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Abstract: This paper is concerned with many-to-one matching problems for assigning resident physicians (residents)
to hospitals according to their preferences. The stable matching model aims at finding a stable matching, and the as-
signment game model involves maximizing the total utility. These two objectives however are generally incompatible.
We focus on a case involving predetermined groups of residents who want to be matched in groups. To pursue these
conflicting objectives simultaneously, we propose several multi-objective optimization models for many-to-one match-
ing problems. We first derive a bi-objective optimization model for maximizing the total utility while minimizing the
number of blocking pairs to promote stability. We next introduce a small-subgroup penalty, which will be minimized
as the third objective for the purpose of matching in groups. Our multi-objective optimization models are formulated
by means of the ε-constraint method as scalar objective mixed-integer optimization problems, which can be solved to
optimality by using optimization software. The efficacy of our method is assessed through simulation experiments via
comparison with the outcomes of two common matching algorithms: the deferred acceptance algorithm and Gale’s
top trading cycles algorithm. Our results highlight the potential of optimization models for computing good-quality
solutions to a variety of difficult matching problems.

Keywords: many-to-one matching, multi-objective optimization, stable matching, assignment game, ε-constraint
method

1. Introduction

Many-to-one matching problems arise in a variety of situations
such as labor markets [30]. A well-known example is the National
Resident Matching Program *1, which provides a mechanism for
assigning residents (i.e., new doctors studying for a specialty) to
hospitals according to their preferences [28]. Other applications
can be found in school admissions [35], student–project alloca-
tions [1], and housing allocations [7]. To deal with these match-
ing problems, two standard models have been proposed: the sta-
ble matching model [15] and the assignment game model [34].

We consider the problem of matching residents with hospi-
tals. In this problem, each resident can accept at most one res-
idency position, and each hospital can offer a limited number
of such positions. A matching is called stable *2 if it does not
have any blocking pairs, because such a resident–hospital pair
can form a private arrangement outside of the matching. The sta-
ble matching model [15] aims at finding a matching that is stable.
Gale and Shapley [15] devised the deferred acceptance (DA) al-
gorithm [29], which generates a stable matching. Another com-
monly employed algorithm is Gale’s top trading cycles (TTC) al-
gorithm [33], which produces a matching that is Pareto-efficient
but not necessarily stable.

Another standard matching model is the assignment game
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model proposed by Shapley and Shubik [34]. It involves maxi-
mizing the total utility gained by residents and hospitals, relying
on the assumption that the utility can be exchanged between a
resident–hospital pair in the matching. Although the assignment
game model reduces to a linear optimization problem, the match-
ing thus obtained is not necessarily stable when the exchange of
utility is not allowed. Additionally, the algorithms designed for
the stable matching model often do not maximize the total util-
ity. These facts suggest that the two objectives (i.e., stability and
utility) are incompatible in general cases.

This paper examines a particular situation in which residents
prefer some colleagues over others [11], [12]. Specifically, we as-
sume that there are predetermined groups of residents who want
to be matched in groups. This special matching problem is known
as matching in groups; see Hogan [19] for details. As exam-
ples, women at a college may want to join the same sorority
as their friends, and workers may want to be employed by the
same firm as their partners. Along the same lines, high schools
want to recruit a group of student athletes from the same middle
school because a highly cohesive group can improve team per-
formance. This matching problem is related to the roommates
problem [7], [15], [27], although the roommates problem aims at
forming a stable set of roommate pairs.

The matching problem with couples [5], [24] is a special class
of problems of matching in groups. Even in the case of couples,
however, there are instances of problems that lack stable match-

*1 http://www.nrmp.org/about-nrmp/
*2 See Section 2.2 for the precise definition.
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ing [8], [20], [21], [28]. This fact clearly illustrates the theoret-
ical difficulty of dealing with predetermined groups of residents
in matching problems. For matching with couples, several al-
gorithms work well in practice [4], [31], and various optimization
models have been employed [2], [6], [10], [18], [25]. However, to
our knowledge, no previous studies have developed an effective
algorithm for matching in groups.

The aim of this paper is to propose multi-objective optimiza-
tion models that simultaneously account for several conflicting
objectives in many-to-one matching problems. First, we derive
a bi-objective optimization model for maximizing the total util-
ity and minimizing the number of blocking pairs. The number
of blocking pairs is minimized to find a nearly stable matching
based on the characterization [3] of stable matchings. We next
introduce a small-subgroup penalty to be minimized as the third
objective in the multi-objective optimization model. This penalty
increases when a resident group is divided into small subgroups,
so minimizing the penalty leads to assigning many members of a
group to the same hospital.

The classical approach to dealing with a multi-objective op-
timization model is the scalarization method, which transforms
the model into a scalar objective optimization problem. Vari-
ous scalarization methods have been proposed [13], [26]. These
scalarization methods include weighted sum methods, augmented
weighted Tchebychev methods, and ε-constraint methods. We
use the ε-constraint method [17], which can yield uniform Pareto-
optimal solutions even in the case of a non-convex objective
space. By means of this scalarization method, our multi-objective
optimization models are formulated as scalar objective mixed-
integer optimization problems, which can be solved to optimality
by using optimization software.

The efficacy of our method is assessed through simulation ex-
periments following up on previous studies [14], [16], [23]. The
simulation results demonstrate that our method is capable of visu-
alizing optimality trade-offs between total utility and the number
of blocking pairs in many-to-one matching problems. In addition,
our method clearly outperforms the DA and TTC algorithms in
terms of total utility. The simulation results also show that our
method works well for matching in groups because it finds good
matchings without dividing resident groups into subgroups that
are too small.

2. Multi-objective Optimization Models

This section presents our multi-objective optimization models
for matching problems.

2.1 Assignment Game Model
Let us consider assigning residents to hospitals according to

their preferences. We denote by R and H the sets of residents and
hospitals, respectively. To decide a matching between the sets,
we introduce the binary decision variable x := (xrh)(r,h)∈R×H such
that

xrh =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if resident r is assigned to hospital h,

0 otherwise,

for all (r, h) ∈ R × H.

Each resident is also assumed to fill only one residency posi-
tion, and the number of residency positions offered by hospital h

is qh ∈ Z+. A matching is defined based on these conditions as
follows.
Definition 1. We call x ∈ {0, 1}|R|×|H| a matching if the following

constraints are satisfied:
∑

h∈H
xrh ≤ 1 (∀r ∈ R),

∑

r∈R
xrh ≤ qh (∀h ∈ H).

Also assumed is that when resident r is matched with hospital
h, the resident and the hospital gain utilities of ur(h) and uh(r),
respectively. For simplicity, we make the following assumptions
throughout the paper.
Assumption 1. The utilities of residents and hospitals satisfy the

following conditions:

( 1 ) ur(h) ≥ 0 and uh(r) ≥ 0 for all (r, h) ∈ R × H;

( 2 ) ur(h) � ur(h′) for all (r, h, h′) ∈ R × H × H with h � h′; and

( 3 ) uh(r) � uh(r′) for all (r, r′, h) ∈ R × R × H with r � r′.
Accordingly, the resident–hospital pair (r, h) yields the util-

ity of urh := ur(h) + uh(r), and the total utility of a matching
x ∈ {0, 1}|R|×|H| is given by
∑

r∈R

∑

h∈H
urhxrh. (1)

The assignment game model [34] aims at finding a matching
that maximizes the total utility (1). This model can be written as
the following integer optimization problem:

maximize
∑

r∈R

∑

h∈H
urhxrh (2)

subject to
∑

h∈H
xrh ≤ 1 (∀r ∈ R), (3)

∑

r∈R
xrh ≤ qh (∀h ∈ H), (4)

xrh ∈ {0, 1} (∀r ∈ R,∀h ∈ H). (5)

Note that the binary constraint (5) is imposed for the sake of con-
sistency throughout this paper. Even if this constraint is relaxed
to a non-negativity constraint (i.e., xrh ≥ 0), all optimal basic
solutions to the assignment game model are binary valued [22].

2.2 Bi-objective Optimization Model for Many-to-one
Matching

For a matching x ∈ {0, 1}|R|×|H|, let mx(r) ∈ H be the hospi-
tal to which resident r is assigned, and Mx(h) ⊆ R be the set of
residents that are assigned to hospital h as given below:

mx(r) = h ⇐⇒ xrh = 1,

Mx(h) := {r ∈ R | xrh = 1}.

We also define the preference orders �r and �h of resident r and
hospital h based on their utilities as

h �r h′ ⇐⇒ ur(h) > ur(h
′),

r �h r′ ⇐⇒ uh(r) > uh(r′).

c© 2020 Information Processing Society of Japan
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Note that these are strict linear orders from Assumption 1.
Suppose that there is a resident–hospital pair (r, h) such that

resident r is not matched with hospital h but the pair elements
prefer each other. In this case, they can form a private arrange-
ment outside of the matching. Such a pair is called a blocking
pair, which is formally defined as follows.
Definition 2. Let x ∈ {0, 1}|R|×|H| be a matching. A pair (r, h) ∈
R × H is a blocking pair for x if the following conditions are

fulfilled:

( 1 ) resident r is not assigned to hospital h (i.e., xrh = 0);

( 2 ) resident r is unassigned or prefers hospital h to mx(r);
( 3 ) hospital h is undersubscribed or prefers resident r to at least

one member of Mx(h).
Since the individual rationality condition is fulfilled from As-

sumption 1 for all (r, h) ∈ R×H, a stable matching is characterized
by the absence of blocking pairs as follows.
Definition 3. A matching x ∈ {0, 1}|R|×|H| is stable if it does not

have any blocking pairs.

Baı̈ou and Balinski [3] mentioned (without proof) that stable
matchings to a many-to-one matching problem can be character-
ized by the following linear inequalities:

qhxrh + qh

∑

j�rh

xr j +
∑

i�hr

xih ≥ qh (∀r ∈ R,∀h ∈ H). (6)

For the sake of completeness, we provide a proof of this state-
ment.
Theorem 1 (Baı̈ou and Balinski [3]). Suppose that x ∈
{0, 1}|R|×|H| is a matching. Then, it is stable if and only if con-

straint (6) is satisfied.

Proof. We prove the theorem by contraposition:

constraint (6) is violated

⇐⇒∃(r, h) ∈R×H; xrh = 0,
∑
j�rh

xr j = 0, and
∑

i�hr
xih ≤ qh−1

⇐⇒∃(r, h) ∈R×H; (r, h) is a blocking pair for x

(∵ Definition 2)

⇐⇒x is not stable. (∵ Definition 3) �

We use the characterization (6) of stability to minimize the
number of blocking pairs. Let us introduce the binary decision
variable w := (wrh)(r,h)∈R×H ∈ {0, 1}|R|×|H|. We then make use of
the following constraint:

qhxrh + qh

∑

j�rh

xr j +
∑

i�hr

xih ≥ qh(1 − wrh) (∀r ∈ R,∀h ∈ H).

Note that this constraint is the same as the characterization (6) of
stability when wrh = 0. Therefore, wrh = 1 indicates that (r, h) is
a blocking pair, so the number of blocking pairs is given by

∑

r∈R

∑

h∈H
wrh. (7)

We consider maximizing the total utility and minimizing the
number of blocking pairs at the same time. Our bi-objective op-
timization model for many-to-one matching is formulated as fol-
lows:

minimize

⎛⎜⎜⎜⎜⎜⎝−
∑

r∈R

∑

h∈H
urhxrh,

∑

r∈R

∑

h∈H
wrh

⎞⎟⎟⎟⎟⎟⎠ (8)

subject to
∑

h∈H
xrh ≤ 1 (∀r ∈ R), (9)

∑

r∈R
xrh ≤ qh (∀h ∈ H), (10)

qhxrh + qh

∑

j�rh

xr j +
∑

i�hr

xih ≥ qh(1 − wrh) (∀r ∈ R,∀h ∈ H),

(11)

xrh ∈ {0, 1} (∀r ∈ R,∀h ∈ H), (12)

wrh ∈ {0, 1} (∀r ∈ R,∀h ∈ H). (13)

2.3 Tri-objective Optimization Model for Matching in
Groups

We now address the problem of matching in groups [19]. Let
us suppose that there are some disjoint predetermined groups of
residents, Rg ⊆ R for g ∈ G (e.g., couples, friends, and partners).
Residents in the same group want to be assigned to the same hos-
pital. To fulfill their hopes, we define a target number β ∈ Z+ of
residents. We then attempt to ensure that even if resident group
Rg is divided into some subgroups, the number of residents in
each subgroup will be β or more.

To this end, we introduce the binary decision variable z :=
(zgh)(g,h)∈G×H ∈ {0, 1}|G|×|H| and the nonnegative decision variable
s := (sgh)(g,h)∈G×H ∈ R|G|×|H|+ that indicates a shortage of subgroup
members. For the purpose of matching in groups, we make use
of the following constraint:

βzgh − sgh ≤
∑

r∈Rg
xrh ≤ |Rg|zgh (∀g ∈ G,∀h ∈ H).

The right-hand inequality means that if at least one member
r ∈ Rg is assigned to hospital h (i.e.,

∑
r∈Rg xrh ≥ 1), then we

must have zgh = 1. From the left-hand inequality, the number
of corresponding subgroup members (i.e.,

∑
r∈Rg xrh) at hospital h

must be β − sgh or more. We then minimize the small-subgroup

penalty
∑
g∈G
∑

h∈H(sgh)2, which is the sum of squared shortages
of subgroup members relative to the target number β.

Our tri-objective optimization model for matching in groups is
formulated as follows:

minimize

⎛⎜⎜⎜⎜⎜⎜⎝−
∑

r∈R

∑

h∈H
urhxrh,

∑

r∈R

∑

h∈H
wrh,

∑

g∈G

∑

h∈H
(sgh)2

⎞⎟⎟⎟⎟⎟⎟⎠

(14)

subject to
∑

h∈H
xrh ≤ 1 (∀r ∈ R), (15)

∑

r∈R
xrh ≤ qh (∀h ∈ H), (16)

qhxrh + qh

∑

j�rh

xr j +
∑

i�hr

xih ≥ qh(1 − wrh) (∀r ∈ R,∀h ∈ H),

(17)

βzgh − sgh ≤
∑

r∈Rg
xrh ≤ |Rg|zgh (∀g ∈ G,∀h ∈ H), (18)

xrh ∈ {0, 1} (∀r ∈ R,∀h ∈ H), (19)

wrh ∈ {0, 1} (∀r ∈ R,∀h ∈ H), (20)

zgh ∈ {0, 1} (∀g ∈ G,∀h ∈ H), (21)
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sgh ≥ 0 (∀g ∈ G,∀h ∈ H). (22)

2.4 ε-constraint Method
We use the ε-constraint method [17] to convert a multi-

objective optimization model into a scalar objective optimization
model. This method retains one of the objectives and imposes
upper-bound constraints on the rest of the objectives.

By means of the ε-constraint method, our tri-objective opti-
mization model (14)–(22) can be reduced to the following scalar
objective mixed-integer optimization problem:

maximize
∑

r∈R

∑

h∈H
urhxrh (23)

subject to
∑

r∈R

∑

h∈H
wrh ≤ ε1, (24)

∑

g∈G

∑

h∈H
(sgh)2 ≤ ε2, (25)

Eqs. (15)–(22), (26)

where ε1, ε2 ∈ Z+ are user-defined upper-bound parameters for
the number of blocking pairs and the small-subgroup penalty, re-
spectively.

3. Simulation Experiments

This section evaluates the effectiveness of our method through
simulation experiments.

3.1 Experimental Design
For our simulation, we generated the utilities of residents and

hospitals according to a linear model [14], [16], [23]. From a
uniform distribution, we randomly produced a common vector
v ∈ [0, 1]|H| and individual vector v(r) ∈ [0, 1]|H| for each resident
r ∈ R. We then calculated residents’ utilities as

(ur(h))h∈H = αv + (1 − α)v(r) (∀r ∈ R),

where α ∈ [0, 1] is a user-defined parameter. As α decreases, resi-
dents’ preferences become more diverse. We tested α ∈ {0.3, 0.6}
following up on the previous studies [14], [23]. We also randomly
produced hospitals’ utilities uh(r) ∈ [0, 1] from a uniform distri-
bution for all (r, h) ∈ R × H.

We compare the performance of the following matching meth-
ods.
BO: our bi-objective optimization model (8)–(13);
TO(β, ε2): our tri-objective optimization model (14)–(22),

where β ∈ Z+ is the target number of subgroup members, and
ε2 ∈ Z+ is the upper bound on the small-subgroup penalty;

DA: deferred acceptance algorithm [15], [29];
TTC: Gale’s top trading cycles algorithm [33].

For our multi-objective optimization models, the scalar objec-
tive optimization problem (23)–(26) was solved for each ε1 =

0, 1, 2, . . . using the Gurobi Optimizer *1 9.0.0. After that, we re-
moved solutions that are not Pareto-optimal. Note here that con-
straint (15) was replaced with an equality constraint (

∑
h∈H xrh =

1) so that matching will not be prevented by the small-subgroup

*1 www.gurobi.com

penalty even when ε2 is very small. The resident-proposing ver-
sions of DA and TTC algorithms were implemented in the Python
programming language.

3.2 Results of Many-to-one Matching
We compare the performance of our bi-objective optimiza-

tion model (8)–(13) with those of the DA and TTC algorithms
for many-to-one matching problems. We considered (|R|, |H|) ∈
{(24, 6), (100, 10)} as the numbers of residents and hospitals. We
set the number of residency positions as qh = |R|/|H| for all h ∈ H.
The computed results were averaged over ten trials.

Figure 1 shows the total utility (1) and the number (7) of block-
ing pairs in the matchings obtained by each method, where only
the solutions with ε1 = 0, 5, 10, . . . are displayed in Fig. 1 (c) and
Fig. 1 (d). We can see that our method (BO) provided a variety of
good matchings, which depended on values of the upper-bound
parameter ε1. Specifically, we note that BO found stable match-
ings, which have no blocking pairs, for all problem instances.
Additionally, BO could improve the total utility at the expense of
stability; Fig. 1 (d) shows that the total utility was increased from
138.1 to 144.8 by permitting 71.7 blocking pairs. Conversely, BO
can greatly reduce the number of blocking pairs by permitting a
lower total utility as shown by the two points (71.7, 144.8) and
(20.0, 143.3) in Fig. 1 (d). These points imply that the number of
blocking pairs decreased by 72% from 71.7 to 20.0, whereas the
total utility decreased by only 1% from 144.8 to 143.3.

DA also found stable matchings for all problem instances;
however, BO had higher total utility without increasing the num-
ber of blocking pairs from zero. Figure 1 (a) is a notable example
in that DA had a total utility of 33.0 but BO increased this to 33.9
without admitting any blocking pairs. In contrast with BO and
DA, the TTC algorithm generated matchings of poor quality in
terms of both the total utility and number of blocking pairs.

3.3 Results of Matching in Groups
We examine the effectiveness of our tri-objective optimization

model (14)–(22) for matching in groups. We set the numbers
of residents and hospitals as (|R|, |H|) = (24, 6). We considered
|G| ∈ {2, 6} as the number of resident groups, where each group
was composed of the same number of residents (i.e., |Rg| = |R|/|G|
for all g ∈ G). We set the number of residency positions as
qh = |R|/|H| = 4 for all h ∈ H.

As for our method TO(β, ε2), we employed β ∈ {2, 4} as the tar-
get number of subgroup members. We also set the upper-bound
parameter as ε2 = 0 (i.e., sgh = 0 for all (g, h) ∈ G×H) so that the
number of subgroup members will always be β or more. When
the value of ε1 was so small that the optimization problem (23)–
(26) was infeasible, we instead used the smallest ε1 such that the
problem was feasible. The computed results were averaged over
ten trials.

Figure 2 shows the total utility (1) and the number (7) of block-
ing pairs in the obtained matchings. We firstly focus on the two-
group case |G| = 2 (i.e., Fig. 2 (a) and Fig. 2 (b)). We can see
that TO(2, 0) performed similarly to BO despite the existence of
resident groups. Additionally, TO(4, 0) verified that even when
β = 4, the total utility can be increased to more than 30, and the

c© 2020 Information Processing Society of Japan
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Fig. 1 Results of many-to-one matching.

Fig. 2 Results of matching in groups with (|R|, |H|) = (24, 6).

number of blocking pairs can be reduced to less than 10. How-
ever, TO(2, 0) and TO(4, 0) did not reduce the number of blocking
pairs to zero thus confirming that finding a stable matching when
residents had to be matched in groups was impossible.

We next consider the case |G| = 6 (see Fig. 2 (c) and Fig. 2 (d)).
Since the number of resident groups was increased, it became
very difficult to fulfill their hopes about groups. Consequently,

the difference between BO and TO(2, 0) was larger in this case
than in the two-group case. We should also notice that TO(4, 0)
does not divide any resident groups because |Rg| = β = 4 for all
g ∈ G. As a result, TO(4, 0) has a small number of options for
matchings. For this reason, the variety of matchings obtained by
TO(4, 0) was smaller in this case than in the two-group case.

We conclude this section by giving typical examples of match-

c© 2020 Information Processing Society of Japan
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Table 1 Numbers of resident subgroup members for the smallest value of ε1 with (|R|, |H|) = (24, 6),
|G| = 6, and α = 0.6.

BO TO(2, 0) TO(4, 0)
Group g Group g Group g

h 1 2 3 4 5 6 h 1 2 3 4 5 6 h 1 2 3 4 5 6
1 2 1 1 0 0 0 1 2 0 0 0 2 0 1 4 0 0 0 0 0
2 0 0 0 2 1 1 2 0 0 0 2 0 2 2 0 0 0 4 0 0
3 0 1 1 0 0 2 3 0 0 2 0 0 2 3 0 0 0 0 4 0
4 1 1 1 1 0 0 4 2 0 0 2 0 0 4 0 0 4 0 0 0
5 0 0 1 1 2 0 5 0 2 2 0 0 0 5 0 0 0 0 0 4
6 1 1 0 0 1 1 6 0 2 0 0 2 0 6 0 4 0 0 0 0

Table 2 Numbers of resident subgroup members for the largest value of ε1 with (|R|, |H|) = (24, 6),
|G| = 6, and α = 0.6.

BO TO(2, 0) TO(4, 0)
Group g Group g Group g

h 1 2 3 4 5 6 h 1 2 3 4 5 6 h 1 2 3 4 5 6
1 2 1 1 0 0 0 1 2 2 0 0 0 0 1 4 0 0 0 0 0
2 0 0 0 0 1 3 2 0 0 0 2 0 2 2 0 0 0 0 0 4
3 0 0 1 1 1 1 3 0 0 2 0 0 2 3 0 0 4 0 0 0
4 2 2 0 0 0 0 4 2 0 0 2 0 0 4 0 4 0 0 0 0
5 0 0 1 2 1 0 5 0 0 2 0 2 0 5 0 0 0 4 0 0
6 0 1 1 1 1 0 6 0 2 0 0 2 0 6 0 0 0 0 4 0

ing results obtained by our methods for the smallest and largest
values of ε1. Tables 1 and 2 list the numbers of resident subgroup
members (i.e.,

∑
r∈Rg xrh) assigned to hospital h ∈ H from group

g ∈ G. Since BO does not take such resident groups into account,
it developed many one-member subgroups. TO(2, 0) aggregated
these one-member subgroups appropriately to form two-member
subgroups. TO(4, 0) promoted further aggregation so that all sub-
groups were composed of four members.

4. Conclusion

This paper dealt with the many-to-one matching problems for
assigning residents to hospitals according to the preferences of
residents and hospitals. We proposed the bi-objective optimiza-
tion model for maximizing the total utility and minimizing the
number of blocking pairs. We also focused on the problem
of matching in groups, where residents want to be matched in
groups. For this purpose, we proposed the tri-objective optimiza-
tion model that employs the small-subgroup penalty as the third
objective. These multi-objective optimization models were for-
mulated as scalar objective mixed-integer optimization problems
using the ε-constraint method and solved by optimization soft-
ware.

We demonstrated through simulation experiments that our
method generated a variety of good matchings for many-to-one
matching problems depending on the upper-bound parameter val-
ues. More importantly, our method visualizes the optimality
trade-offs between the total utility and the number of blocking
pairs, which is the most beneficial feature that the DA and TTC
algorithms lack. We also confirmed that our method worked well
for matching in groups. These results support the efficacy of op-
timization models for computing good-quality solutions to a va-
riety of difficult matching problems.

We used the the optimization software based on the branch-
and-bound algorithm. This algorithm consists of systematic enu-
meration of candidate solutions and terminates with a certificate
proving optimality of the obtained solution. On the other hand,
the evolutionary computation is capable of efficiently comput-

ing a set of near-optimal solutions to multi-objective optimiza-
tion problems [9], [36]. The evolutionary computation will be
required for large-scale problems that cannot be handled by the
branch-and-bound algorithm.

A future direction of study will be to speed up solving our
mixed-integer optimization problems. To this end, the stable ad-
missions polytope [3], [32], which is the convex hull of stable
matchings of a many-to-one matching problem, should prove ef-
fective in minimizing the number of blocking pairs. We will
also consider another optimization formulation for matching in
groups. For instance, it is possible to quantify residents’ utilities
for being matched in groups and incorporate them into optimiza-
tion models.
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