artificial Intelligence Technical Report (1972).

[14] Agha, G.: Actors: A Model of Concurrent Computation in Distributed
Systems, MIT Press, USA (1990).

[15] Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdar-
son, S.H. and Sirjani, M.: Modelling and simulation of asynchronous
real-time systems using Timed Rebeca, FOCLASA, pp.1–19 (2011).

[16] Sirjani, M. and Khamespanah, E.: On time actors, Essays Dedicated
to Frank De Boer on Theory and Practice of Formal Methods - LNCS
9660, pp.373–392, Springer (2016).

[17] Rebeca: Rebeca Homepage, available from 〈http://www.rebeca-lang.
org/〉.

[18] Dijkstra, E.W.: A note on two problems in connexion with graphs,
Numerische mathematik, Vol.1, No.1, pp.269–271 (1959).

[19] Batchelor, G.K.: An introduction to fluid dynamics, Cambridge Uni-
versity Press (1973).

[20] Castagnari, C., de Berardinis, J., Forcina, G., Jafari, A. and Sirjani, M.:
Lightweight preprocessing for agent-based simulation of smart mobil-
ity initiatives, International Conference on Software Engineering and
Formal Methods, Springer (2017).

[21] AdaptiveFlow Project: Rebeca Homepage - AdaptiveFlow
Project, available from 〈http://www.rebeca-lang.org/allprojects/
AdaptiveFlow〉.

[22] Clarke, E.M., Klieber, W., Novácek, M. and Zuliani, P.: Model check-
ing and the state explosion problem, Tools for Practical Software Veri-
fication, LASER, International Summer School 2011, pp.1–30 (2011).

[23] Bagheri, M., Khamespanah, E., Sirjani, M., Movaghar, A. and Lee,
E.A.: Runtime compositional analysis of track-based traffic control
systems, SIGBED Review, Vol.14, No.3, pp.38–39 (2017).

[24] Sirjani, M., Khamespanah, E., Mechitov, K. and Agha, G.: A com-
positional approach for modeling and timing analysis of wireless sen-
sor and actuator networks, SIGBED Review, Vol.14, No.3, pp.49–56
(2017).

[25] Ptolemaeus, C.: System Design, Modeling, and Simulation using
Ptolemy II (2014) (online), available from 〈http://ptolemy.org/books/
Systems〉.

[26] Saddem, R., Naud, O., Godary-Dejean, K. and Crestani, D.: Decom-
posing the model-checking of mobile robotics actions on a grid, Proc.
20th World Congress of the International Federation of Automatic

Control, IFAC WC 2017 (2017).
[27] Smith, S.L., Tumova, J., Belta, C. and Rus, D.: Optimal path plan-

ning under temporal logic constraints, 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp.3288–3293, IEEE
(2010).

[28] Rabiah, E. and Belkhouche, B.: Formal specification, refinement, and
implementation of path planning, Proc. 12th International Conference
on Innovations in Information Technology, IIT 2016 (2016).

[29] Gu, R., Marinescu, R., Seceleanu, C. and Lundqvist, K.: Formal veri-
fication of an autonomous wheel loader by model checking, Proc. 6th
Conference on Formal Methods in Software Engineering, FormaliSE
2018, collocated with ICSE 2018, pp.74–83 (2018).

[30] Zhou, Y., Maity, D. and Baras, J.S.: Timed automata approach for
motion planning using metric interval temporal logic, 2016 European
Control Conference, ECC 2016, pp.690–695 (2016).

[31] Saberi, A.K., Groote, J.F. and Keshishzadeh, S.: Analysis of path plan-
ning algorithms: a formal verification-based approach, Proc. 12th Eu-
ropean Conference on the Synthesis and Simulation of Living Systems:
Advances in Artificial Life, ECAL 2013, pp.232–239 (2013).

[32] Quottrup, M.M., Bak, T. and Izadi-Zamanabadi, R.: Multi-robot plan-
ning: a timed automata approach, Proc. 2004 IEEE International
Conference on Robotics and Automation, ICRA 2004, pp.4417–4422,
IEEE (2004).

[33] Koo, T.J., Li, R., Quottrup, M.M., Clifton, C.A., Izadi-Zamanabadi, R.
and Bak, T.: A framework for multi-robot motion planning from tem-
poral logic specifications, SCIENCE CHINA Information Sciences,
Vol.55, No.7, pp.1675–1692 (2012).

[34] Fainekos, G.E., Kress-Gazit, H. and Pappas, G.J.: Temporal logic
motion planning for mobile robots, Proc. 2005 IEEE International
Conference on Robotics and Automation, ICRA 2005, pp.2020–2025,
IEEE (2005).

[35] Kress-Gazit, H., Fainekos, G.E. and Pappas, G.J.: Temporal-logic-
based reactive mission and motion planning, IEEE Trans. Robotics,
Vol.25, No.6, pp.1370–1381 (2009).

[36] DeCastro, J.A., Alonso-Mora, J., Raman, V., Rus, D. and Kress-Gazit,
H.: Collision-free reactive mission and motion planning for multi-
robot systems, Robotics Research, Proc. 17th International Sympo-
sium of Robotics Research, ISRR 2015, pp.459–476 (2015).

[37] Trinh, L.A., Ekström, M. and Cürüklü, B.: Dipole flow field for de-
pendable path planning of multiple agents, IEEE/RSJ International
Conference on Intelligent Robots and Systems IROS (2017).

Giorgio Forcina is a Ph.D. student at
Malardalen University and a member of
Cyber-Physical System Analysis research
group. He graduated in 2016 in Com-
puter Science in a double-degree Master
Program from the University of Camerino
and the Reykjavik University. He got his
bachelor degree in Industrial Computer

Science in 2014 from the University of Camerino. His research
interests include formal methods, cyber-physical systems, and ar-
tificial intelligence.

Ali Sedaghatbaf received his B.S.,
M.Sc. and Ph.D. degrees in computer
engineering (software) (in 2009, 2011
and 2017, respectively) from School of
Computer Engineering, Iran University of
Science and Technology (IUST), Tehran,
Iran. His research interests include
software architecture, model-driven engi-

neering, machine learning, and cyber security. He is currently a
researcher at Mälardalen University, Västerås, Sweden.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Stephan Baumgart is working as a func-
tional safety systems engineer at Volvo
Construction AB in Sweden. At the
same time he is a Ph.D. student at
MÃd’lardalen University in VÃd’sterÃěs,
Sweden. His research interests include
functional safety in system-of-systems
and autonomous vehicles. Stephan has

a Licentiate degree from MÃd’lardalen University and a M.Sc.
from Humboldt University in Berlin, Germany.

Ali Jafari is currently collaborating with
the research group at Malardalen Uni-
versity in Sweden under the supervision
of Prof. Marjan Sirjani. His research
interests include formal methods, model
checking, formal verification, applying
formal methods in system design in dif-
ferent areas including cyber-physical sys-

tems, Internet of things, and self-adaptive systems. He received
his B.S. and M.S. degrees in Computer Engineering from Fer-
dowsi University in Iran in 2006 and 2008 respectively, and his
Ph.D. degree in Computer Science from the Reykjavik University
in Iceland in 2016. From 2016 to 2018, he worked as a postdoc-
toral researcher at Reykjavik University under the supervision of
Prof. Marjan Sirjani.

Ehsan Khamespanah is an assistant
professor at University of Tehran. He
is graduated from a double-degree Ph.D.
program in the ECE Department at the
University of Tehran and the department
of computer science at Reykjavik Univer-
sity. His research interests include formal
methods, software testing, cyber-physical

systems, and software architecture. Ehsan has a B.E. in computer
engineering from Tehran University and M.Sc. from the Amirk-
abir University of Technology.

Pavle Mrvaljevic received an ICM
scholarship in 2019 for Master studies in
Sweden and, this year, he is graduating
from a Master’s program (M.Sc.) in
Software Engineering at MÃd’lardalen
University, as well as a Specialization
program (Spec. Sci) in Information Tech-
nologies at Mediterannean University. He

received his B.Sc. degree in 2019 at Mediterannean University
in Information Technologies with a specialization in Software
Engineering.

Marjan Sirjani is a Professor and chair
of Software Engineering at MÃd’lardalen
University, and the leader of Cyber-
Physical Systems Analysis research
group. Her main research interest is
applying formal methods in Software
Engineering. She works on modeling and
verification of concurrent, distributed,

and self-adaptive systems. Marjan and her research group
are pioneers in building model checking tools, compositional
verification theories, and state-space reduction techniques
for actor-based models. She has been working on analyz-
ing actors since 2001 using the modeling language Rebeca
(http://www.rebeca-lang.org). Her research is now focused on
safety assurance and performance evaluation of cyber-physical
and autonomous systems in which she is collaborating with
Ptolemy group at UC Berkeley. Marjan has been the PC member
and PC chair of several international conferences including
SEFM, iFM, Coordination, FM, FMICS, SAC, FSEN. She is an
editor of the journal of Science of Computer Programming.

c© 2020 Information Processing Society of Japan


