
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

Regular Paper

Grammar-compressed Self-index with Lyndon Words

Kazuya Tsuruta1,a) Dominik Köppl1,2,b) Yuto Nakashima1,c) Shunsuke Inenaga1,3,d)

Hideo Bannai4,e) Masayuki Takeda1,f)

Received: January 31, 2020, Revised: March 24, 2020,
Accepted: May 8, 2020

Abstract: We introduce a new class of straight-line programs (SLPs), named the Lyndon SLP, inspired by the Lyndon
trees (Barcelo, 1990). Based on this SLP, we propose a self-index data structure of O(g) words of space that can be
built from a string T in O(n lg n) expected time, retrieving the starting positions of all occurrences of a pattern P of
length m in O(m + lg m lg n + occ lg g) time, where n is the length of T , g is the size of the Lyndon SLP for T , and occ
is the number of occurrences of P in T .

Keywords: grammar compression, Lyndon words, self-index

1. Introduction

A context-free grammar is said to represent a string T if it gen-
erates the language consisting of T and only T . Grammar-based
compression [30] is, given a string T , to find a small size de-
scription of T based on a context-free grammar that represents T .
By eliminating repetitions, grammar-based compression is espe-
cially useful for highly-repetitive strings. Due to this merit, it has
attracted research interests not only in improving the compres-
sion ratio but also in applications of this compressed representa-
tion. Notable applications are substring extraction or compressed
string processing, such as the q-gram frequency calculation [21].
Compressed string processing is the approach to process a string
given by its compressed representation, i.e., without explicitly de-
compressing it. The goal of all these applications is to propose
approaches that are faster than the naive way of explicitly decom-
pressing and processing compressed strings, all while working in
compressed space.

A self-index is a data structure that is a full-text index, i.e.,
supports various pattern matching queries on the text, and also
provides random access to the text, usually without explicitly
holding the text itself. Examples are the compressed suffix ar-
ray [22], [23], [32], the compressed compact suffix array [36],
and the FM index [17].*1 These self-indexes are, however, un-

1 Department of Informatics, Kyushu University, Fukuoka 819–0395,
Japan

2 Japan Society for Promotion of Science, Chiyoda, Tokyo 102–0083,
Japan

3 PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama
332–0012, Japan

4 M&D Data Science Center, Tokyo Medical and Dental University,
Chiyoda, Tokyo 101–0062, Japan

a) kazuya.tsuruta@inf.kyushu-u.ac.jp
b) dominik.koeppl@inf.kyushu-u.ac.jp
c) yuto.nakashima@inf.kyushu-u.ac.jp
d) inenaga@inf.kyushu-u.ac.jp
e) hdbn.dsc@tmd.ac.jp
f) takeda@inf.kyushu-u.ac.jp

able to fully exploit the redundancy of highly repetitive strings.
To exploit such repetitiveness, Claude and Navarro [12] proposed
the first self-index based on grammar-based compression. The
method is based on a straight-line program (SLP), a context-
free grammar representing a single string in the Chomsky normal
form. Plenty of grammar-based self-indexes have already been
proposed (e.g., Refs. [13], [44], [51], [52]).

In this paper, we first introduce a new class of SLPs, named the
Lyndon SLP, inspired by the Lyndon tree [4]. We then propose a
self-index structure of O(g) words of space that can be built from
a string T in O(n lg n) expected time. The proposed self-index
can find the starting positions of all occurrences of a pattern P

of length m in O(m + lg m lg n + occ lg g) time, where n is the
length of T , g is the size of the Lyndon SLP for T , σ is the alpha-
bet size, w is the computer word length and occ is the number of
occurrences of P in T .

1.1 Related work
The smallest grammar problem is, given a string T , to find the

context-free grammar G representing T with the smallest pos-
sible size, where the size of G is the total length of the right-
hand sides of the production rules in G. Since the smallest gram-
mar problem is NP-hard [50], many attempts have been made to
develop small-sized context-free grammars representing a given
string T . LZ78 [54], LZW [53], Sequitur [43], Sequential [30],
LongestMatch [30], Re-Pair [33], and Bisection [29] are gram-
mars based on simple greedy heuristics. Among them Re-Pair
is known for achieving high compression ratios in practice.

Approximations for the smallest grammar have also been pro-
posed. The AVL grammars [45] and the α-balanced grammars [9]
can be computed in linear time and achieve the currently best
approximation ratio of O(lg(|T |/g∗T)) by using the LZ77 factor-
ization and the balanced binary grammars, where g∗T denotes the
smallest grammar size for T . Other grammars with linear-time

*1 Navarro and Mäkinen [41] published an excellent survey on this topic.

c© 2020 Information Processing Society of Japan 84

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

Table 1 Complexity bounds of self-indexes based on grammar compression.

Construction space (in words) and time
Index Space Time

[13] O(n) O(n + ĝ lg ĝ)
[11] O(n) O(n lg n) expected
[11] O(n) O(n lg n) expected
This paper O(n) O(n lg n) expected

Needed space (in words) and query time for a pattern of length m
Index Space Locate Time

[13] O(ĝ) O(m2 lg lgĝ n + (m + occ) lg ĝ)
[18] O(ĝ + z lg lg z) O(m2 + (m + occ) lg lg n)
[11] O(γ lg(n/γ)) O(m + lgε γ + occ lgε (γ lg(n/γ)))
[11] O(γ lg(n/γ) lgε (γ lg(n/γ))) O(m + occ)
Theorem 4.19 O(g) O(m + lg m lg n + occ lg g)

n is the length of T , z is the number of LZ77 [55] phrases of T , γ is the size of the smallest string attractor [28] of T , g is the size of the Lyndon SLP of T , ĝ is the

size of a given admissible grammar, ε > 0 is a constant, m is the length of a pattern P, and occ is the number of occurrences of P in T .

algorithms achieving the approximation O(lg(|T |/g∗T)) are Lev-
elwiseRePair [47] and Recompression [25]. They basically re-
place di-grams with a new variable in a bottom-up manner similar
to Re-Pair, but use different mechanisms to select the di-grams.
On the other hand, LCA [48] and its variants [38], [39], [49] are
known as scalable practical approximation algorithms. The core
idea of LCA is the edit-sensitive parsing (ESP) [14], a parsing
algorithm developed for approximately computing the edit dis-
tance with moves. The locally-consistent-parsing (LCP) [46] is
a generalization of ESP. The signature encoding (SE) [40], de-
veloped for equality testing on a dynamic set of strings, is based
on LCP and can be used as a grammar-transform method. The
ESP index [51], [52] and the SE index [44] are grammar-based
self-indexes based on ESP and SE, respectively.

While our experimental section (Section 3.3) serves as a prac-
tical comparison between the sizes of some of the above men-
tioned grammars, Table 1 gives a comparison with some theoreti-
cally appealing index data structures based on grammar compres-
sion. There, we chose the indexes of Claude and Navarro [13],
Gagie et al. [18], and Christiansen et al. [11] because these in-
dexes have non-trivial time complexities for answering queries.
We observe that our proposed index has the fastest construction
among the chosen grammar indexes, and is competitively small
if g = o(γ lg(n/γ)) while being clearly faster than the first two
approaches for long patterns. It is worth pointing out that the
grammar index of Christiansen et al. [11] achieves a grammar size
whose upper bound O(γ lg(n/γ)) matches the upper bound of the
size g∗T of the smallest possible grammar. Unfortunately, we do
not know how to compare our result within these terms in general.

2. Preliminaries

2.1 Notation
Let Σ be an ordered finite alphabet. An element of Σ∗ is called

a string. The length of a string S is denoted by |S |. The empty
string ε is the string of length 0. For a string S = xyz, x, y and z

are called a prefix, substring, and suffix of S , respectively. A pre-
fix (resp. suffix) x of S is called a proper prefix (resp. suffix) of S

if x � S . S � denotes the � times concatenation of the string S . The
i-th character of a string S is denoted by S [i], where i ∈ [1..|S |].
For a string S and two integers i and j with 1 ≤ i ≤ j ≤ |S |, let
S [i.. j] denote the substring of S that begins at position i and ends
at position j. For convenience, let S [i.. j] = ε when i > j.

2.2 Lyndon Words and Lyndon Trees
Let � denote some total order on Σ that induces the lexico-

graphic order � on Σ∗. We write u ≺ v to imply u � v and u � v

for any u, v ∈ Σ∗.
Definition 2.1 (Lyndon Word [35]). A non-empty string w ∈ Σ+

is said to be a Lyndon word with respect to ≺ if w ≺ u for every
non-empty proper suffix u of w.
By this definition, all characters (∈ Σ1) are Lyndon words.
Definition 2.2 (Standard Factorization [10], [34]). The stan-

dard factorization of a Lyndon word w with |w| ≥ 2 is an ordered
pair (u, v) of strings u, v such that w = uv and v is the longest
proper suffix of w that is also a Lyndon word.
Lemma 2.3 (Refs. [5], [34]). For a Lyndon word wwith |w| > 1,
the standard factorization (u, v) of w always exists, and the strings
u and v are Lyndon words.

The Lyndon tree of a Lyndon word w, defined below, is the full
binary tree induced by recursively applying the standard factor-
ization on w.
Definition 2.4 (Lyndon Tree [4]). The Lyndon tree of a Lyndon
word w, denoted by LTree(w), is an ordered full binary tree de-
fined recursively as follows:
• if |w| = 1, then LTree(w) consists of a single node labeled by
w;

• if |w| ≥ 2, then the root of LTree(w), labeled by w, has the
left child LTree(u) and the right child LTree(v), where (u, v)
is the standard factorization of w.

Figure 1 shows an example of a Lyndon tree for the Lyndon
word aababaababb.

2.3 Admissible Grammars and Straight-line Programs
(SLPs)

An admissible grammar [30] is a context-free grammar that
generates a language consisting only of a single string. For-
mally, an admissible grammar (AG) is a set of production rules
GAG = {Xi → expri}

g
i=1, where Xi is a variable and expri is a non-

empty string over Σ ∪ {X1, . . . , Xi−1}, called an expression. The
variable Xg is called the start symbol. We denote by val(Xi) the
string derived by Xi. We say that an admissible grammar GAG

represents a string T if T = val(Xg). To ease notation, we some-
times associate val(Xi) with Xi. The size of GAG is the total length
of all expressions expri. We assume that any admissible grammar
has no useless symbols.

It should be stated that the above definition of admissible gram-
mar is different with but equivalent to the original definition
in [30], which defines an admissible grammar to be a context-
free grammar G satisfying the conditions: (1) G is deterministic,
i.e., for every variable A there is exactly one production rule of
the form A → γ, where γ is a non-empty string consisting of
variables and characters; (2) G has no production rule of the form

c© 2020 Information Processing Society of Japan 85

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

Fig. 1 The Lyndon tree for the Lyndon word aababaababb with respect to the order a ≺ b, where each
node is accompanied by its derived string to its right.

Fig. 2 Top: The derivation tree of the Lyndon SLP GLYN with g = 9 repre-
senting the Lyndon word T = aababaababb. Bottom: The produc-
tion rules of GLYN.

A → ε; (3) The language L(G) of G is not empty; and (4) G has
no useless symbols, i.e., every symbol appears in some derivation
that begins with the start symbol and ends with a string consisting
only of characters.

A straight-line program (SLP) is an admissible grammar in the
Chomsky normal form, namely, each production rule is either of
the form Xi → a for some a ∈ Σ or Xi → XiL XiR with i > iL, iR.
Note that GSLP can derive a string up to length O(2g). This can be
seen by the example string T = a · · · a consisting of n = 2� a’s,
where the smallest SLP {X1 → a} ∪

⋃�+1
j=2{Xj → Xj−1Xj−1} has

size 2� + 1.
The derivation tree TGSLP of GSLP is a labeled ordered bi-

nary tree, where each internal node is labeled with a variable in
{X1, . . . , Xg}, and each leaf is labeled with a character in Σ. The
root node has the start symbol Xg as label. An example of the
derivation tree of an SLP is shown in Fig. 2.

2.4 Grammar Irreducibility
An admissible grammar is said to be irreducible if it satisfies

the following conditions:
C-1. Every variable other than the start symbol is used more

than once (rule utility);
C-2. All pairs of symbols have at most one non-overlapping oc-

currence in the right-hand sides of the production rules (di-
gram uniqueness); and

C-3. Distinct variables derive different strings.
Grammar-based compression is a combination of
(1) the grammar transform, i.e., the computation of an admissi-

ble grammar G representing the input string T , and
(2) the grammar encoding, i.e., an encoding for G.
Kieffer and Yang [30] showed that a combination of an irreducible
grammar transform and a zero order arithmetic code is universal,
where a grammar transform is said to be irreducible if the result-
ing grammars are irreducible.

If an admissible grammar G is not irreducible, we can apply
at least one of the following reduction rules [30] to make G irre-
ducible:
R-1. Replace each variable Xi occurring only once in the right-

hand sides of the production rules with expri and remove the
rule Xi → expri. We also remove all production rules with
useless symbols.

R-2. Given there are at least two non-overlapping occurrences
of a string γ of symbols with |γ| ≥ 2 in the right-hand sides
of the production rules, replace each of the occurrences of γ
with the variable Xi, where Xi → γ is an existing or newly
created production rule. Recurse until no such γ longer ex-
ists.

R-3. For each two distinct variables Xi and Xj deriving an iden-
tical string, (a) replace all occurrences of Xj with Xi in the
right-hand sides of the production rules, and (b) remove the
production rule Xj → expr j and discard the variable Xj.
Consequently, there are no two distinct variables Xi and Xj

with val(Xi) = val(Xj). This operation possibly makes some
variables useless; the production rules with such variables
will be removed by R-1.

3. Lyndon SLP

In what follows, we propose a new SLP, called Lyndon SLP.

c© 2020 Information Processing Society of Japan 86

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

A Lyndon SLP is an SLP GLYN = {Xi → expri}
g
i=1 representing a

Lyndon word, and satisfies the following properties:
• The strings val(Xi) are Lyndon words for all variables Xi.
• The standard factorization of the string val(Xi) is

(val(XiL), val(XiR)) for every rule Xi → XiL XiR .
• No pair of distinct variables Xi and Xj satisfies val(Xi) =

val(Xj).
The derivation tree (when excluding its leaves) of TGLYN is iso-
morphic to the Lyndon tree of T (cf., Fig. 2).

The rest of this article is devoted to algorithmic aspects regard-
ing the Lyndon SLP. We study its construction (Section 3.1),
practically evaluate its size (Section 3.3), and propose an index
data structure on it (Section 4). For that, we work in the word
RAM model supporting packing characters of sufficiently small
bit widths into a single machine word. Let w denote the machine
word size in bits.

We fix a text T [1..n] over an integer alphabet Σ with size σ =
nO(1). If T is not a Lyndon word, we prepend T with a character
smaller than all other characters appearing in T . Let g denote the
size |GLYN| of the Lyndon SLP GLYN of T .
Lemma 3.1 (Algo. 1 of Ref. [3]). We can construct the Lyndon
tree of T in O(n) time.

3.1 Constructing Lyndon SLPs
The algorithm of Bannai et al. [3], Algo. 1 builds the Lyndon

tree online from right to left. We can modify this algorithm to
create the Lyndon SLP of T by storing a dictionary for the rules
and a reverse dictionary for looking up rules: Whenever the algo-
rithm creates a new node u, we query the reverse dictionary with
u’s two children v and w for an existing rule X → XvXw, where
Xv and Xw are the variables representing v and w. If such a rule
exists, we assign u the variable X, otherwise we create a new rule
Xu → XvXw and put this new rule into both dictionaries. The
dictionaries can be implemented as balanced search trees or hash
tables, featuring O(n lg g) deterministic construction time or O(n)
expected construction time, respectively.

In the static setting (i.e., we do not work online), determin-
istic O(n) time can be achieved with the enhanced suffix ar-
ray [1], [37] supporting constant time longest common extension
queries. We associate each node v of the Lyndon tree with the
pair (|T [i.. j]|, rank(i)), where T [i.. j] is the substring derived from
the non-terminal representing v, and rank(i) is the lexicographic
rank of the suffix starting at position i. Then, sort all nodes ac-
cording to their associated pairs with a linear-time integer sorting
algorithm. By using longest common extension queries between
adjacent nodes of equal length in the sorted order, we can de-
termine in O(1) time per node whether they represent the same
string, and if so, assign the same variable (otherwise assign a new
variable).

3.2 Lyndon Array Simulation
As a by-product, we can equip the Lyndon SLP of T with the

indexing data structure of Bille et al. [8] to support character ex-
traction and navigation inO(lg n) time. This allows us to compute
the i-th entry of the Lyndon array [3] in O(lg n) time, where the
i-th entry of the Lyndon array of T stores the length of the longest

Lyndon word starting at T [i]. For that, given a text position i, we
search for the highest Lyndon tree node having T [i] as its left-
most leaf. Given the rightmost leaf of this node represents T [j],
the longest Lyndon word starting at T [i] has the length j − i + 1.
(Otherwise, there would be a higher node in the Lyndon tree rep-
resenting a longer Lyndon word starting at T [i].)
Lemma 3.2. There is a data structure of size O(g) that can re-
trieve the longest Lyndon word starting at T [i] in O(lg n) time.

3.3 Computational Experiments
We empirically benchmark the grammar sizes obtained by the

Lyndon SLP to highlight its potential as a grammar compres-
sor. As benchmark datasets we used four highly repetitive texts
consisting of the files cere, einstein.de.txt, kernel, and
world leaders from the Pizza & Chili corpus (http://pizzachili.
dcc.uchile.cl). We used the natural order implied by the ASCII
code for building the Lyndon SLPs. We compared the size of the
resulting Lyndon grammars with the resulting grammars of Re-
Pair, LCA, Recompression. We used existing implementations
of Re-Pair (https://users.dcc.uchile.cl/˜gnavarro/software/) and of
LCA (http://code.google.com/p/lcacomp/). The outputs of LCA,
Recompression and our method are SLPs, while those of Re-Pair
are AGs (and not necessarily SLPs). For a fair comparison, we
compared the resulting grammar sizes either in an SLP represen-
tation, or in a common AG representation.
SLP We keep the resulting grammar of the Lyndon SLP, LCA,

and Recompression as it is, but transform the output of Re-
Pair to an SLP. To this end, we observe that Re-Pair consists
of (a) a list of non-terminals whose right hand sides are al-
ready of length two, and (b) a start symbol whose right hand
side is a string of symbols of arbitrary size. Consequently,
to transform this grammar to an SLP, it is left to focus on the
start symbol: We replace greedily di-grams in the right hand
side of the start symbol until it consists only of two symbols.

AG We process each grammar in the following way: First, we
remove the production rules of the form Xi → a ∈ Σ by re-
placing all occurrences of Xi with a. Subsequently, we apply
the reduction rule R-1 of Section 2.4.

We collected the obtained grammar sizes in Table 2. There, we
observe that the Lyndon SLP is no match for Re-Pair, but com-
petitive with LCA and Recompression. Although this evaluation
puts Re-Pair in a good light, it seems hard to build an index data
structure on this grammar that can be as efficient as the self-index
data structure based on the Lyndon SLP, which we present in the
next section.

4. Lyndon SLP based Self-index

Given a Lyndon SLP of size g, we can build an indexing
data structure on it to query all occurrences of a pattern P of
length m ∈ [1..n] in T . We call this query locate(P). Our data
structure is based on the approach of Ref. [12]. This approach
separates the occurrences of a pattern into so-called primary oc-
currences and secondary occurrences. It first locates the primary
occurrences and, with the help of these, it subsequently locates
the secondary occurrences. To this end, it locates primary occur-
rences with a labeled binary relation data structure, and subse-

c© 2020 Information Processing Society of Japan 87

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

Table 2 Sizes of the resulting grammars benchmarked in Section 3.3.

collection Re-Pair LCA Recompression Lyndon SLP
cere SLP 6,433,183 9,931,777 8,537,747 13,026,562

AG 4,057,693 6,513,345 5,309,789 7,469,979
einstein.de.txt SLP 125,343 251,411 202,749 205,348

AG 84,493 168,193 127,790 123,963
kernel SLP 2,254,840 4,065,522 3,587,382 4,201,895

AG 1,373,244 2,507,291 2,135,779 2,400,211
world leaders SLP 601,757 1,243,757 1,023,739 911,222

AG 398,234 809,163 636,700 552,497

Fig. 3 A partition pair (PL, PR) of a pattern P with one of its associated
tuples (Xi, α, β).

quently locates the secondary occurrences with the grammar tree.
In our case, we find the primary occurrences with so-called parti-
tion pairs.

A partition pair (at position i) of a pattern P[1..m] is a pair
(P[1..i], P[i + 1..m]) with i ∈ [1..m] such that there exists a
rule Xi → XiL XiR with val(XiL) and val(XiR) having P[1..i] and
P[i + 1..m] as a (not necessarily proper) suffix and as a prefix,
respectively. Similar to the grammar proposed in Section 6.1 of
Ref. [11], we can bound the number of partition pairs by O(lg m)
by carefully selecting all possible partition pairs:

Given a partition pair (PL, PR) of P, let Xi → XiL XiR be a
rule such that val(XiL) and val(XiR) have PL and PR as a suf-
fix and as a prefix, respectively. Consequently, there exist two
strings α and β such that val(XiL) = αPL and val(XiR) = PRβ

(cf., Fig. 3). By the definition of the Lyndon tree of the text T ,
(val(XiL), val(XiR)) = (αPL, PRβ) is the standard factorization of
val(Xi) = αPLPRβ. According to the standard factorization, PRβ

is the longest suffix of val(Xi) that is a Lyndon word. For the
proofs of Lemmas 4.7 and 4.8, we use this notation and call the
tuple (Xi, α, β) a tuple associated with (PL, PR).

Let us take P := bab as an example. The only partition pair
is (b, ab). Considering the Lyndon grammar of our example text
given in Fig. 2, the tuples associated with (b, ab) are (X8, aa, ε)
and (X5, a, b).

Note that |α| = 0 if P is a Lyndon word. If P is a proper prefix
of a Lyndon word *2, then α may be empty. If P is a not a (not
necessarily proper) prefix of a Lyndon word, then |α| > 0 (since
αPLPRβ is a Lyndon word).

4.1 Associated Tuples with Non-empty α
We want to reduce the number of possible partition pairs from

m to O(lg m). A first idea is that only the beginning positions of
the Lyndon factors of P contribute to potentially partition pairs.
We prove this in Lemma 4.5, after defining the Lyndon factors:

The (composed) Lyndon factorization [10] of a string P ∈ Σ+

is the factorization of P into a sequence Pτ1
1 · · · P

τp
p of lexico-

*2 I.e., there is a string S ∈ Σ+ such that PS is a Lyndon word.

graphically decreasing Lyndon words P1, . . . , Pp, where (a) each
Px ∈ Σ+ is a Lyndon word, and (b) Px � Px+1 for each x ∈ [1..p).
Px and Pτx

x are called Lyndon factor and composed Lyndon factor,
respectively.
Lemma 4.1 (Algo. 2.1 of Ref. [15]). The Lyndon-factorization
of a string can be computed in linear time.

We borrow from Sect. 2.2 of Ref. [24] the notation lfsP(x) :=
Pτx

x · · · P
τp
p for the suffix of P starting with the x-th Lyndon factor.

Given λP ∈ [1..p] is the smallest integer such that lfsP(x + 1) is a
prefix of Px for every x ∈ [λP..p−1], lfsP(x) is called a significant

suffix of P for every x ∈ [λP..p]. Consequently, lfsP(p) = P
τp
p is a

significant suffix.
In what follows, we show that PR of a partition pair (PL, PR)

has to start with a Lyndon factor (Lemma 4.5), and further has
to start with a composed Lyndon factor (Lemma 4.7). Finally,
we refine this result by restricting PR to begin with a significant
suffix (Lemma 4.8) whose number is bounded by the following
lemma:
Lemma 4.2 (Lemma 12 of Ref. [24]). The number of signifi-
cant suffixes of P is O(lg m).

In what follows, we study the occurrences of P in T under the
circumstances that T is represented by its Lyndon tree induced by
the standard factorization, while P is represented by its Lyndon
factors.
Lemma 4.3 (Prop. 1.10 of Ref. [15]). The longest prefix of P

that is a Lyndon word is the first Lyndon factor P1 of P.
Lemma 4.4 (Lemma 5.4 of Ref. [3]). Given a production Xj →
XjL XjR ∈ GLYN, there is no Lyndon word that is a substring of
val(Xj) = val(XjL)val(XjR) beginning in val(XjL) and ending in
val(XjR), except val(Xj).
Lemma 4.5. Given (PL, PR) is a partition pair of a pattern P,
PR starts with a Lyndon factor of P if there is an associated tu-
ple (Xi, α, β) with |α| > 0.
Proof. Since |α| > 0 holds, P is a proper substring of val(Xi).
Then PR must start with a Lyndon factor of P according to
Lemma 4.4. �
Lemma 4.6 (Prop. 1.3 of Ref. [15]). Given two Lyndon
words α, β with α ≺ β, the concatenation αβ is also a Lyndon
word.
Lemma 4.7. Given (PL, PR) is a partition pair of a pattern P, PR

starts with a composed Lyndon factor of P if there is an associated
tuple (Xi, α, β) with |α| > 0.
Proof. Let (Xi, α, β) be a tuple associated with (PL, PR). Assume
for the contrary that PR does not start with any composed Lyndon
factors of P, namely, there exists x ∈ [1..p] and k ∈ [1..τx−1] such
that PL and PR have Pτx−k

x and Pk
x as a suffix and prefix, respec-

tively (cf., Fig. 4). By the assumption, val(XiR) = Pk
xlfsP(x + 1)β

c© 2020 Information Processing Society of Japan 88

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

Fig. 4 Setting of the proof of Lemma 4.7.

is the longest Lyndon word that is a suffix of val(Xi). Since
Px ≺ val(XiR) and Px is a Lyndon word, Pxval(XiR) is also a Lyn-
don word by Lemma 4.6. This contradicts that val(XiR) is the
longest Lyndon word that is a suffix of val(Xi). �

Lemma 4.7 helps us to concentrate on the composed Lyndon
factors. Next, we show that only those composed Lyndon factors
are interesting that start with a significant suffix:
Lemma 4.8. Given (PL, PR) is a partition pair of a pattern P,
then PR is a significant suffix of P if there is an associated tu-
ple (Xi, α, β) with |α| > 0.
Proof. Let (Xi, α, β) be a tuple associated with (PL, PR) and
|α| > 0. By Lemma 4.7, there exists x ∈ [1..p] such that PR =

Pτx
x · · · P

τp
p . Assume for the contrary that x < λP, i.e., PR is not a

significant suffix of P. By definition, lfsP(x) � lfsP(x + 1) holds.
Since lfsP(x + 1) is not a prefix of lfsP(x), lfsP(x)β � lfsP(x + 1)β
also holds. This implies that PR = lfsP(x)β is not a Lyndon word,
a contradiction. �

This, together with Lemma 4.2, yields the following corollary.
Corollary 4.9. There are O(lg m) partition pairs of P associated
with a tuple (Xi, α, β) with |α| > 1.

Let us take P := abacabadabacababa as an elaborated exam-
ple. Its composed Lyndon factorization is P = P1P2P2

3P4, where
its Lyndon factors are P1 = abacabad, P2 = abac, P3 = ab,
and P4 = a with λP = 3. Hence, lfsP(3) and lfsP(4) are sig-
nificant suffixes. Its potential partition pairs are (P1P2, P2

3P4),
(P1P2P2

3, P4). There is no Lyndon SLP such that another parti-
tioning like (P1, P2P2

3P4) or (P1P2P3, P3P4) would have an as-
sociated tuple according to Lemma 4.8 and Lemma 4.7, respec-
tively.

4.2 Associated Tuples with Empty α
Given a partition pair (PL, PR) associated with a tuple (Xi, ε, β),

we consider two cases depending on |PL|: In the case of |PL| = 1,
(P[1], P[2..m]) may be a partition pair of P. In the case of |PL| ≥
2, suppose that P′ = P[2..m], α′ = P[1] and (P′L, P

′
R) is a partition

pair of P′ with associated tuple (Xi, α
′, β). Then, (P[1]P′L, P

′
R) is

a partition pair of P with associated tuple (Xi, ε, β). We can use
Lemma 4.5, Lemma 4.7 and Lemma 4.8 to restrict P′R starting
with a significant suffix of P[2..m] (cf., Corollary 4.9).
Corollary 4.10. There are O(lg m) partition pairs of P associ-
ated with a tuple (Xi, ε, β).

Combining Corollary 4.9 with Corollary 4.10 yields the fol-
lowing theorem and the main result of this subsection:
Theorem 4.11. There are O(lg m) partition pairs of a pattern of
length m.

4.3 Locating a Pattern
In the following, we use the partition pairs to find all primary

occurrences. We do this analogously as for the Γ-tree (Sec-
toin 3.1. of Ref. [42]) or for special grammars (Section 6.1 of
Ref. [11]).
Lemma 4.12 (Lemma 5.2 of Ref. [20]). Let S be a set of
strings and assume that we can (a) extract a substring of length �
of a string in S in time fe(�) and (b) compute the Karp-Rabin fin-
gerprint [27] of a substring of a string in S in time fh. Then we
can build a data structure of O(|S|) words solving the following
problem in O(m lgσ/w+ t(fh+ lg m)+ fe(m)) time: given a pattern
P[1..m] and t > 0 suffixes Q1, . . . ,Qt of P, discover the ranges of
strings in (the lexicographically-sorted) S prefixed by Q1, . . . ,Qt.
Lemma 4.13 (Thm. 1.1 of Ref. [8]). For an AG of size g repre-
senting a string of length n we can extract a substring of length �
in time O(� + lg n) after O(g) preprocessing time and space.
Lemma 4.14 (Thm. 1 of Ref. [7]). Given a string of length n

represented by an SLP of size g, we can construct a data struc-
ture supporting fingerprint queries in O(g) space and O(lg n) de-
terministic query time. This data structure can be constructed in
O(n lg n) randomized time (cf., Section 2.4 of Ref. [19]) by using
Karp, Miller and Rosenberg’s [26] renaming algorithm to make
all fingerprints unique.

With Lemma 4.13 and Lemma 4.14 we have fe(�) = O(�+ lg n)
and fh = O(lg n) in Lemma 4.12, respectively, leading to:
Corollary 4.15. There is a data structure using O(g) space such
that, given a pattern P[1..m] with m ≤ n, it can find all variables
whose derived strings have one of t selected suffix of P as a prefix
in O(m lgσ/w + t(lg n + lg m) + � + lg n) time.

Corollary 4.15 yields O(m lg n) time for t = m, i.e., when we
need to split the pattern at each position. It yields O(m lgσ/w +
lg m lg n) time for t = lg m, i.e., the case for Section 6.1 of
Ref. [11] and for the Lyndon SLP thanks to Lemma 4.8 (we as-
sume that the pattern is not longer than the text).

We can retrieve the associated tuples of all primary occurrences
by plugging the variables retrieved in Corollary 4.15 into a data
structure for labeled binary relations [12].

For that, we generate two list L and LREV of all vari-
ables X1, · · · , Xg of the grammar sorted lexicographically by their
derived strings and the reverses of their derived strings, respec-
tively. Both lists allow us to answer a prefix (resp. suffix) query
by returning a range of variables having the prefix (resp. suffix) in
question. The query is performed by the data structure described
in Lemma 4.12 (with S being either L or LREV). Finally, we
can plug the obtained ranges into the labeled binary relation data
structure of Claude and Navarro [12]:
Lemma 4.16 (Thm. 3.1 of Ref. [12]). Given two list L and
LREV of variables sorted lexicographically by their expressions
and its reversed strings, we can built a data structure of O(g)
words of space in O(g lg g) time for supporting the following
query: Given a partition pair (PL, PR) and ranges in L and LREV

of those variables whose derived strings have val(PR) as a pre-
fix and val(PL) as a suffix, this data structure can retrieve all as-
sociated tuples of (PL, PR) in O((1 + occPL ,PR) lg g) time, where
occPL ,PR denotes their number.

The time complexity of Corollary 4.15 and Lemma 4.12 is

c© 2020 Information Processing Society of Japan 89

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

based on the assumption that we have (static) z-fast tries [6] built
on the lists L and LREV,*3 which we can build in O(g) expected
time and space (Section 6.6 (3) of Ref. [11]).

Since there are O(lg m) partition pairs according to Thm. 4.11,
applying Lemma 4.16 over all O(lg m) partition pairs yields
O(lg m lg g + occprim lg g) time, where occprim denotes the num-
ber of all primary occurrences.
Corollary 4.17. We can find the primary occurrences of a pat-
tern P in

O(m)
︸︷︷︸

Lemma 4.1

+O(m lgσ/w + lg m lg n)
︸������������������������︷︷������������������������︸

Corollary 4.15

+O(lg m lg g + occprim lg g)
︸���������������������������︷︷���������������������������︸

Lemma 4.16

= O(m + lg m lg n + occprim lg g) time.
Finally, we use the derivation tree to find the remaining (sec-

ondary) occurrences of the pattern:

4.4 Search for Secondary Occurrences
We follow Claude and Navarro [13] improving the search of

the secondary occurrences in Ref. [12] by applying reduction rule
R-1 to enforce C-1 (see Section 2.4). The resulting admissible
grammar GAG is no longer an SLP in general. Since we only re-
move variables with a single occurrence, the size of GAG is O(g).
Consequently, we can store both GAG and GSLP in O(g) space.
Lemma 4.18 (Section 5.2 of Ref. [13]). Given the associated
tuples of all partition pairs, we can find all occ occurrences of P

in T with GAG in O(occ lg g) time.
Remembering that we split the analysis of an associated tuple

in the cases |α| = 0 (Section 4.2) and |α| > 0 (Corollary 4.17),
we observe that the time complexity of the latter case dominates.
Combining this time with Lemma 4.18 yields the time complexity
for answering locate(P) with the Lyndon SLP:
Theorem 4.19. Given the Lyndon SLP of T , there is a data
structure using O(g) words that can be constructed in O(n lg n)
expected time, supporting locate(P) in O(m+ lg m lg n+ occ lg g)
time for a pattern P of length m.

Note that the O(n lg n) expected construction time is due to the
data structure described in Lemma 4.14.

5. Conclusion

We introduced a new class of SLPs, named the Lyndon SLP,
and proposed a self-index structure of O(g) words of space,
which can be built from an input string T in O(n lg n) expected
time, where n is the length of T and g is the size of the Lyn-
don SLP for T . By exploiting combinatorial properties on
Lyndon SLPs, we showed that locate(P) can be computed in
O(m+ lg m lg n+ occ lg g) time for a pattern P of length m, where
occ is the number of occurrences of P. This is better than the
O(m2 lg lgĝ n + (m + occ) lg ĝ) query time of the SLP-index by
Claude and Navarro [13] (cf., Table 1), which works for a gen-

eral admissible grammar of size ĝ.
We have not implemented the proposed self-index structure,

and comparing it with other self-index implementations such as
the FM index [16], the LZ index [2], the ESP index [52], or the

*3 We use again the derived string or, respectively, the reverse of the derived
string of each non-terminal in one of the lists as its respective keyword
to insert into the trie.

LZ-end index [31] will be a future work. Also, we want to speed
up the query time to O(m lgσ/w+ lg m lg n+occ lg g) by applying
broadword techniques for determining the Lyndon factors of the
pattern P (cf., Corollary 4.17), where σ is the alphabet size and w
is the computer word length.

References

[1] Abouelhoda, M.I., Kurtz, S. and Ohlebusch, E.: Replacing suffix
trees with enhanced suffix arrays, J. Discrete Algorithms, Vol.2, No.1,
pp.53–86 (2004).

[2] Arroyuelo, D. and Navarro, G.: Space-efficient construction of
Lempel-Ziv compressed text indexes, Inf. Comput., Vol.209, No.7,
pp.1070–1102 (2011).

[3] Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M. and Tsuruta,
K.: The “runs” theorem, SIAM J. Comput., Vol.46, No.5, pp.1501–
1514 (online), DOI: 10.1137/15M1011032 (2017).

[4] Barcelo, H.: On the action of the symmetric group on the free Lie al-
gebra and the partition lattice, J. Comb. Theory, Ser. A, Vol.55, No.1,
pp.93–129 (1990).

[5] Bassino, F., Clément, J. and Nicaud, C.: The standard factorization
of Lyndon words: an average point of view, Discret. Math., Vol.290,
No.1, pp.1–25 (2005).

[6] Belazzougui, D., Boldi, P., Pagh, R. and Vigna, S.: Fast prefix search
in little space, with applications, Proc. ESA, LNCS, Vol.6346, pp.427–
438 (2010).

[7] Bille, P., Gørtz, I.L., Cording, P.H., Sach, B., Vildhøj, H.W. and Vind,
S.: Fingerprints in compressed strings, J. Comput. Syst. Sci., Vol.86,
pp.171–180 (2017).

[8] Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R. and
Weimann, O.: Random access to grammar-compressed strings and
trees, SIAM J. Comput., Vol.44, No.3, pp.513–539 (2015).

[9] Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M.,
Sahai, A. and Shelat, A.: The smallest grammar problem, IEEE
Trans. Information Theory, Vol.51, No.7, pp.2554–2576 (online),
DOI: 10.1109/TIT.2005.850116 (2005).

[10] Chen, K.T., Fox, R.H. and Lyndon, R.C.: Free differential calculus,
IV. The quotient groups of the lower central series, Annals of Mathe-
matics, Vol.68, No.1, pp.81–95 (1958).

[11] Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro,
G. and Prezza, N.: Optimal-time dictionary-compressed indexes,
arxiv:1811.12779 (2018).

[12] Claude, F. and Navarro, G.: Self-indexed grammar-based compres-
sion, Fundam. Inform., Vol.111, No.3, pp.313–337 (2011).

[13] Claude, F. and Navarro, G.: Improved grammar-based compressed in-
dexes, Proc. SPIRE, LNCS, Vol.7608, pp.180–192 (2012).

[14] Cormode, G. and Muthukrishnan, S.: The string edit distance match-
ing problem with moves, ACM Trans. Algorithms, Vol.3, No.1,
pp.2:1–2:19 (online), DOI: 10.1145/1219944.1219947 (2007).

[15] Duval, J.: Factorizing words over an ordered alphabet, J. Algorithms,
Vol.4, No.4, pp.363–381 (1983).

[16] Ferragina, P., González, R., Navarro, G. and Venturini, R.: Com-
pressed text indexes: From theory to practice, ACM Journal of Ex-
perimental Algorithmics, Vol.13, pp.1.12:1 – 1.12:31 (2008).

[17] Ferragina, P. and Manzini, G.: Opportunistic data structures with ap-
plications, Proc. FOCS, pp.390–398, IEEE Computer Society (on-
line), DOI: 10.1109/SFCS.2000.892127 (2000).

[18] Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y. and
Puglisi, S.J.: A faster grammar-based self-index, Proc. LATA, LNCS,
Vol.7183, pp.240–251 (2012).

[19] Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y. and Puglisi,
S.J.: LZ77-Based Self-indexing with Faster Pattern Matching, Proc.
LATIN, LNCS, Vol.8392, pp.731–742 (2014).

[20] Gagie, T., Navarro, G. and Prezza, N.: Optimal-time text indexing in
BWT-runs bounded space, Proc. SODA, pp.1459–1477 (2018).

[21] Goto, K., Bannai, H., Inenaga, S. and Takeda, M.: Fast q-gram mining
on SLP compressed strings, J. Discrete Algorithms, Vol.18, pp.89–99
(2013).

[22] Grossi, R. and Vitter, J.S.: Compressed suffix arrays and suf-
fix trees with applications to text indexing and string match-
ing (extended abstract), Proc. STOC, pp.397–406 (online), DOI:
10.1145/335305.335351 (2000).

[23] Hon, W., Lam, T.W., Sadakane, K. and Sung, W.: Constructing
compressed suffix arrays with large alphabets, Proc. ISAAC, LNCS,
Vol.2906, pp.240–249 (online), DOI: 10.1007/978-3-540-24587-2 26
(2003).

[24] I, T., Nakashima, Y., Inenaga, S., Bannai, H. and Takeda, M.: Faster
Lyndon factorization algorithms for SLP and LZ78 compressed text,

c© 2020 Information Processing Society of Japan 90

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

Theor. Comput. Sci., Vol.656, pp.215–224 (2016).
[25] Jez, A.: Approximation of grammar-based compression via recom-

pression, Theor. Comput. Sci., Vol.592, pp.115–134 (2015).
[26] Karp, R.M., Miller, R.E. and Rosenberg, A.L.: Rapid Identification of

Repeated Patterns in Strings, Trees and Arrays, Proc. STOC, pp.125–
136 (1972).

[27] Karp, R.M. and Rabin, M.O.: Efficient randomized pattern-matching
algorithms, IBM Journal of Research and Development, Vol.31, No.2,
pp.249–260 (online), DOI: 10.1147/rd.312.0249 (1987).

[28] Kempa, D. and Prezza, N.: At the roots of dictionary compression:
string attractors, Proc. STOC, pp.827–840 (2018).

[29] Kieffer, J., Yang, E., Nelson, G. and Cosman, P.: Universal lossless
compression via multilevel pattern matching, IEEE Trans. Informa-
tion Theory, Vol.46, No.4, pp.1227–1245 (2000).

[30] Kieffer, J.C. and Yang, E.: Grammar-based codes: A new class of uni-
versal lossless source codes, IEEE Trans. Information Theory, Vol.46,
No.3, pp.737–754 (online), DOI: 10.1109/18.841160 (2000).

[31] Kreft, S. and Navarro, G.: On compressing and indexing repetitive
sequences, Theor. Comput. Sci., Vol.483, pp.115–133 (2013).

[32] Lam, T.W., Sadakane, K., Sung, W. and Yiu, S.: A space and time ef-
ficient algorithm for constructing compressed suffix arrays, Proc. CO-
COON, LNCS, Vol.2387, pp.401–410, Springer (2002).

[33] Larsson, N.J. and Moffat, A.: Offline dictionary-based compression,
Proc. DCC, pp.296–305 (1999).

[34] Lothaire, M.: Combinatorics on Words, Addison-Wesley (1983).
[35] Lyndon, R.C.: On Burnside’s Problem, Trans. AMS, Vol.77, No.2,

pp.202–215 (1954).
[36] Mäkinen, V. and Navarro, G.: Compressed compact suffix ar-

rays, Proc. CPM, LNCS, Vol.3109, pp.420–433 (online), DOI:
10.1007/978-3-540-27801-6 32 (2004).

[37] Manber, U. and Myers, E.W.: Suffix arrays: A new method for on-line
string searches, SIAM J. Comput., Vol.22, No.5, pp.935–948 (1993).

[38] Maruyama, S., Sakamoto, H. and Takeda, M.: An online algorithm
for lightweight grammar-based compression, Algorithms, Vol.5, No.2,
pp.2014–235 (2012).

[39] Maruyama, S., Tabei, Y., Sakamoto, H. and Sadakane, K.: Fully-
online grammar compression, Proc. SPIRE, LNCS, Vol.8214, pp.218–
229 (2013).

[40] Mehlhorn, K., Sundar, R. and Uhrig, C.: Maintaining dynamic
sequences under equality tests in polylogarithmic time, Algorith-
mica, Vol.17, No.2, pp.183–198 (online), DOI: 10.1007/BF02522825
(1997).

[41] Navarro, G. and Mäkinen, V.: Compressed full-text indexes, ACM
Comput. Surv., Vol.39, No.1, pp.2:1–2:61 (online), DOI: 10.1145/
1216370.1216372 (2007).

[42] Navarro, G. and Prezza, N.: Universal compressed text indexing,
Theor. Comput. Sci., Vol.762, pp.41–50 (2019).

[43] Nevill-Manning, C.G., Witten, I.H. and Maulsby, D.L.: Compres-
sion by induction of hierarchical grammars, Proc. DCC, pp.244–253
(1994).

[44] Nishimoto, T., I, T., Inenaga, S., Bannai, H. and Takeda, M.: Dynamic
index and LZ factorization in compressed space, Discret. Appl. Math.,
Vol.274 (online), DOI: https://doi.org/10.1016/j.dam.2019.01.014
(2019).

[45] Rytter, W.: Application of Lempel-Ziv factorization to the approxima-
tion of grammar-based compression, Theoretical Computer Science,
Vol.302, No.1–3, pp.211–222 (2003).

[46] Sahinalp, S.C. and Vishkin, U.: Data compression using locally con-
sistent parsing, Technical Report, University of Maryland Department
of Computer Science (1995).

[47] Sakamoto, H.: A fully linear-time approximation algorithm for
grammar-based compression, J. Discrete Algorithms, Vol.3, No.2–4,
pp.416–430 (2005).

[48] Sakamoto, H., Kida, T. and Shimozono, S.: A space-saving linear-
time algorithm for grammar-based compression, Proc. SPIRE, LNCS,
Vol.3246, pp.218–229 (2004).

[49] Sakamoto, H., Maruyama, S., Kida, T. and Shimozono, S.: A space-
saving approximation algorithm for arammar-based compression, IE-
ICE Trans., Vol.92-D, No.2, pp.158–165 (2009).

[50] Storer, J.A.: NP-completeness results concerning data compression,
Technical Report 234, Department of Electrical Engineering and Com-
puter Science, Princeton University (1977).

[51] Takabatake, Y., Nakashima, K., Kuboyama, T., Tabei, Y. and
Sakamoto, H.: siEDM: An efficient string index and search algorithm
for edit distance with moves, Algorithms, Vol.9, No.2, pp.26:1–26:18
(2016).

[52] Takabatake, Y., Tabei, Y. and Sakamoto, H.: Improved ESP-index:
A practical self-index for highly repetitive texts, Proc. SEA, LNCS,
Vol.8504, pp.338–350 (online), DOI: 10.1007/978-3-319-07959-2 29
(2014).

[53] Welch, T.A.: A technique for high performance data compression,

IEEE Computer, Vol.17, pp.8–19 (1984).
[54] Ziv, J. and Lempel, A.: Compression of individual sequences via

variable-rate coding, IEEE Trans. Information Theory, Vol.24, No.5,
pp.530–536 (1978).

[55] Ziv, J. and Lempel, A.: A universal algorithm for sequential data com-
pression, IEEE Trans. Information Theory, Vol.23, No.3, pp.337–343
(1977).

Kazuya Tsuruta received a bachelor’s
degree in information science at Kyushu
University in 2014. He then worked
at Fujitsu Kyushu Systems Limited from
2014 to 2018. Since 2018, he is currently
Ph.D. student at Kyushu University. Since
2019, he also works at JVIS Co., Ltd.

Dominik Köppl received his diploma in
mathematics at the University of Regens-
burg, and his Ph.D. in computer science at
the TU Dortmund in the years 2012 and
2018, respectively. He gained expertise as
a researcher at the University of Augsburg
on database systems, and at the TU Dort-
mund on algorithm engineering. He cur-

rently conducts research at Kyushu University supported by the
postdoctoral scholarship of the Japan Society for the Promotion
of Science. He is engaged in research areas such as data struc-
tures, algorithms, and combinatorics in general, as well as data
compression and regularities on strings in particular.

Yuto Nakashima received a master’s de-
gree in science and Ph.D. in information
science at Kyushu University in 2014 and
2017 respectively. He became an assistant
professor at Kyushu University in 2017.
His current research interests are com-
binatorics on words and algorithms for
string processing.

Shunsuke Inenaga received a master’s
degree in science at Kyushu University in
2002, and received a Ph.D. in science at
Kyushu University in 2003. From 2003,
he worked as a pos-doc researcher for
Japan Science Technology Agency, Uni-
versity of Helsinki, Kyoto University, and
Japan Society for the Promotion of Sci-

ence. He became a tenure track research fellow at Kyushu Uni-
versity in 2006, and then became an associate professor at Kyushu
University in 2011. Since 2019, he has also been a researcher for
PRESTO, Japan Science and Technology Agency. His main re-
search interests are algorithms and data structures for string pro-
cessing, text compression, and applied word combinatorics.

c© 2020 Information Processing Society of Japan 91

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 84–92 (Aug. 2020)

Hideo Bannai received his master’s de-
gree at the University of Tokyo in 2000.
He then worked as a research associate
at the Institute of Medical Science, Uni-
versity of Tokyo. After receiving a Ph.D.
from the University of Tokyo in 2005, he
became an associate professor at Kyushu
University. From April 2020, he is a Pro-

fessor at the M&D Data Science Center, Tokyo Medical and Den-
tal University. His current research interests are combinatorics on
words and string algorithmics, as well as their applications.

Masayuki Takeda received his master’s
degree at Kyushu University in 1989. He
then worked as a research associate at
Kyushu University. After receiving a
Ph.D. from Kyushu University in 1996, he
became an associate professor at Kyushu
University. From April 2020, he is a Pro-
fessor at Kyushu University. He was also

a researcher for PRESTO, JST (Japan Science and Technology
Agency) from October 2000 to September 2003, and a researcher
for SORSTO, JST from November 2003 to March 2007. From
April 2007 to March 2008 and from April 2008 to September
2009, he worked as a project manager of Exploratory IT Human
Resources Project (The MITOU Program), IPA (Information-
technology Promotion Agency, Japan). His current research inter-
ests include: string data processing algorithms, string data com-
pression, compressed string data processing, and string data min-
ing, as well as their applications to practical problems.

c© 2020 Information Processing Society of Japan 92

