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Abstract: Providing routes that are passable allowing movement by transportation modes such as wheelchairs or
strollers requires accessibility information including details about the type and location of barriers. Earlier research
detected the types of barriers using sensor data from people in wheelchairs and able-bodied people, but the amount and
range of travel of people in wheelchairs is limited. Also, small barriers are not noticed by able-bodied persons since
they tend to be easily ignored during movement. In our research, the goal was to detect barrier details using sensor
data from various transportation modes. However, there are issues with the selection of barrier detection models for
each mode and with the cost of collecting data. To overcome this model-selection problem, we propose a model that
detects transportation modes and barriers in two stages. We also propose a method for reducing the cost of collecting
data, with which we prepare a course with a smooth surface, collect data, and simulate rough surfaces by adding noise.
We conducted three experiments to verify the effectiveness of the proposed method. The proposed method achieved
an accuracy of 91.5% in detecting six transportation modes, and showed that adding noise increased accuracy by 3.7
percentage points on rough surfaces. When detecting eight types of barriers, our method achieved an accuracy of
87.7% for walking with a stroller, and showed that adding noise increased accuracy by 6.8 percentage points on rough
surfaces. Therefore, the proposed method is effective in detecting barrier details using multiple transportation modes.
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1. Introduction

For people using wheelchairs or strollers, barriers such as small
steps can make it difficult to proceed, so in unfamiliar places, they
are forced to find a way around such barriers. Automatically pro-
viding alternates routes to a destination that match the attributed
of the transportation mode allows people to move with confidence
even in places they have never been before. To achieve this, the
location and type of barriers must be obtained beforehand. Dif-
ferent transportation modes can help persons move through dif-
ferent types of barriers depending on their attributes. For exam-
ple, a wheelchair may not be able to pass a step of 2 cm but a
stroller can. Therefore, details of barriers are needed such as the
size of a step/projection or the gradient of a slope. There is ear-
lier research on detecting the locations and types of barriers using
sensor and GPS data from people in wheelchairs and those who
are able-bodied [2], [3]. However, persons in wheelchairs have
only a limited travel range and make only a limited number of
trips so it is difficult to keep the latest barrier information updated
over wide areas. Most able-bodied persons on the other hand can
easily stride over small projections or steps so we assume such
barriers will not be detected from their data. In this research, our
goal was to detect barrier details using sensor data from various
transportation modes, including walking, wheelchairs, walking
with strollers and others, to guarantee the number of users (quan-
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tity of data) and types of barriers that can be detected (quality of
data).

We assume that there are three main problems to be solved in
detecting barriers using multiple transportation modes.
• Problem 1: The barrier detection model for each transporta-

tion mode must be selected.
• Problem 2: Tuning of these models for each transportation

mode is difficult.
• Problem 3: A huge amount of training data is required.
Below, we discuss details of these problems and how we solved

them in this research. The first problem is the need to select a
barrier detection model particular to the transportation mode, as-
suming that creating separate barrier detection models for each
transportation mode will be more accurate. It would be possible
to have the participants set their current transportation mode, but
this would be inconvenient and subject to issues such as partic-
ipants forgetting to set the mode. Therefore, we propose a two-
stage model in which we first detect the transportation mode from
the sensor data then use a barrier-detection model based on the
result. For the second problem, we assume that higher detection
accuracy can be obtained by tuning the barrier-detection model
and parameters being used for each transportation mode. How-
ever, it is not practical to find an optimal model for each mode. If
for example, six transportation modes are used, six models would
need to be tuned separately. In this research, we trained the same
shape model with data for each transportation mode and used the

This paper is an extended version of our COMPSAC’19 conference pa-
per [1].
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instances to detect the modes and barriers. For the third prob-
lem, training data for each transportation mode are needed, and
to detect barriers regardless of the path surface (e.g., a rough as-
phalt path), sensor data for various types of surfaces and barri-
ers are needed thus increasing the cost of data collection. Thus,
we also propose a method for collecting data on routes with a
smooth surface and then adding noise to these data to simulate
rough surfaces. This eliminates the need to collect data for rough
surfaces and reduces data-collection costs, while enabling detec-
tion of barriers regardless of the path surface.

We conducted three experiments to verify the effectiveness of
the proposed method and achieved an accuracy of 91.5% in de-
tecting six transportation modes, and adding noise increased ac-
curacy by 3.7 percentage points for rough surfaces. When detect-
ing eight types of barriers for walking with a stroller, we achieved
an accuracy of 87.7% and showed that adding noise increased ac-
curacy by 6.8 percentage points for rough surfaces. This showed
the effectiveness of the proposed method and enabled detailed
barrier detection using multiple transportation modes.

Contributions of this research are as follows:
• We propose a two-step model, in which we first detect the

transportation mode from the sensor data then detect the
types of barrier using a barrier-detection model specific to
that transportation mode.

• We evaluated the accuracy for detecting six transportation
modes (walking, using a wheelchair, walking with a stroller,
walking with a handcart, walking with a suitcase, and using
a bicycle).

• We evaluated the accuracy of detecting barriers using the
same shape model trained with data from each transporta-
tion mode.

• We evaluated the accuracy in detecting eight types of barriers
(level, 2, 8, and 16 cm steps, 5% and 10% slopes, stairs, and
tactile paving) and show high accuracy in practical terms.

• We propose a method for collecting data on courses with
smooth surfaces then adding noise simulating a rough sur-
face.

• We confirm that the accuracy in detecting transportation
modes and barriers on rough surfaces can be improved us-
ing the proposed method.

• We solve the problems of model tuning and training data
collection and show that barrier sensing using multiple trans-
portation modes is practical.

Document organization: Section 2 discusses related research.
Section 3 describes the proposed methods. Section 4 describes
the experiments. Section 5 discusses the results. Section 6 gives
conclusions and future prospects.

2. Related Research

Sensing has been used to detect user actions [4], [5] and vari-
ous other behaviors [6]. Some research has been done on sens-
ing roadway surfaces [7], but our interest is in walking routes.
In particular, crowd sensing refers to detection methods using
information from many users and is widely used for tasks such
as estimating levels of congestion in train stations [8] or creating
detailed maps [9]. Our method could be called a type of crowd

sensing for barrier acquisition.
In barrier-acquisition research, there has been a study on facili-

tating surveys manually by volunteers [10] or residents [11]. Sur-
veys can include aspects that are difficult to acquire using sensing,
such as whether toilets accommodate persons with disabilities or
the widths of walking routes. Therefore, it is necessary to use
both high-cost survey methods that can collect detailed aspects,
and low-cost methods using sensors, which can collect only a
few aspects. There was another study on acquiring barriers from
Google Street View [12]. They collected barrier information on
a large scale at low cost and used the data to create a web ser-
vice, but detecting small barriers is difficult due to resolution and
occlusion problems. Also, because this study depends on the up-
date frequency of Google Street View data, this study might not
be able to collect the latest barrier details. We assume renewal
frequency is an important factor because barriers are constantly
changing due to road work and other reasons.

Regarding barrier acquisition using crowd sensing, there
was a study on detecting barriers using sensor data from
wheelchairs [2]. Because there are relatively few wheelchair
users and their movements are limited, others have conducted
barrier detection using sensors with able-bodied people [3]. They
are also improving their collection method through a gamification
approach [13]. Able-bodied persons however are able to easily
stride over small steps/projections while walking so we assume
that such barriers cannot be detected from their data. Nonethe-
less, these results can help improve detection accuracy for some
of the transportation modes examined in our research and can be
used together with our proposed method. These prior methods
included detecting slopes and steps, but our research expands this
by also detecting the degree of slopes and height of steps with
finer granularity.

Other methods have been used to detect barriers, such as at-
taching specialized sensors to shoes [14] or to the wheels of a
wheelchair [15], but we chose a method that can be implemented
at low cost using the user’s smartphone. Video from in-vehicle
cameras has also been used to estimate the road-surface con-
ditions [16], but these methods are difficult to apply to walking
route surfaces because vehicles driving on the road are some dis-
tance from the walking routes, and walking routes are often ob-
structed by guard rails or other objects.

Some studies focused on detecting transportation modes using
GPS [17] and sensors [18], but these dealt with walking, running,
cars, buses, trains, motorbikes, and bicycles, and no with other
modes such as wheelchairs, strollers, handcarts, or suitcases.

Data augmentation is widely used in many machine learning
tasks such as image recognition [19] and translation [20]. Sensor-
data augmentation has been widely studied as a means to detect
symptoms of Parkinson’s disease [21]. Our proposed method of
adding noise is a type of jittering, but is different from other meth-
ods in that rather than to increase accuracy, we use it to reduce
the cost of data collection. It has been reported that jittering is
not effective in increasing the accuracy of detecting symptoms,
but for this research we hypothesized that it would be effective
for detecting transportation modes and barriers on different types
of surfaces.
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There have been studies that used sensing to conserve power
and communication and reduce latency. Compressed Learn-
ing [22] makes observations in a way that reduces the number
of samples required for detection, and there has been research
on conserving communication by computing the earlier parts
of the deep neural network (DNN) model at the sensors then
transmitting the results from the intermediate layers, where there
are fewer nodes, to the server to compute the remainder of the
model [23]. In particular, when using a user’s smartphone for
crowd sensing, conserving power and volume of communication
are major issues, so application of these methods should reduce
the burden on users and make it easier for them to work with our
method.

3. Proposed Method

The objective of this research was to collect information re-
garding the types of barriers beforehand to automatically present
routes that are traversable according to users’ attributes. By at-
tributes, we mean aided or unaided wheelchairs, strollers, walk-
ing sticks and visual disabilities. We extend the “Development
Specification for Spatial Network Model for Pedestrians,” from
the Ministry of Land, Infrastructure and Transport and Tourism
of Japan [24] by adding definitions for barriers though which the
user can move (Table 1). Although those with visual disabili-
ties can traverse any barriers that people without disabilities can,
information regarding tactile paving is also needed to present
traversable routes for such individuals. Therefore, we need to
detect a total of seven types of barriers, i.e., 2, 8, and 16 cm steps;
5% and 10% slopes; stairs; and tactile paving. Tactile paving is
not strictly speaking a barrier, but for simplicity the references to
barriers in this article also include it.

In this research, we used data from sensors in smartphones to

Fig. 1 Acceleration and gyro data on smooth surface (15 seconds). Horizontal axis indicates labeled
barriers. Walking shows stepwise pattern and stroller data are noisier than those of wheelchair.

detect barriers. We used five types of sensors: three-axis accel-
eration, three-axis gyroscope, three-axis gravity, three-axis mag-
netism, and air pressure; totaling 13 dimensions. To ensure an
adequate number of users (quantity) and that different types of
barriers can be detected (quality), we attempted to detect bar-
rier details using sensor data from various transportation modes.
The six transportation modes we used were walking, wheelchair,
stroller, handcart, suitcase, and bicycle (Figs. 1 and 2). Suitcase
refers to the type with wheels and a handle. We selected those
modes in addition to wheelchair since they are routinely used by
most able-bodied persons on the walkway.

Table 1 Definition of passable barriers by attribute.

Fig. 2 Scope of this research. We collect information regarding types of
barriers beforehand to automatically present routes that are usable
according to user attributes.
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Fig. 3 Proposed two-step detection model for transportation modes and bar-
riers. Example of stroller as estimated transportation mode.

Table 2 Features used and number of dimensions.

Detecting barriers with multiple transportation modes presents
three problems.
• Problem 1: The barrier detection model for each transporta-

tion mode must be selected.
• Problem 2: Tuning of models for each mode is difficult.
• Problem 3: A huge amount of training data is required.
Below, we discuss these problems and how we solved them.
For Problem 1, some modes show stepwise patterns and some

shows noisy data and therefore we assume that the characteristics
of the sensor data will differ for different transportation modes
(Fig. 1) and that having separate barrier-detection models for each
transportation mode will yield higher detection accuracy. In that
case, the barrier-detection model to be used must be selected for
each detection. We could require the user to set the transportation
mode currently being used each time, but this would be trouble-
some, and users could forget to set it properly. Therefore, our
two-step detection model first detects the transportation mode
from the sensor data then uses the barrier-detection model cor-
responding to the detected transportation mode (Fig. 3).

For Problem 2, we assume that by changing the models and
parameters used for each transportation mode, we will be able to
achieve higher detection accuracy, but it is not practical to find
optimal models for each transportation mode. Given that we have
six transportation modes, each of these models would need to be
tuned separately. In this research, we reduced the time required
for tuning by training the same shape model separately with data
from each transportation mode and using the instances to detect
these modes and barriers. We use the features listed in Table 2
for detection. The barrier and mode detection model we used was
a convolutional neural network (CNN) consisting of three convo-
lutional layers and two fully connected layers, with sensor data
and power spectrum as the input to the convolutional layers, and
features as the input to the fully connected layers (Fig. 4). We set
the parameters to be the same as those used by Yang et al. [5].

Fig. 4 Input data preprocessing and model overview.

Fig. 5 Acceleration data for rough surface with stroller (15seconds). Hor-
izontal axis indicates labeled barriers. Noise is added by rough sur-
face.

Problem 3 deals with the high cost of collecting data since
training data are needed for each transportation mode, and we
need to be able to detect barriers regardless of the qualities of sur-
faces such as rough asphalt. Trends in sensor data differ greatly
depending on the type of surface being traversed (Fig. 5), and
sensor data for traversing various types of barriers with various
types of surfaces are needed. Also, if we want to collect data
by walking around the town freely, we need to apply highly ac-
curate labels to the data, which requires measurements of loca-
tions to create the labels. Huge amounts of data must also be
acquired to obtain data for types of barriers that only appear in-
frequently. This can result in extremely high costs. Therefore, our
proposed method involves using a smooth course and simulated
rough surfaces by adding noise to data acquired on the smooth
course. Preparing a course enables us to deal with barriers that
only appear infrequently in a town. This is equivalent to what
would be called a phoneme balanced corpus in speech research,
which contains all phonemes within a small corpus rather than
using a larger general corpus [25]. By adding noise to simulate
rough surfaces, data need not be collected for that type of rough
surface. This reduces data-collection costs to a fraction of the
type required for the road surface to be handled. For example,
when dealing with smooth roads and rough asphalt, the cost is
reduced by a factor of two. We used white Gaussian noise which
includes all frequencies, to ensure it would be robust with vari-
ous types of path noise. Values were chosen such that the mean
was zero and the variance was the difference in variance between
moving on a smooth or rough surface, as shown in Table 3. We
also ensured that the variance of the noise was equal on all three
axes, so that detection would not depend on the orientation of the
smartphone. An example of sensor data from a smooth surface
with noise added is shown in Fig. 6. Both data with noise added
and without noise added were used as training data, so the amount
of training data was twice that of the input data.
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Table 3 Difference in variance of normalized sensor values due to path sur-
face.

Fig. 6 Stroller data from Fig. 1 (bottom-left) with artificial noise added.
Horizontal axis indicates labeled barriers.

4. Experiments

We conducted three experiments to verify the effectiveness of
the proposed method. Below, we describe the course used in the
experiments and how the data were collected and adjusted then
give an overview of the three experiments.

4.1 Course Conditions
For smooth surfaces, we constructed an indoor course out of

wood for the barriers to be detected (Fig. 7). For rough surfaces,
we found locations outside for each of the barrier types. The sur-
faces in the outdoor locations were asphalt. None of the outdoor
courses included tactile paving. When courses included multi-
ple barriers, we ensured that they were separated by an ample
distance of 2 m or more. Courses with tactile paving were pre-
pared with linear directional blocks in the direction perpendicular
to traveling direction.

4.2 Data Gathering Conditions
We collected sensor data while traversing the above courses

three times in both directions and collected video, which was
used to apply accurate labels to the data. A total of 28 partici-
pants took part in our smooth-course trials: two males and two
females of ages in each 10 year period from 10 to 80. For the
trials with rough surfaces, one female and one male participated
from each of the same 10 year periods, except for a female in her
70 s: totaling 13 in instead of 14 participants. The participants for
the indoor and outdoor experiments were different groups with
no overlap. While walking, smartphones were held in the usual
places such as in a shirt or trouser pocket or in a handbag. For
the bicycle, the phone was placed under the seat, and in the re-
maining cases, it was attached near the handle of the mode be-
ing used (Fig. 8). While detecting, we assumed that the location
of the smartphone while walking was unknown. Data for stairs
was only obtained for the cases of walking and suitcase, and no
data were collected for cases in which moving through the barrier
was impossible (wheelchair fo 16 cm steps/projections and bicy-
cle for 8 cm steps/projections or larger). The stroller and suitcase

Fig. 7 Wooden course for collecting smooth-path data (left) and outside
course for collecting rough-path data (right).

Fig. 8 Places where sensor and weight are attached.

Table 4 Sensors used and sampling rates.

Table 5 # of collected samples.

each weighed 4 kg, and the wheelchair weighed 50 kg. Xperia
XZ smartphones with Android 8.0 were used to collect the data.
The highest sampling rates possible for each sensor were used as
shown in Table 4. This resulted in 15.9 hours of data. Data were
then resampled at 400 Hz, a fast Fourier transform (FFT) was ap-
plied for 1,500 ms time windows moving the window with 100 ms
steps, then resampled at 20 Hz before use (Fig. 4, Table 5).

4.3 Data Tuning
The data from each sensor were standardized. For sensors with

three axes, the mean and variance using values from all three axes
were used.

To confirm the orientation of the smartphone, rotations of an-
gles θ and ϕ were computed that satisfy (1) below using the grav-
ity sensor, and the rotations were applied to the data from each
sensor. This means the orientation of the smartphone in relation
to gravity was uniform.
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Fig. 9 Results of rotation applied to walking data in Fig. 1 (top-left): x: for-
ward, y: vertical, z: left and right. Horizontal axis indicates labeled
barriers.
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where r is a coefficient largely consistent with the reciprocal of
the acceleration of gravity when at rest and Rz and Ry represent
rotations in the directions of the z and y axes, respectively, θ and
ϕ are the rotation angles in the directions of the z and y axes, re-
spectively, and (x y z)T are the sensor values for the x, y, and z

axes. As a result, the components in the left and right direction
were near zero (Fig. 9).

Considering that there could be some error in the manually ap-
plied labels, we applied automatic correction using properties of
the data in the segments between neighboring labels. Specifi-
cally, we computed the mean and standard deviation of sensor
data on segments with labels assigned and moved labels to max-
imize the difference in absolute values of the mean and standard
deviation between neighboring segments as in Eq. (2). This is
based on the assumption that the properties of the sensor data
differ in each labeled section. We correct errors due to manual
labeling by maximizing the difference between adjacent sections
and prevent incorrect learning caused by incorrect labels.

tnnew = tn + argmax
−s≤Δt≤s

( f (atn−1:tn+Δt, atn+Δt:tn+1 )

+ wg(atn−1:tn+Δt, atn+Δt:tn+1 ))

f (a1, a2) = |avg(a1) − avg(a2)|
g(a1, a2) = |std(a1) − std(a2)| (2)

where tn is the time of the nth label, atn−1:tn+Δt represents the sensor
data on the segment from the n− 1th label to nth label, shifted by
Δt. Here, s is the range over which labels can be shifted, which
we set to 100 ms. Also, w is a weighting, which we set to 1, avg
indicates the mean, and std indicates the standard deviation.

4.4 Experimental Conditions
A total of 20 epochs were performed and the weightings of the

Fig. 10 Simple end-to-end model as comparison model. There is no
transportation-mode detection step.

loss functions for each class were the inverse of the frequency of
appearance in the training data. To prevent overfitting, we ap-
plied L2 normalization and dropout to half of the nodes of the
fully connected layers. We used a batch size of 512, and ReLU
as the activation function. We used Adam as the optimizer and
optimized the parameters using hyperopt [26]. We used chainer
for implementation.

We used cross-validation, but rather than using random parti-
tions, we used a user’s data as test data and data from the remain-
ing users as training data. We used accuracy, precision, recall,
and F-measure (F1) as the performance measure. When there
were multiple classes, we used index weighted by the number of
data points per class with prefix “w-”, such as in Eq. (3).

w-F1 =
∑

i

2 ∗ ωi
precisioni · recalli
precisioni + recalli

(3)

where i is the class index,ωi is the weighting for class i, computed
as ni/N, where ni is the number of data points in class i, and N

is the total number of data points. precisioni is the precision for
class i, and recalli is the recall for class i.

4.5 Experiment 1: Transportation-mode Detection
The objectives of Experiment 1 were to determine whether it

is possible to detect the transportation mode using the proposed
method, and whether it is possible to detect a mode over rough
surfaces by adding noise to the data obtained using smooth sur-
faces. To do so, we computed the accuracy for detecting a trans-
portation mode in the cases of using data from the smooth surface
and data from the smooth surface with noise added as training
data, and using data from a smooth surface and data from a rough
surface as the test data.

4.6 Experiment 2: Barrier Detection
The objectives of Experiment 2 were to verify the results

of detecting barrier details using multiple transportation modes,
whether the barriers could be detected using the proposed two
step model, and whether barriers on paths with rough surfaces
could be detected by adding noise to the data obtained using
smooth surfaces. To achieve these objectives, we compared the
accuracy of total individual models trained with data for each
transportation mode (Fig. 3), with that of a simple end-to-end
model trained using data from all transportation modes (Fig. 10)
(hereafter, our proposed model is referred to as the total model
and the other as the simple model). We also computed the detec-
tion accuracy for each barrier-detection model of a transportation
mode and class of barrier type, for cases using data from smooth
paths with and without noise as the training data and data from
smooth paths and rough paths as the test data.

4.7 Experiment 3: VS Conventional Augmentation Method
The objectives of Experiment 3 were to verify the results from
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comparing the proposed method with a conventional augmen-
tation method. In the barrier detection task, we compared the
proposed method, which augments a rough road surface from a
smooth road surface without reducing the number of participants,
and a conventional method of augmenting them using both rough
and smooth road surfaces. Since the compression ratio of the pro-
posed method is fixed at one section of the type of road surface to
be handled, we calculated barrier-detection accuracy by changing
the number of subjects used for learning the comparison method.

5. Results and Discussion

We discuss the results of the experiments described in the pre-
vious section. Below, we refer to sets of training data and test data
as <training data> → <test data>. For example, the case using
data from smooth surfaces for training data and data from rough
surfaces for testing is be referred to as “Smooth→ Rough”.

5.1 Experiment 1: Transportation Mod Detection
The results from detecting each class of transportation mode in

the Smooth→ Smooth case are shown in Table 6. Transportation
mode detection accuracy was high at 91.5% with weighted F1 of
0.914. The F1 values for individual transportation mode classes
show that bicycle class was the highest, with 0.962. This high
detection accuracy could be due to several characteristics such as
the slow waves observed from the gyro (Fig. 11, upper). Most of
the other classes yielded F1 scores over 0.9, but the walking class
was lowest, with 0.866, and suitcase class was the next lowest,
with 0.905. These results were low because the recall for walk-
ing was 0.806, and the precision for suitcase was 0.868.

The results for each combination of training and test data are
shown in Table 7. The Smooth → Rough case resulted in a
lower accuracy of 87.4% than the Smooth → Smooth case with
F1 of 0.874, indicating that the different surface made detection
more difficult. However, the Noise-added → Rough case pro-
duced an accuracy of 91.1% and F1 of 0.912, with 3.7 percentage
points higher accuracy and higher F1 by 0.038 than the Smooth
→ Rough case. The Noise-added→ Smooth case also resulted in
an accuracy of 92.1% and F1 of 0.920, comparable to the Smooth
→ Smooth case, indicating that adding the noise produced no
negative effect. Note also that accuracy for the Rough→ Rough
case was 84.9% and F1 was 0.840, which is lower than those for
the Noise-added→ Rough case using the proposed method. This
could be a result of the generalizing effect of data augmentation,
which is one of the original purposes of the data augmentation
discussed by Lorintiu et al. [20].

The confusion matrix for the Smooth → Smooth case (Ta-
ble 8, upper-left) shows that walking was most often misdetected
as suitcase, and wheelchair was most often misdetected as hand-
cart. These errors may be due to the acceleration repeated with
each step (Fig. 11 middle and bottom) in the former case, and that
both of the latter have four wheels and are of similar size. The
confusion matrix for the Smooth→ Rough case (Table 8, lower-
left) shows that misdetection of walking as suitcase accounted
for most errors, but in the confusion matrix for Noise-added →
Rough (Table 8, upper-right) misdetection of walking as suitcase
decreased drastically.

Table 6 Experiment 1 (transportation-mode detection) results for Smooth
→ Smooth by class of transportation mode. Maximum values for
each class of transportation mode are shown in bold.

Fig. 11 Collected data for smooth surface (15 seconds). Examples for gyro
of bicycle (top) acceleration of suitcase (middle) and handcart (bot-
tom). Suitcase shows a stepwise pattern in x direction. Horizontal
axis indicates labeled barriers.

Table 7 Experiment 1 (transportation-mode detection) results for each
combination of training and test data.

5.2 Experiment 2: Barrier Detection
The results from each barrier-detection model of a transporta-

tion mode in the Smooth→ Smooth case ares shown in Table 9.
For the simple model, trained with data from all transportation
modes, the accuracy was 79.7% and weighted F1 was 0.742,
but the total of results from all models trained with data from
each transportation mode yielded an accuracy of 81.0% and F1

of 0.779. Thus, training for each transportation mode produced
an increase in accuracy of 1.3 percentage points, and 0.037 in
the weighted F1 value. The level class makes up a large fraction
of barriers so accuracy did not increase much, but the weighted
F1 increased significantly, and this is assumed that accuracy in-
creased for the classes other than level class.

When examining individual barrier-detection models of trans-
portation mode for the proposed method, the bicycle model had
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Table 8 Confusion matrices for experiment 1 (transportation-mode detection).

Table 9 Experiment 2 (barrier detection) results for Smooth→ Smooth by
model of transportation mode. Maximum values for each model in
bold.

the highest weighted precision at 0.873, and weighted recall at
0.878, and the second highest for weighted F1 at 0.856. The
stroller model had the second highest weighted precision at 0.859,
and weighted recall at 0.877, and the highest weighted F1 at
0.864. We assume this was because the stroller has four wheels,
the slope angles were reflected directly in the data, and its wheels
have less suspension than those of some of the other modes, and
vibrations are reflected more directly, which increased the accu-
racy in small barriers. The barrier-detection model for walking
had the lowest values for all indices, but as discussed below, it is
useful for estimating some of the barriers.

The F1 for detecting each class of type of barrier for each
barrier-detection model of a transportation mode in the Smooth
→ Smooth case is shown in Table 10. The total model achieved
a higher F1 than the simple model in all of classes. The table
also shows that for each transportation mode, there are barriers
that are more easily or less easily detected, suggesting that bar-
rier details could be detected using multiple transportation modes.
For example, handcart achieved the highest F1 of 0.219 for 2 cm,
suitcase achieved the highest F1 of 0.864 for stair, and bicycle
achieved the highest F1 of 0.595 for 5%. Walking showed a low
F1 of 0.000 for 2 cm and tactile paving. We consider that this is
because small barriers are absorbed when walking. With suitcase,
the user’s arm absorbs the angle of a slope, so it is difficult to de-
tect the degree of a slope, and for steps, a suitcase is usually lifted
for steps of 8 or 16 cm, so it is difficult to detect the size of these
steps. Stairs are only traversable when walking or with a suitcase,
so these transportation modes can be used to detect them comple-
mentarily. In other words, walking showed a low F1 of 0.397 but

Table 10 Experiment 2 (barrier detection) results for Smooth→ Smooth by
class of barrier. Evaluation index is F1. Maximum values for each
class of barrier shown in bold. Hyphen indicates non-traversable
barrier.

there are many participants, while suitcase achieved a high F1 of
0.864 but there are fewer participants. Note that F1 was low for
the 2 cm steps but for practical use this F1 could be manually in-
creased by increasing the per-class weighting for 2 cm steps as
described at the beginning of Section 4.4.

The accuracy and F1 for sets of training and test data are
given in Table 11. When examining changes in accuracy by
adding noise, comparing the Smooth→ Rough and Noise-added
→ Rough cases, showed that the accuracy of some transporta-
tion nodes improved and some degraded. Stroller improved the
most, with accuracy increasing 6.8 percentage points from 41.9%
to 48.7% and F1 increasing by 0.047 from 0.469 to 0.516. Accu-
racy increased for handcart, walking, and bicycle, and decreased
for wheelchair and suitcase. The F1 increased for all modes ex-
cept suitcase. We consider that this is because for wheelchair
and bicycle, the wheels and suspension absorb vibration so the
error due to the path surface was small, while stroller and hand-
cart do not absorb vibration, so the effect of adding noise was
greater. This tendency is also clear in Table 3, with accuracy
increasing for transportation modes showing a larger change in
variance when the noise is greater.

The confusion matrix for the simple model is at the top-left in
Table 12, while for the total model is at the top-right. Compar-
ing the number of detection label outputs, all the barriers showed
increases. For step and slope, in particular, the outputs increased
by approximately two times. Looking at error trends, many of
the errors were from estimating a barrier was level class, but this
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is because the transportation mode was incorrectly estimated to
be walking as discussed below. The most common errors were
interpreting level as slope and between different grades of slope.

Table 11 Experiment 2 (barrier detection) results from barrier- detection
model of transportation mode for each combination of training
and test data. Maximum values for each train → test pair are in
bold.

Table 12 Confusion matrices for experiment 2 (barrier detection). No data for tactile paving on rough surfaces ware collected
so values are zero. Hyphen indicates a barrier through which movement is impossible.

However, the error rate for distinguishing between steps and be-
tween slopes decreased. For example, with the simple model, a
5% slope was mistaken for a 10% slope in 1,351 of 5,704 in-
stances (23.7%) and 2,210 of 12,773 instances (17.3%) in the to-
tal model.

We now consider the confusion matrix with respect to walk-
ing, which had the lowest accuracy, and stroller, which had the
highest accuracy. For the confusion matrix for walking (Table 12
middle-left), there was almost no output for all transportation
modes except slopes and steps and most cases were output as
a smooth surface. This confirms that detection of barrier details
with walking using sensing is difficult. Qualitatively, there was
a tendency to correctly detect slopes when descending with ac-
celeration. For the confusion matrix of stroller (Table 12 middle-
right), aside from mistaking a slope for a level most errors were
between different slopes or among steps/projections of 8 cm or
greater. There was a tendency to mistake an 8 cm step/projection
as a 16 cm step/projection when large movements were used to
cross it, but it should be possible to correctly detect these by col-
lecting more data.

Examining changes in accuracy by adding noise, on the
Smooth → Rough confusion matrix (Table 12, lower-left), level
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Table 13 Experiment 3 results (barrier detection task on rough surface when the number of participants
was changed from half to one-ninth). Higher values than proposed method are in bold.

was often misdetected as tactile paving, and overall there were
more errors. However, for Noise-added → Rough (Table 12,
middle-right), level cases misdetected as tactile paving decreased
significantly, the proportion of cases outputting level increased,
and the overall number of errors for barriers decreased.

5.3 Experiment 3: VS Conventional Augmentation Method
Table 13 shows the accuracy of barrier detection on rough sur-

faces when the number of participants was changed from half to
one-ninth.

When the results were checked for the stroller and handcart
with high accuracy in Experiment 2, the results were almost the
same when the number of participants using stroller and handcart
were reduced to 1/3 and 1/2, respectively. This means that the
data-collection cost of the proposed method is lower when there
are three or more types of road surfaces when using a stroller and
there are two or more types of road surfaces when using a hand-
cart. The proposed method therefore proves effective for handling
many road surfaces. In addition, when collecting data on various
road surfaces even with a small number of participants, various
road routes must be prepared and much time is required so the
proposed method offers the advantage of not requiring preparing
routes.

6. Conclusion and Future Prospects

We propose a model that detects transportation modes and
types of barriers in two steps, to detect details about barriers for
various transportation modes using sensor data. We also propose
a method for reducing the cost of collecting data by collecting
data on a course with smooth surfaces and simulating rough sur-
faces by adding noise to these data. In experiments on detecting
the six transportation modes, our method achieved 91.5% accu-
racy, and the addition of noise increased accuracy by 3.7 percent-
age points for rough surfaces. When detecting the type of barrier
from eight classes, the method achieved an accuracy of 87.7%
when using a stroller, and addition of noise increased accuracy
by 6.8 percentage points for rough surfaces. We show the effec-
tiveness of the proposed method and detected barrier details using
multiple transportation modes.

In actual use it is necessary to consider various conditions that
were not considered in this paper. For example, when the mov-
ing speed significantly differs such as running, when there is ex-
tremely heavy luggage, when the vibration characteristics signif-
icantly differ such as using a simple stroller, and when the perfor-
mance of a sensor is low such as when using a budget smartphone.

We used a simple method of data augmentation by adding noise,
but it is also conceivable to generate data under various condi-
tions by using a conditional generation model such as generative
adversarial networks (GAN) [27]. We will work to improve de-
tection accuracy by matching GPS to walking paths and we will
study ways to integrate data from multiple persons and multiple
transportation modes. We will also conduct experiments using
real sensor data collected in a town, including various road sur-
faces such as asphalt, brick, gravel, and mud.
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