
  
 

 
 

Partial Logic Synthesis via Training a Topologically similar Binarized 
Neural Network  

 

CHAOYI JIN MASAHIRO FUJITA†1     
 
In this paper, we present a new technique and its experimental results for solving partial logic synthesis problems through training 
a topologically similar binarized neural network. Partial logic synthesis means that most parts of the logic circuit are known whereas 
the missing portions must be logically synthesized from specification. By replacing 2-input logic gates with neural model and 
inheriting the topological structure of the logic circuit, we are able to recover the missing parts with back propagation and discrete 
training. To check the effectiveness of the representation techniques with neural networks, we have compared the two models with 
large number of independent experiments. Furthermore, we have compared two types of partial training approaches with different 
candidate-selecting strategies. We have also performed experiments on larger circuits. 

 
 

1. Introduction  

  Logic synthesis is a process turning an abstract specification of 
desired circuit behavior into a design implementation in terms of 
network of logic gates. Partial logic synthesis is to retrieve a set 
of missing portions in a structured network composed of logic 
gates through known specification. Partial logic synthesis, 
serving as a subproblem for logic synthesis, draws interests in its 
application into debugging logic bugs, adjusting timing errors 
and various optimization problems. The typical format of the 
problem can be illustrated as shown in Figure 1, where a number 
of vacant parts C1, C2, …, Cn are to be determined. [1] The 
answer to the problem may not be unique but have to satisfy the 
overall specification which maintains the desired functionality of 
the target circuit. 

 

Figure 1. Partial Logic Synthesis problem 

  Format of solution to partial logic synthesis varies according 
to the specific requirement of the application. One common 
format is to assume all vacant parts as two-input one-output logic 
gates while the whole structure of the circuit stays the same. The 
process of solving the problem is equivalent to finding a correct 
set of gate types. Such gate level designs are essentially the same 
as PPC (Partially Programmable Circuit). In PPC, the gates are 
usually replaced by LUTs (Look-up Table) to realize the target 
functionality. In partial logic synthesis, by substituting vacant 
parts with LUTs, the problem can be formulated as two-level 
QBF (Quantified Boolean Formula). [2] By utilizing ideas from 
CEGAR (Counter Example Guided Abstraction Refinement), 
QBF can be effectively solved by repeatedly applying SAT 
solvers. [3] A further approach was later put forward to quickly 
find a solution within small numbers of iterations, avoiding 
wasting time searching large input space. [4] 
  On the other hand, artificial neural network is a graph-based 

 
 †1 Department of Electrical Engineering and Information Science, Graduate 
School of Engineering, The University of Tokyo 

algorithm modeled loosely after the human brain, that are 
designed to help recognize and classify data. The concept of 
neural network has been raised for decades, but it didn’t arouse 
extensive discussion until in 2012 that AlexNet with astonishing 
recognition capability was discovered through training deep 
neural network on GPU. [5] The mysterious capability of 
capturing complex hyper-features has made it popular in various 
fields. 
  Though majority of researches in logic synthesis fields rely on 
methods with symbolic logic reasoning, in this article, a 
completely new approach is discussed from a perspective of 
connectionism. A logic circuit is represented by a neural network 
composed of numeric weights and homogenous units. Early trial 
can be found in Zhang et al.’s research [6], where he tested stuck-
open faults in CMOS combination circuits using Hopfield Neural 
Network and help generate robust test pattern in 1992. However, 
history turned out that Hopfield Neural Network is too 
computationally expensive and impractical to implement. Instead, 
we use the idea of nested perceptron to simulate the circuit. To 
sustain the behavior of gate, each neural unit standing for gate is 
sealed with binarized function, leading to binarized activations. 
A candidate solution is no longer logically reasoned about but 
achieved through feeding data from specification and training via 
back propagation.  
  The paper is organized as follows. In Section 2, we explain the 
neural model for gate simulation. In Section 3, we show the entire 
framework of the algorithm using a topologically inherited neural 
network. The detailed algorithm and techniques are also 
discussed. In Section 4, we show that such method is effective by 
simulating different scale of circuits. Finally in section 5, we 
make a brief conclusion on the new method and discuss the new 
understanding of applying connectionist models to logic 
synthesis topic. 

2. Gate simulation with neural model 

2.1 Perceptron model 
  In machine learning, “perceptron” is an algorithm specialized 
for binary classification. [7] It leads by a linear combination 
operation, followed by a nonlinear activation function. For a two-
input case with sign function as the activation function, it can be 

 

22

DAシンポジウム 
Design Automation Symposium

ⓒ 2020 Information Processing Society of Japan

DAS2020
2020/9/7



 
 

 

expressed as follows. 
  Suppose 𝑥!, 𝑥", 𝑦 ∈ {−1,1} , define 𝑓: 𝒙 ↦ 𝑦, we have,  

𝑧 = 𝑔(𝒙) = 𝑤!𝑥! +𝑤"𝑥" + 𝑏     (1) 

𝑦 = 𝑓(𝒙) = 𝑠𝑖𝑔𝑛(𝑧) = 8 1, 𝑧 ≥ 0
−1, 𝑧 < 0    (2) 

  Three parameters need to be trained in this case. Extending to 
more complex situation, such perceptron can be recognized as the 
simplest format of neural network, though it is probably unable 
to learn the non-linearity of most data in practical due to its 
simplicity. Nested structure of perceptrons is mainly accepted for 
most neural network. Complex non-linearity is learned through 
stacking the linear and non-linear function alternatively. 

2.2 Kernel Perceptron 
  Nested perceptrons are definitely not the only way. Even 
before the renaissance of neural network, SVM is partly believed 
as a top player in the realm of classification. The reason for its 
effectiveness is the introduction of kernel function [8] by 
projecting the input space into a higher dimension, which is 
believed to capture the non-linearity in a guided way. Suppose the 
input space is 𝒳. For any 𝒙, 𝒙# ∈ 𝒳, certain function 𝑘(𝒙, 𝒙#) 
can be expressed as an inner product in another space 𝒱 with 
higher dimension. The function 𝑘  is often referred as kernel 
function. The computation can be made much simpler if the 
kernel can be written in the form of feature map 𝜑:𝒳 → 𝒱 
which satisfies 𝑘(𝒙, 𝒙#) = ⟨𝜑(𝒙), 𝜑(𝒙#)⟩𝒱. Here the notation ⟨⋅,⋅
⟩𝒱 means proper inner product. A kernel perceptron is a special 
perceptron that uses such kernel technique to achieve non-
linearity. Such concept does not require nested structure which 
vastly introduces complexity. 

2.3 Two ways of simulating logic gates 
  To build a computable network classified by threshold about 
logic gates, we need to replace the gates with classification model. 
In this paper, we only focus on two-input gate. Totally, there are 
16 different logic functions with two inputs which are classified 
to 4 groups with NPN equivalence, as shown in Table 2. Though 
we commonly use 0 and 1 to represent False and True in logic, 
we use -1 and 1 to express False and True instead in our 
classification model. We seal the black box of the gate like Figure 
2 shows. Inside the model, 𝑓(𝒙) function serves as a type of core 
calculation and result is fed into a binarized function giving -1 or 
1 decision. 

 

Figure 2. The logic gate is replaced by a sealed classification model, 
where f(x) serves as a kind of linear or non-linear calculation, followed 

by a binarized function as classification. 

  One direct way to build the model is to adapt the perceptron 
concept. Using the linear combination shown in Function (2), 14 
gates can be represented except for XOR and XNOR. As shown 
in Figure 3, four points on the map are impossible to correctly 
classified into two categories within a single line.  
  To cope with that, one solution is to adapt a 2-1 nested 

perceptron structure. It should be noted that the first two 
perceptrons do not use a binarized function as activation function, 
but better uses an approximate function. 
 

 

Figure 3. It’s impossible to classify the XNOR gate with a linear 
combination function. Red squared point means True and blue crossing 

point means False. 

  Another way to model the gate is to use kernel perceptron. As 
the kernel function is an in-advance made module designed for 
expanding dimension, which may contain potential features, the 
kernel function should be carefully chosen. In this paper, a 
multiplier item is added in the linear combination Function 1 to 
add one more dimension to the input space. The feature map can 
be expressed as: 

𝜑((𝑥!, 𝑥")) = (𝑥!, 𝑥", 𝑥!𝑥").     (3) 
  The inner function then uses four parameters to simulate the 
gates as follows, 

𝑧 = 𝑘(𝒙) = 𝑤!𝑥! +𝑤"𝑥" +𝑤%𝑥!𝑥" + 𝑏.   (4) 
  Interestingly, the effect of kernel trick happens to be similar to 
simulation in algebraic analysis of logic circuit. As we can be 
seen from [8], polynomials of Boolean gates give identical format 
of equation. 
  To clarify the real model used to replace gate in the paper, the 
detailed specification is listed as below. 
Model 1: 2-1 nested perceptron structure using Function (1) as 
the key function. The first two perceptrons use approximate 
function in Table 3 as activation function. The second level 
perceptron uses binarized function. 
Model 2: Kernel perceptron structure adapts Function (4) as the 
key function. Activation function uses binarized function. 

3. Training the topology-inherited network 

3.1 Topology inheritance 
  With the models for replacing gates, we can connect the models 
according to the architecture of the logic circuit. It gives us a 
classification model holding the same input and output dimension 
as the initial circuit so that the topology is completely inherited. 

3.2 Binary Activation and Discrete Learning 
  A special technique called discrete training is used here to 
avoid the non-differential problem of sign function during back 
propagation. The algorithm was first tried by Courbariaux [9] 
when he studied efficient and valid training algorithm for 
binarized neural networks. Similarly, our synthesized network 
can be judged as a binarized neural network due to the seal of 

23

DAシンポジウム 
Design Automation Symposium

ⓒ 2020 Information Processing Society of Japan

DAS2020
2020/9/7



 
 

 

perceptron and binary activation, and so does the usage of 
discrete training. 
  Discrete training includes two crucial concepts which are not 
common in training normal neural networks. First, it uses an 
approximate function as activation function during backward 
computation. Table 2 displays a set of candidate for activation 
function, where the detailed formulae of Tanh and Htanh are 
expressed below, 

𝑡𝑎𝑛ℎ(𝑧) = &!'&"!

&!(&"!
   (5) 

𝐻𝑡𝑎𝑛ℎ(𝑧) = 𝑐𝑙𝑖𝑝(𝑧,−1,1) = K
−1, if	𝑧 < −1.								
  𝑧,   if− 1 ≤ 𝑧 ≤ 1

   1,   if	𝑧 > 1.													
  (6) 

  The second technique relates to clip function as well. In order 
to keep gradients from explosion along propagation, the weights 
should be clipped in a range during the update.  
 

Function Function plots Derivative plots Usage 

Sign(x) 
  

Forward 

Tanh(x) 
  

Backward 

Htanh(x) 
  

Backward 

Table 1. Plots on functions used in discrete learning and their 
corresponding derivative functions. 

3.3 Partial Training and Template initialization 
  Although the whole network is composed and a way to apply 
back propagation is developed, it is impractical to directly train 
the whole network from normal initialization. As partial logic 
synthesis is a process to retrieve just portions of missing gates to 
satisfy a set of specification, most gates are known and fixed. It 
is very dangerous to let the whole network execute training. 
Therefore, majority of the network are untrainable and initialized 
from template.  
  This paper proposes two strategies to decide which gates 
should be allowed to be trainable. To make the explanation 
explicit and clear, two ways are listed as follows. 
Strategy A: Only training the unknown gates and initialize all 
other gates from template. 
Strategy B: Training the unknown gates and the ones lying on the 
path of fan-out of unknown gates. Initialize the rest from template. 
  In strategy B, the fan-out of certain gate means the route from 
that gate to the primary outputs. Figure 4 shows an example of 
one-bit full adder circuit network in node format. As the topology 
is inherited, the nodes inside the figure can refer to either gates or 
a perceptron model. In this figure, red node 2 is chosen as the 
unknown gate. According to strategy A, only node 2 is trainable, 

while according to strategy B, node 5, 8, 6, 9, 11 are all trainable 
as they are on the fan-out cone of the target node. In the 
implementation, those nodes lying on the fan-out path shall not 
have a changeable logic behavior. Therefore, a fairly low learning 
rate is given to those nodes when using the strategy B. 

 

Figure 4. Example of partial training. The red node 2 is unknown. In 
strategy A, only red node gets trained, while in strategy B, both red 

nodes and orange nodes get trained. 

Algorithm: Training a perceptron based neural network. 𝐶 	 is 
the cost function for minibatch. 1)*+,-./0+- means the result is 1 
only when constraint is satisfied, otherwise it equals to 0. The 
function 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒() specifies how to deterministically binarize 
the activations and weights, and 𝐶𝑙𝑖𝑝(), specifies how to clip the 
weights. The order from inputs to outputs is any acyclic path 
based on the original structure. 
Require: knowing a minibatch of inputs 𝒙  and outputs 𝒚 , 
weights 𝑊0, inputs 𝒂0, outputs 𝑏0, learning rate 𝜂0 for node 𝑖. 
We suppose SGD (Stochastic Gradient Decrease) for optimizer 
here. Kernel function is 𝜑. Assume that output of node is directly 
connected to input of next corresponding node. 
Ensure: updated weights 𝑊0

-(! for node 𝑖. 
{1. Forward propagation:} 
for 𝑖 in all nodes from inputs to outputs do 
    Assert 𝑎0 is computed 
    𝑊0

1	 ← 𝐶𝑙𝑖𝑝(𝑊0 , 	 − 1, 	1) 
    𝑠0 ← 𝜑(𝑎0)𝑊0

1 
    𝑏0 ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒(𝑠0) 
end for 
{2. Backward propagation}(Computation for gradients) 

Compute gradient 𝑔2*3- =
4)

42#$%
 knowing 𝒚 and 𝑏*3- , 𝑜𝑢𝑡 ∈

{𝑜𝑢𝑡𝑝𝑢𝑡	𝑛𝑜𝑑𝑒𝑠	𝑡𝑜	𝑡ℎ𝑒	𝑐𝑖𝑟𝑐𝑢𝑖𝑡} 
for i in all nodes from outputs to inputs do 
    Assert 𝑔20 is computed 
    𝑔,0 ← 𝑔201|,&|6! 
    𝑔/0 ← 𝑔,0𝑔7𝑊0

1 
    𝑔8&

' ← 𝑔,0
⊺𝜑(𝑎0) 

    𝑔80 ← 𝑔8&
' ∘ 1|8&|6!	 

end for 
{3. Update parameters:} 
for 𝑖 in all nodes from inputs to outputs do 
    if 𝑊0 is trainable: 
        𝑊0

-(! ← 𝑈𝑝𝑑𝑎𝑡𝑒(𝑊0 , 	𝑔80 , 	𝜂0) 
    end if 
end for 

24

DAシンポジウム 
Design Automation Symposium

ⓒ 2020 Information Processing Society of Japan

DAS2020
2020/9/7



 
 

 

 

NPN equivalence class for Two-input gate and their template functions 

Name HIGH LOW AND NAND 

Symbol 
    

Template f(x) 𝑓(𝒙) = 1 𝑓(𝒙) = −1 𝑓(𝒙) = 𝑥! + 𝑥" + 𝑥!𝑥" − 1 𝑓(𝒙) = −𝑥! − 𝑥" − 𝑥!𝑥" + 1 

Name BUF_1 NOT_1 AND2_NP NAND2_NP 

Symbol 
    

Template f(x) 𝑓(𝒙) = 𝑥! 𝑓(𝒙) = −𝑥! 𝑓(𝒙) = −𝑥! + 𝑥" − 𝑥!𝑥" − 1 𝑓(𝒙) = 𝑥! − 𝑥" + 𝑥!𝑥" + 1 

Name BUF_2 NOT_2 AND2_PN NAND2_PN 

Symbol 
    

Template f(x) 𝑓(𝒙) = 𝑥" 𝑓(𝒙) = −𝑥" 𝑓(𝒙) = 𝑥! − 𝑥" − 𝑥!𝑥" − 1 𝑓(𝒙) = −𝑥! + 𝑥" + 𝑥!𝑥" + 1 

Name XOR XNOR OR NOR 

Symbol 
    

Template f(x) 𝑓(𝒙) = −𝑥!𝑥" 𝑓(𝒙) = 𝑥!𝑥" 𝑓(𝒙) = −𝑥! − 𝑥" + 𝑥!𝑥" − 1 𝑓(𝒙) = 𝑥! + 𝑥" − 𝑥!𝑥" + 1 

Table 2. NPN equivalence class for two-input gate and the template simulation function for each gates. Simulation function is based on Model 2. For 
untrainable gates, the network will initialize the weights in reference to this table.

4. Experiments 

  In this paper, testing circuits are all raw circuits which are not 
optimized but simply generated by “gen” command of abc tool. 
[10] The original design for the circuit is saved in a BLIF 
(Berkeley Logic Interchange Format) file containing both 
connections and gates’ type. The file is used for both generating 
input patterns and building structure of neural network. The 
detailed code of the experiment can be found on [11]. 
4.1 Data Usage 
  The algorithm feeds all patterns of data depending on the input 
number to the network within an epoch. In detail, during training 
process, the inputs are first shuffled and then all fed into the 
network with mini-batches. A whole set is considered as an epoch 
for the training. For example, as for a 5-input circuit, 25=32 input 
patterns are generated as training data. If batch size is set as 8, 
there are 4 mini-batches in an epoch covering all patterns. 

4.2 Success Judgement and Equivalence checking 
  The success of the problem is guaranteed by a newly designed 
circuit that satisfies the specification. The circuit shall be 
composed of any reasonable types of gates for missing parts but 
remain completely the same for both the other gates and the 
topology. Under such guidance, a direct way to judge is to test 
over all the patterns for the network exhaustively and check 
correctness. It is practical for circuit with small scale inputs. 
However, computation grows exponentially as the input number 
grows. In the experiment, as we already have the original circuit 
which serves as the correct design that shall be expected, we can 

run combinational equivalence checking (CEC) for the new 
design and the original design. Due to the similarity of topology 
and consistency for most gates, equivalent nodes can be first 
evaluated and replaced, resulting in huge decrease in computation. 
In our experiment, we accept CEC provided by abc tool as a 
general way of verification. It is worth to mention that for strategy 
B, nodes along the fan-out path which are not supposed to have 
changeable behavior are validated at the same time. If such 
change is observed, the solution is classified as failure. 

4.3 Small Circuit experiment 
  Two small circuits are chosen for the experiment, including a 
one-bit full adder with 3 inputs, 2 outputs and 11 gates and a two-
bit full adder with 5 inputs, 3 outputs and 22 gates. Two models 
in section 2.3 with two strategies in section 3.3 are crossed paired 
and experiments are conducted respectively on the two circuits. 
For each experiment, certain number of unknown gates is given 
and the set of unknown gates is independently and randomly 
chosen. Initialization of the model for unknown gates are based 
on uniform initializer, providing different initial states even if two 
experiments have selected exactly the same set of unknown gates. 
As the circuit is relatively smaller, we set the maximum epochs 
as 10,000 in replace of time out. 
  From the table, we can easily find that success rate of finding 
unknown gates is higher for circuit 2 than circuit 1. This is 
common because the circuit 1 is much smaller, implying that 
within the same number of missing gates, circuit 1 holds more 
parts by percent of unknown information compared to known. 
Besides that, we can infer that in general kernel perceptron model 

25

DAシンポジウム 
Design Automation Symposium

ⓒ 2020 Information Processing Society of Japan

DAS2020
2020/9/7



 
 

 

worked better than 2-1 nested perceptrons model. An assumption 
suggests that kernel perceptron grasps better feature of logic 
operation than nested perceptron structure due to its simplicity. 2-
1 nested structure seemed to have a worse capability in learning 
the feature of non-linearity. Learning with Strategy A is slightly 
better than Strategy B, but the difference between two is not huge. 

4.4 8-bit multiplier circuit experiment 
  A bigger circuit representing an 8-bit multiplier is chosen for 
the experiment. The original logic circuit contains 16 inputs, 16 
outputs and 304 nodes with at most 40 levels. Only Model 2 is 
put into consideration for both strategy A and B while Model 1 
never succeeded in retrieving gates when the number of unknown 
gates is larger than 5. Besides the success rate of retrieving 
unknown gates, average epochs required for a successful training 
is also calculated for each category. We ran 20 independent 
experiments for each this time and set 1 hour as the time limit. 
The result is shown in Table 5. The average epochs are given 
mainly for scalability evaluation for the problem, but serves no 

other purpose. The average scale of epoch increases along with 
the number of missing gates as expected. Since most of the 
success cases ran less than 5 epochs to find the result, it may 
reveal a hidden fact that finding an good initial state for weights 
is a possible optimization for faster training. 
  From the table, the success rate of retrieving unknown gates 
drops when the number of unknown is increasing. Model 2 with 
strategy A has a slight advantage against strategy B on success 
rate. The main reason is that stationary gates on the fan-out path 
of vacant gates may incrementally change behavior during the 
training, resulting in a wrong circuit. 
  Most failure cases occur when adjacent gates were chosen 
vacant. Such adjacent pair of two-input gates can be equivalent 
to the optimization of three-input gate. However, tackling such 
problem turned out to be NP-complete [12] from the perspective 
of symbolic logic. Other factors like wandering between local 
optimal and gradient cancelling caused by topological structure 
also leads to the collapse of training. 

 

Model Circuit 
Number of missing gate 

1 2 3 4 5 

Model 1, Strategy A 
Circuit 1 50/50 45/50 37/50 34/50 22/50 
Circuit 2 50/50 49/50 45/50 39/50 34/50 

Model 1, Strategy B 
Circuit 1 50/50 48/50 # 41/50 33/50 25/50 
Circuit 2 50/50 50/50 * 47/50 32/50 26/50 

Model 2, Strategy A 
Circuit 1 50/50 47/50 44/50 # 41/50 # 33/50 
Circuit 2 50/50 50/50 * 48/50 * 47/50 * 38/50 * 

Model 2, Strategy B 
Circuit 1 50/50 47/50 43/50 39/50 37/50 # 
Circuit 2 50/50 47/50 45/50 40/50 35/50 

Table 3. Success rate for different models and strategies on small circuits. Each category runs 50 independent experiments based on different number of 
missing gates. The # and * mark respectively stands for the best record for circuit 1 and circuit 2. 

 

Model 
Number of missing gate 

1 2 3 4 5 6 7 8 9 

Model 2, 
Strategy A 

Success rate 20/20 20/20 20/20 20/20 20/20 19/20 16/20 16/20 6/20 
Average epochs 1.7 3.5 1.2 1.4 2.1 6.7 10.1 10.8 26.1 

Model 2, 
Strategy B 

Success rate 20/20 18/20 20/20 20/20 19/20 18/20 15/20 12/20 10/20 
Average epochs 1.4 1.2 1.3 1.4 2.7 4.6 6.9 14.8 24.4 

Table 4. Success rate and average training epochs to retrieve correct answer for 8-bit multiplier circuit. Model 2 with two different strategies are 
compared. The average epochs didn’t count the failure cases in. 

5. Discussion 
  This paper has presented a new idea of using neural network to 
solve partial logic synthesis problems. We inherit the same 
topology from the logic circuit to the network and replace gates 
with 2 types of perceptron model. We adopt discrete learning 
method from the intuition of binarized neural network. We have 
developed two partial training strategies and built template gates 
for untrainable gates. In the experiments, we simulated two small 
circuits and one relatively large circuit with different combination 
of models and training strategies. Some suspicious reasons that 
may be responsible for failure are discussed after the experiments. 

The new neural network method has turned out to be effective to 
solve partial logic synthesis problems, though from the viewpoint 
of state-of-the-art methods in partial logic synthesis, the neural 
network approach is still young and requires more experiments 
on larger circuits with higher success rate. Another expectation is 
to build hybrid method combining the QBF solver [2] with neural 
network. The latest QBF method only uses a small set of data 
which is iteratively given from equivalence checking. The input 
data that we utilize in the framework is so redundant that most 
data contribute nothing to the training. If we can derive a strategy 
in selecting efficient data, the training can be much faster and 

26

DAシンポジウム 
Design Automation Symposium

ⓒ 2020 Information Processing Society of Japan

DAS2020
2020/9/7



  
 

 

effective. Seeking such hybrid method can also be interesting and 
beneficial to understand neural network. 
 
Reference 
[1] Masahiro F., Automatic correction of logic bugs in hardware design: 
Partial logic synthesis, Procedia Computer Science, Vol. 125, 2018. 
[2] Masahiro F., Satoshi J., Shohei O., Takeshi M., Partial synthesis 
through sampling with and without specification, IEEE/ACM 
International Conference on Computer-Aided Design (ICCAD), 2013. 
[3] Hratch M., Hiroaki Y., Andreas G., Shigeru Y., Masahiro F., On 
error tolerance and Engineering Change with Partially Programmable 
Circuits, The 17th Asia and South Pacific Design Automation Conference 
(ASP-DAC 2012), pp.695-700, 2012. 
[4] Satoshi J., Takeshi M., Masahiro F., SAT-Based Automatic 
Rectification and Debugging of Combinational Circuits with LUT In- 
sertions, Asian Test Symposium (ATS), pp.19-24, Nov. 2012. 
[5] Alex K., Ilya S., Geoffrey E. H.: ImageNet Classification with Deep 
Convolutional Neural Networks. In NIPS, 2012 
[6] Zaifu Z., Robert D. M., Witold P.: A neural network algorithm for 
testing stuck-open faults in CMOS combination circuits. Journal of 
electronic testing: Theory and Applications, 4, 225-235, 1993. 
[7] Minsky M., Papert S., Perceptron: an introduction to computational 
geometry. The MIT Press, Cambridge, expanded edition, 19(88), 2. 
[8] Amr S., Daniel G., Ulrich K., Mathias S., Rolf D., Formal 
Verification of Integer Multipliers by Combining Grobner Basis with 
Logic Reduction., EDAA, 2016. 
[9] Courbariaux, M., Bengio, Y.: Binarynet: Training deep neural 
networks with weights and activations constrained to +1 or -1., CoRR, 
2016. 
[10] https://people.eecs.berkeley.edu/~alanmi/abc/ 
[11] https://github.com/cainburster/gateNN. 
[12] Avrim L. B., Ronald L. R.: Training a 3- node neural network is NP-
complete, Neural Networks, Vol. 5, 1992. 

27

DAシンポジウム 
Design Automation Symposium

ⓒ 2020 Information Processing Society of Japan

DAS2020
2020/9/7


