
IPSJ SIG Technical Report

Efficient FDK Algorithms on SIMD-accelerated Processors
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Abstract: Computed Tomography (CT) is a widely used 3D imaging technology that requires compute-intense algo-
rithms to generate volume data (or images). We propose a collection of novel back-projection algorithms that reduce
the arithmetic computation and improve data locality. We also implement novel algorithms as efficient back-projection
kernels that are performance portable over a wide range of CPUs. Unlike the conventional approaches that use OpenMP
and target-specific SIMD intrinsics, we employ a high-level OpenCL implementation to generate the vectorized code
and use the OpenCL local memory to prefetch the pixels at sub-pixel precision in a regular memory access fashion. Per-
formance evaluation using a variety of Intel CPUs generations demonstrates that our back-projection implementation
runs up to 10 times faster than the multi-threading optimized implementation.
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1. Introduction
Computed Tomography (CT) is a useful 3D imaging technique

in several fields such as medical diagnosis, non-destructive in-
spection, and scientific analysis. As investigated in literature [1],
the FDK *1 algorithm is widely regarded as the standard method-
ology to convert a set of projection images to volume data (or
3D image). There exist two intensive computations in FDK,
namely filtering computation and back-projection, their compu-
tational complexities are as high as O(N2log(N)) and O(N4), re-
spectively. Hence, the back-projection is often the computational
bottleneck of the FDK algorithm. To meet the critical demands
for rapid image reconstruction, several kinds of accelerators are
employed to improve the computational performance of back-
projection such as Application Specific Integrated Circuits [3],
Field-Programming Gate Array (FPGA) [4], [5], Digital Signal
Processor (DSP) [6], Intel Xeon-Phi accelerator [7], and Graph-
ics Processing Unit (GPU) [8], [9], [10], [11]. In this paper, we
focus on optimizing back-projection on Intel multicore CPUs by
algorithm innovations and parallel computing techniques.

There are strong motivations to optimize the FDK algorithm on
Intel ×86 CPUs [12]. Firstly, integrating extra-accelerators into
CT systems increases the system complexity, as well as lead to
considerable costs, e.g. hardware and software development. The
use of Intel ×86 processors would be preferable. It is cost-less
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*1 A convolution-back-projection methodology (also known as Filtered

Back-Projection, FBP) was innovated by Feldkamp, Davis, and Kress [2]
(called FDK) for CT image reconstruction in 1984.

and also energy-efficient to access these kinds of powerful multi-
core processors since they are a basic component in most embed-
ded devices, laptops, workstations, and cloud servers. Secondly,
it is very attractive to run OpenCL-optimized kernels on SIMD
processors to meet the critical demand for high performance and
avoid CPU-accelerator bandwidth bottleneck for high through-
put. As presented in [13], the adoption of more vector units in
modern CPUs narrows the performance gap between CPUs and
GPUs (a heterogeneous accelerator as in [14]). The only use of
CPUs with tuned algorithms can meet the critical timing require-
ment in several applications such as image reconstruction in this
paper. Finally, as an open standard for parallel programming,
OpenCL expresses parallelism to ultimately utilize the computing
resources as a combination of Single Instruction Multiple Thread
(SIMT) and Single Instruction Multiple Data (SIMD) program-
ming model [15], [16]. Prior work in [17] demonstrates the per-
formance advance of OpenCL in comparison to OpenMP and In-
tel Threading Building Blocks (TBB) on multicore CPUs. More
importantly, the local memory available in OpenCL is highly op-
timized by the cache [17]. On one hand, it can be employed as
the user-managed cache for reducing the host memory access to
some extent; On the other hand, it also can be used to perform the
efficient intra-group communication between work-items.

There are several challenges to optimize FDK algorithms on
Intel CPUs with SIMD architecture. Firstly, back-projection is
a well-researched algorithm and its optimization often requires
acceleration techniques of low-level languages, e.g. paralleling
algorithms described with OpenCL, SIMD instructions on time-
consuming kernels [18]. Secondly, back-projection is often a
computational bottleneck. It is essential to improve its perfor-
mance by reducing the arithmetic computation and saving mem-
ory access. Thirdly, data locality and cache-friendly code are crit-
ical to improving the computation efficiency of back-projection
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kernels. To better utilize the rich cache resource [19], a data
blocking mechanism is required; to meet the requirement of con-
tiguous memory access pattern and minimize the cache miss fre-
quency, data layout rearrangement is also important. Fourthly,
the theoretical peak performance of CPU is boosted by SIMD in-
trinsic on vector units. Vectorization and optimizing instruction
pipelines for back-projection inner-kernel helps to get closer to
the chip’s peak performance.

We optimize the back-projection for FDK algorithms on In-
tel multicore CPUs using OpenCL. The OpenCL kernel on CPU
platform can directly access the host memory, and thus benefits
to reduce the overheads of memory allocation and data move-
ment between host and devices. We improve the data locality by
rescheduling the loop order and transposing the projection im-
ages and volume data to ensure continuous memory access (or a
regular memory access pattern), unlike the work in [18] relies on
gather load intrinsic. The evaluated result has proved the valid-
ity of our methodology using a variant of Intel CPUs. A novel
sub-line algorithm is also proposed for an efficient interpolation
at sub-pixel precision. Note that single-precision was used in all
computations. Based on this algorithm, the memory access is
kept to be contiguous, the sub-line interpolation is blocked via lo-
cal memory to be performed with high cache hits and accelerated
with automated vectorization. Finally, the performance evalua-
tion on several generations of Intel CPUs, e.g. Xeon E5-2630 v4,
Core i7-9700K, shows that our back-projection kernel performs
up to 10× faster than the multi-threading optimized baseline im-
plementation. The contributions in this paper are three-folds:

• We propose a collection of novel back-projection algorithms
that reduce the computational cost of projection operations
and improve data locality.

• We implement the first Intel CPU-specified back-projection
kernel by OpenCL.

• We demonstrate that our OpenCL kernels achieve outstand-
ing performance as up to 10× faster than the multi-threading
optimized implementations on a variant of Intel CPUs.

The rest of this paper is organized as follows: In Section 2, we
introduce the background. Section 3 illustrates the proposed al-
gorithms. Section 4 shows the evaluated result. In Section 5, we
elaborate on the related work. Finally, Section 6 concludes.

2. Background
In this section, we briefly introduce the details of the FDK al-

gorithm and describe the basics of Intel OpenCL SDK for multi-
core CPUs.

2.1 FDK algorithm
This section illustrates the 3D image reconstruction algorithm

for Cone-Beam Computed Tomography (CBCT) as presented
by Feldkamp et al. [2] including CBCT geometry and back-
projection algorithm. Note that readers can refer to [2], [20] for
more details of the filtering computation, which is an important
computing step.
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Fig. 1: The triangular geometry of CT system.

Listing 1: The back-projection baseline implementation (as in [22])
that is optimized by OpenMP as the pragma syntax in line 4. nProj is
the number of projections. The sizes of the 2D projections, volume
data and projection matrix are heigh×width, nz×nx×ny, and 3×4,
respectively.

1 void bpBaseline mt(float img[nProj][height][width], float
mat[nProj][3][4], float volume[nz][ny][nx])

2 {

3 for (int s = 0; s < nProj; s++){
4 #pragma omp parallel for

5 for (int k = 0; k < nz; k++)\{
6 for (int j = 0; j < ny; j++){
7 for (int i = 0; i < nx; i++){
8 float vec[4] = {i,j,k,1.f};//coordinate

9 float z = dot4(mat[s][2], vec); //dot
10 float f = 1.f/z;

11 float x = dot4(mat[s][0], vec)*f; //dot
12 float y = dot4(mat[s][1], vec)*f; //dot
13 float val = subPiexl(img[s], x, y);
14 float weight = f*f; //compute weight

15 volume[k][j][i] += val*weight;//update

16 } } } } // s, k, j ,i

17 }

2.1.1 Geometry of CT system
The Figure 1 shows a triangular geometry of CBCT system.

The X-ray source is a kind of microfocus x-ray tube, the Flat
Panel Detector (FPD) is a class of digital radiography imaging
sensor like digital photography. The distances of the source to the
rotation axis (the Z-axis) and FPD are d and D respectively. The
sizes of of FPD in a unit of pixel are width and height (as w and
h in Figure 1a), respectively. Note that the U-axis and V-axis of
FPD are parallel to X-axis and Z-axis, respectively. As figure 1b
shown, the size of 3D volume data in a unit of voxel *2are nx,
ny, and nz, respectively. The default data layout of a volume data
is row-major order as the direction of i in Figure 1b. As a typi-
cal pinhole geometry [21], all geometric information can be pre-
sented as a matrix of size 3×4 (called projection matrix), which
are used for back-projection computation, e.g. projecting a voxel
to the plane of FPD as the variable of mat in Listing 1. For sim-
plification we ignore the computation of obtaining the projection
matrix via the geometry information, the detailed formulation is
elaborated in [22], [23]. In Algorithm 1, the operation of map-
ping a 3D point (i, j, k) to the plane of FPD is called projection
computation as the runnable codes of lines 8∼12.
2.1.2 Back-projection

As Listing 1 shown, we directly present the back-projection al-
gorithm as implemented in RTK library by Simon et al. [22]. The

*2 A voxel is named as a point in volume data.
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Listing 2: The customized function for inner production. Note that
v1[3] is a constant of 1.0 as in line 8 of Listing 1.

1 float dot4(float v0[4], float v1[4])
2 {

3 return v0[0]*v1[0]+v0[1]*v1[1]+v0[2]*v1[2]+v0[3];
4 }

Listing 3: The subPixel function for interpolation at sub-pixel preci-
sion.

1 float subPiexl(float img[height][width], float x, float y
)

2 {

3 int nx = (int)x; //convert to integer

4 int ny = (int)y; //convert to integer

5 float dx = x - (float)nx; //get sub-pixel coordinate

6 float dy = y - (float)ny; //get sub-pixel coordinate

7 //horizontal interpolation

8 float s0=img[ny][nx]*(1.f-dx)+img[ny][nx+1]*dx;

9 float s1=img[ny+1][nx]*(1.f-dx)+img[ny+1][nx+1]*dx;

10 //vertical interpolation

11 float val = s0*(1.f-dy) + s1*dy;

12 return val;
13 }

multi-threading via OpenMP [24] (as the syntax in line 4) is em-
ployed to speed up the computation by taking advantage of the
multi-cores of the processor. As an inputted argument, the img
is the filtered projection, namely the output data of the filtering
computation, its dimensions may be expressed as (nProj, height,
width). The mat, projection matrix as illustrated in the prior para-
graph, is used to project the voxel to the FPD plane. The projected
coordinate is written as x and y in lines 11 and 12. The value of
z (line 9) is used to derive the projection coordinate, as well as a
weighting factor to update the volume data in lines 14∼15. The
dot4, a customized function for the inner product as in Listing 2,
was called three times in the most inner loop. As listing 3 shown,
an implementation of bilinear interpolation function, namely sub-
Pixel, is used to fetch the density value of inputted 2D image. To
obtain a single value at sub-pixel precision, four different values
are loaded and 18 arithmetic operations are performed. It is clear
that the computational complexity of back-projection is O(N4).

2.2 Intel OpenCL SDK for Multicore CPUs
The OpenCL abstracts an open standard platform for general-

purpose parallel programming and provides a uniform program-
ming API (Application Programming Interface) that is often used
to write portable and efficient code for a diverse of accelerators,
e.g. CPUs, GPUs, and FPGAs. As one of the open and portable
standards defined by Khronos Group, OpenCL is used to develop
software targeting parallel computing platforms using a host/de-
vice programming model. Programming by OpenCL involves
writing a host code, often in C/C++, that executes as the host,
and a kernel code developed in C, that runs on the device or ac-
celerator. The host codes are often compiled by a general C/C++

compiler (e.g. gcc/g++), and the kernel codes are built at run-
time for the specified processors. Also, OpenCL provides APIs to
manage the accelerators and control the data movement between

host and accelerators. The computing unit in OpenCL is a work-
item. Work-groups is a collection of work-items and abstracted
as a multidimensional descriptor called an NDRange. The work-
items within the same work-group can exchange data using the
local memory.

Intel OpenCL SDK for Multicore CPUs allows developers to
take advantage of the SIMD-accelerated multicores using SIMT
(Single Instruction Multiple Threads) programming model and
high-level compiler to automate the vectorized binaries, that
is completely different from the prevalent optimization tech-
nique using both SIMD vectorization and multithreading such
as OpenMP, Intel TBB [25] and pthread library [26]. Note
that OpenCL compilers employ an even wider variety assembler
transformations beyond the classic ×86 ecosystem as compila-
tion optimization, resulting in the OpenCL is not performance
portable. Importantly, the access to local and constant memory
can be highly optimized by the cache, their sizes are 32KB and
128KB, respectively. We can use these memories to optimize ap-
plications effectively. We just briefly introduce the concept of
OpenCL, more details can be found in [27].

2.3 Terminology
We define the image reconstruction problem and performance

metrics in this section.
width×height×nPro j→nx×ny×nz is defined as the image re-

construction problem, where width×height indicates the size of
input projections and nx×ny×nz is the size of output volume. The
performance metric of problem maybe written as nx∗ny∗nz

T∗109 , where
T denotes the run-time in an unit of second. The performance unit
of a kernel is GUPS, which means giga-updates per second. Also,

we define the ratio of input and output problem as
√
width∗height
3√nx∗ny∗nz .

Same to the computation of GUPS, the ratio of input and output
problem is also independent of the value of nProj in all problems.

3. Proposed Algorithm
This section presents the proposed algorithm. The back-

projection is optimized by several methods such as multi-threads
(e.g. using OpenMP) and OpenCL. We improve the data locality
and memory access pattern by transposing projections and vol-
ume data. We also take advantage of OpenCL to speed up the
back-projection. To reduce the global memory (or host memory)
access, we proposed a novel sub-line algorithm to cache the in-
terpolated data at sub-pixel precision by local memory.

3.1 OpenMP-optimized back-projection
This section describes optimizing back-projection using multi-

threads and vectorization. As shown in Listing 1, the compute-
intensive back-projection is driven by voxels, which are updated
by their mapped pixels at projections. Vectorizing operations and
cache-friend memory access can dramatically improve computa-
tional performance. We illustrate the detailed optimization step
by step as in Listing 4, Listing 5, and Listing 6. Note that all
improved variables in Listings are highlighted by gray color.
3.1.1 Improving memory access pattern

This section discusses the memory access pattern. As shown
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Listing 4: The proposed back-projection by transposing projections
and volume data.

1 void bpTranspose mt(float img[nProj][width][height],
2 float mat[nProj][3][4], float volume[nx][ny][nz])

3 {

4 for (int s = 0; s < nProj; s++){
5 #pragma omp parallel for
6 for (int i = 0; i < nx; i++){
7 for (int j = 0; j < ny; j++){
8 for (int k = 0; k < nz; k++){

9 float vec[4] = {i,j,k,1.f}; //coordinate

10 float z = dot4(mat[s][2], vec); //dot
11 float f = 1.f/z;

12 float x = dot4(mat[s][0], vec)*f; //dot
13 float y = dot4(mat[s][1], vec)*f; //dot
14 float val = subPiexl(img[s], y, x);
15 float weight = f*f; //compute weight

16 volume[i][j][k] += val*weight; //update

17 } } } } // k, j, i, s

18 }

Listing 5: The proposed back-projection by sharing variables. The
arguments are same to Listing 4.

1 void bpShare mt(......){
2 //codes & loops for s, i, j are same to line 3∼6 of Lising 4
3 ...... ...... ...... ...... ......

4 float vec[4] = {i,j,0,1.f};//coordinate

5 float z = dot4(mat[s][2], vec);//dot
6 float f = 1.f/z;

7 float weight = f*f; //compute weight

8 float x = dot4(mat[s][0], vec)*f;//dot
9 for (int k = 0; k < nz; k++){

10 vec[3] = k; //update k

11 float y = dot4(mat[s][1], vec)*f; //dot
12 float val = subPiexl(img[s], y, x);
13 volume[i][j][k] += val*weight; //update

14 } } } } // k, j, i, s

15 }

Listing 6: The proposed back-projection using geometry symme-
try. The arguments are same to Listing 4.

1 void bpSymmetry mt(......){
2 //codes & loops for s, i, j are same to line 2∼8 of Lising 5
3 ...... ...... ...... //Note: including lines 4∼8 of Listing 5
4 for (int k = 0; k < nz/2; k++){
5 vec[3] = k; //update k

6 float y = dot4(mat[s][1], vec)*f; //dot
7 float val = subPiexl(img[s], y, x);
8 volume[i][j][k] += val*weight;//update

9 //geometry symmetry

10 y = height - 1.f - y;

11 val = subPiexl(img[s], y, x);
12 volume[i][j][nz-1-k] += val*weight;//update

13 } } } } // k, j, i, s

14 }

in the Listing 4, we present the basic optimization using trans-
posed projections and volume data. More specifically, we opti-
mize the data access pattern by transposing the two-dimensional
projections as seen the argument of img. Note that the transpos-
ing operation is light-weight and can be performed immediately
after filtering computation (out of scope to discuss this opera-
tion). Hence, the size of each projection becomes (width, height)
as in line 1 of Listing 4. We also reorganize the loop by mov-
ing the first loop to the most inner one as in line 7 of Listing 4.

Listing 7: The proposed back-projection by reorganizing loops and
using scratchpad memory. The arguments are same to Listing 4.

1 void bpScratchpad mt(......)
2 {

3 #pragma omp parallel for
4 for (int i = 0; i < nx; i++){
5 for (int j = 0; j < ny; j++){
6 float F[nProj], Weight[nProj], X[nProj];

7 float vec[4] = {i,j,0,1.f};

8 for (int s=0; s<nProj; s++){
9 F[s] = 1.f/dot4(mat[s][2], vec);//dot

10 Weight[s] = F[s]*F[s];

11 X[s] = dot4(mat[s][0], vec)*f; //dot
12 }

13 for (int k = 0; k < nz/2; k++){
14 vec[3] = k; //update k

15 float sum=0, _sum=0;

16 float y;

17 for (int s=0; s<nProj; s++){

18 y = dot4(mat[s][1], vec)*f;//dot
19 float val = subPiexl(img[s], y, X[s]);
20 sum += val*Weight[s];//accumulate

21 //geometry symmetry

22 y = height - 1.f - y;

23 val = subPiexl(img[s], y, X[s]);
24 _sum += val*Weight[s];//accumulate

25 }//s

26 volume[i][j][k] += sum; //update

27 volume<[i][j][nz-1-k] += _sum;//update

28 } } } // i, j, k

29 }

This operation allows us to compute the projections and update
the volume data along the vertical direction (or Z direction as in
Figure 1). It is because all projections of voxels along k direc-
tion (as in Figure 1b) are in a vertical line of FPD plane and thus,
the transposed projections contribute to contiguous memory ac-
cess while fetching pixel intensity using the bilinear interpolation
function as shown in Listing 3. More specifically, we can per-
form row-wise data accesses to projection and volume data by
such a transpose operation. More importantly, transpose opera-
tion builds a solid foundation for further optimizations as in the
following sections.
3.1.2 Reducing arithmetic computation

This paragraph explains reducing arithmetic computation of
back-projection. The Listing 5 reduces the computations of list-
ing 4 by sharing data (see the highlighted variables of f, weight,
and x in Listing 5) and Listing 6 improves the computation of
Listing 5 using characteristics of geometric symmetry (see the
highlighted variables of nz/2 and y in Listing 5).

In Listing 5, the values of z and x are constant values when i,
j, and projection matrix (supposing the projection angle is θ) are
fixed values. It is because of the values of z equal d−xcosθ−ycinθ
(as introduced in [20], [28]), where x, y are coordinates of voxels
that correspond to the indexes of i and j. The values of x are also
independent of i and j. It is due to the projections of voxels are
parallel to the V-axis (or Z-axis in Figure 1) at the FPD plane as
introduced in the earlier paragraph.

As Listing 6 shows, we also take advantage of the geometric
symmetry characteristics in the CT system to reduce the arith-
metic computations as proposed by Zhao et al. [10]. As shown
in line 4, only half of the projection computations for y (line 6)
are performed, the symmetric positions of y can be derived in line
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dx

(1.0 – dx)
Global mem 

ptr1

Global mem 
ptr0

local mem 
sMem

8 elements

(a) The ptr0 and ptr1 are the pointers of global memory for two neighbour-
ing rows, respectively. sMem is the pointer of local memory for caching the
sub-line values. the dx is the distance at sub-pixel precision (0≤dx≤1)

1 int offset = 0

2 //load elements from with offset

3 float8 v0 = vload8(ptr0, offset);
4 float8 v1 = vload8(ptr1, offset);
5 //linear interpolation

6 float8 v = mix(v0, v1, dx);
7 //store result to local memory

8 vstore8(v, offset, sMem);

(b) OpenCL implementation for caching 8
elements. vload8 and vstore8 are built-in
intrinsics for meomory access. mix is a lin-
ear blend intrinsic.

Fig. 2: Caching linear sub-line of image by local memory and vector operations.

10 as simple as a single instruction rather than using the complex
dot4 function (as in Listing 2).
3.1.3 Reducing host memory access

We present the details of reducing host memory access for im-
proving back-projection performance in this section. As shown in
Listing 7, we implement an efficient back-projection kernel that
moves the iterations for all projections (as the loop for nProj in
Listing 1, Listing 4, Listing 5, and Listing 6) to the most inner
loop as in line 17. The voxel values are accumulated locally via
register files (as declared in line 15) for multiple projections in
lines 17∼25 and updated to volume data as a single store oper-
ation in lines 26∼27. In line 6, we use three arrays (namely F,
Weight, and X) to cache the reusable values (see f, weight, and
x in Listing 5 and Listing 6). The initialization of these vari-
ables can be found in line 8∼12 and the use of them is shown
in lines 19∼24 (see the highlighted variables). The cost of using
these variables is lightweight due to their small sizes and cache-
friend access patterns (as loops in line 13 and line 17). In other
words, the contiguous accesses to these variables are restricted in
the buffers with very limited sizes. Note that we introduce the de-
tails on employing local memory to cache them in later sections.
3.1.4 Vectorizating operations

In this section, we present the details of employing vector units
to tune the projection operation and interpolation computation in
back-projection.

Regarding the projection computation (e.g. the computation
for x, y, and z in Listing 1), each inner product is performed on
two vectors of size 1×4 at single precision, such an operation can
be perfectly performed by the vector unit, e.g. the built-in func-
tion dot is employed for this computation in our OpenCL-based
implementation (as will be elaborated later). Note that we ben-
efit from the well-aligned projection matrix of size 3×4 in back-
projection algorithms. In [28], the projection computation is not
aligned for vector units due to unorganized data access and com-
putations.

Due to the uses of transposed projections and volume data, the
linear interpolation operation can perform data access in a regular
pattern and its computation can also be well vectorized with the
improved data locality. Such an optimization can be applied in
all proposed algorithms as in Listing 4∼7. As Figure 2a shown,
the bilinear interpolations focus on two rows of projections and
the data is also can be accessed in a contiguous pattern including

reading data from projections and writing data to volume data.

3.2 OpenCL-optimized back-projection
In this section, we take advantage of OpenCL to implemented a

collection of back-projection kernels according to the techniques
used in the previous section, e.g. reducing computation by shar-
ing data and geometry symmetry, reducing host memory access
by batched processing. We also improve the interpolation opera-
tion by local memory. As an illustrative example shown in List-
ing 8, we implement a back-projection kernel corresponding to
Listing 7. we explain the used techniques in this kernel (namely
Listing 8) as follows:

(i) As the argument mat shown in kernel of symmetry lm cl, we
employ constant memory to cache those data. the size of
each projection matrix is as small as 48B (sizeof(float)*4*3)
and greatly smaller than the capacity of constant memory of
size 128KB (as introduced in Section 2.2).

(ii) Regarding the index of i and j in volume data, we prepared
them in advance by an array (see the argument of vecIJ).
Each work-group processes all voxels in a single vertical line
and thus the index of i and j can be shared by all work-items
in a work-group. We use local memory to achieve this goal
as lines 5∼8 shown.

(iii) In line 6, we use local memory to cache the shareable data of
F, X, and F2, which are defined the same to the variables in
line 6 of Listing 7. Note that the used batch number (namely
B) ranges from 1∼32 in our implementations. Hence, the
required size of local memory is sizeof(float)*B*3, which
is greatly small than the capacity of local memory. All of
these values are only computed once as in lines 12∼18 and
reused by all work-items in a work-group. Note that a bar-
rier is required as in line 18 to synchronize all work-items in
a work-group.

(iv) Using the proposed sub-line algorithm (as in Section 3.2.1),
we perform the linear interpolation via fast local memory
as in lines 24∼30. More importantly, we can vectorize the
computation as Figure 2b shows.

(v) Relying on the pixel values in local memory (namely the
variable of sMem), the second linear interpolation can be
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Listing 8: The OpenCL kernel for back-projection. The constant
memory is used to store the projection matrix (see mat), global mem-
ory is used to store the projections (see img) and volume data (see
volume), the imgDim (namely width, height, and nProj) and volDim
(namely nx, ny, and nz) respectively. ROWS is a constant value of 3.
LM SIZE equal imgDim.x (the width of projections). B is defined
as the batch number and equals to imgDim.z.

1 __kernel void symmetry_lm_cl(__constant float4* mat,
2 __global float* img, int3 imgDim, __global float* volume,

int3 volDim, __global int2* vecIJ)

3 {

4 int k = get global id(0); //global index x
5 __local int2 ij; //share index i and j

6 __local float F[B], X[B], F2[B], sMem[LM_SIZE];//local mem

7 if (k == 0)
8 ij = vecIJ[get global id(1)]; //i and j ← global index y
9 barrier(CLK_LOCAL_MEM_FENCE); //barrier for local memory

10

11 float4 ijkw = (float4)(ij.x, ij.y, k, 1.f); //vector (i,j,k)

12 if (k < nProj) {
13 float z = 1.f / dot((mat + ROWS * k)[2], ijkw);//compute z

14 X[k] = dot((mat + ROWS * k)[0], ijkw)*z; //compute x

15 F[k] = z; //cache z

16 F2[k] = z * z; //compute weight

17 }

18 barrier(CLK_LOCAL_MEM_FENCE); //barrier for local memory

19

20 int SIZE = imgDim.x * imgDim.y; //the size of a projection

21 float2 sum = (float2)(0.f, 0.f);

22 for (int s = 0; s < B; s++, img += SIZE, mat += ROWS){
23 //sub-line algorithm as in Fig. 2
24 int nx = convert_int(X[s]);

25 float dx = X[s] - convert_float(nx);

26 __global float* ptr0 = img + nx * imgDim.x; //see Fig. 2a
27 __global float* ptr1 = ptr0 + imgDim.x; //see Fig. 2a
28 for (int m = k; m < width; m += get local size(0))
29 sMem[m] = mix(ptr0[m], ptr1[m], dx); //see Fig. 2b
30 barrier(CLK_LOCAL_MEM_FENCE); //barrier for local memory

31

32 //y and _y are symmetric at the vertical line of FPD

33 float y = dot(mat[1], ijkw)*F[s];

34 float _y = width - 1 - y;

35 {

36 int2 ny = convert_int2((float2)(y, _y));//float → int

37 float2 dy = (float2)(y, _y) - convert_float2(ny);

38 //linear interpolation and update sum

39 sum += mix((float2)(sMem[ny.x], sMem[ny.y]), (float2)(

sMem[ny.x+1], sMem[ny.y+1]), dy)*F2[s];

40 }

41 barrier(CLK_LOCAL_MEM_FENCE); //barrier for local memory

42 }

43 int offset = ij.y*volDim.z*volDim.x + ij.x * volDim.z;

44 volume[offset + k] += sum.x; //update volume

45 volume[offset + volDim.z - 1 - k] += _sum.y; //update volume

46 }

performed as in line 30.

(vi) This kernel also employs geometric symmetry to simply the
computations as in lines 33∼34 and lines 44∼45 correspond-
ings to codes in Listing 7.

We use two dimensional NDRange to launch this kernel, the
local and global parameters may be written as (nz/2, 1) and (nz/2,
sizeIJ), respectively. Note that sizeIJ is the number of elements
in the array of vecIJ (as in arguments). We emphasize the intrin-
sic that get the id of work-items in bold font, e.g. get global id,
get local size, etc. Several built-in intrinsic is used in our im-
plementation such as dot, mix, convert T. More explanations on
these intrinsic can refer to [29];

3.2.1 Sub-line algorithm
This section illustrates our sub-line algorithm. In Figure 2, we

show the details of vectorized operations on memory access and
arithmetic computations. As shown in Figure 2a, the variables
of ptr0 and ptr1 represent the addresses of two neighboring lines
in a projection. The computations on obtaining these two ad-
dresses can be found in lines 26∼27 of Listing 8. We load data
from global memory in a coalesced pattern that meets the caching
mechanism of global memory and thus, the wide SIDM intrinsic
can be employed. We use the vload8 and vstor8 as an illustrative
example in Figure 2b. Note that such OpenCL built-in intrinsic is
corresponding to the SIMD intrinsic such as SSE, AVX [30]. we
can use wider intrinsic (e.g. vload16, vload32, etc.) due to the im-
proved data layout using transposed projections and volume data
as introduced in Section 3.1.1. Such kind of vector instruction set
can be be automatically generated via compilation option in Intel
OpenCL compiler of ioc such as ”-simd=avx” or ”-simd=sse42”.

The local memory (as the variable of sMem in line 29 of List-
ing 8 or Figure 2a) is used to cache a line of projection at sub-
pixel precision. It is because we use the mix intrinsic to blend the
two lines of projections (namely the ptr0 and ptr1) into a line of
data. We benefit from this algorithm as follows: Firstly, all ele-
ments in these two lines only accessed once in a regular pattern;
Secondly, one of the linear interpolations can be well parallelized
(or blended). Thirdly, the second linear interpolation can be per-
formed via cache-optimized local memory and thus avoid reading
the slow global memory. Since we only cache a line of projection
data, the number of elements is the width of the projection (as
the variable of LM SIZE in Listing 8). Note that We define this
variable dynamically as a compilation option to the kernel.
3.2.2 Cache prefetching methodology

This section describes the cache prefetching methodology. We
propose a novel algorithm to overlap the loading operation and
computation by dual buffering technique. As Algorithm 1 shown,
we declare dual local memory in line 1 (as emphasized in gray
color). Hence, we can perform loading operation(as in line 6) and
computation (as in line 8) using different buffers. This methodol-
ogy benefits from the local memory. However, the twice sizes of
local memory will be used and thus, the available size of process-
ing projections will be limited by the capacity of local memory.
The constrain may be written as sizeo f ( f loat) ∗ 2 ∗ LM S IZE <

32K. Hence, the LM SIZE (or the width of the transposed pro-
jections) should be less than 4096.

4. Evaluation
In this section, we introduce the evaluation environment, re-

port the evaluated performance, and discuss the advantages and
limitations of proposed algorithms.

4.1 Experiment setup
As Table 1 shown, we use four kinds of Intel CPUs to evaluate

our implementation including the Operating System (OS) and the
capacity of the host memory. The OpenCL SDK-2019.5.345 and
runtime 18.1.0 are used for developing and running OpenCL ker-
nels. All OpenCL kernels are compiled with option as ”-cl-mad-
enable -cl-fast-relaxed-math”. GCC 5.4 is used for compiling the
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Algorithm 1: Cache prefetching by dual local memory.
All comments about lines refer to Listing 8.

Input : . . . . . . . the input argument as same to Listing 8
Output : volume . the output volume

1 local sMem[2][LM SIZE] . declear dual scratchpad memories
2 sMem[0]← img[0] . prefetching by sub-line alg. as in line 29
3 sum← 0 . declear registers as in line 21
4 for i = 0 to B − 1 do
5 if i + 1 < B then
6 sMem[(i+1)%2]← img[i + 1] . prefetching without barrier
7 sum← sMem[i%2] . compute via scratchpad as in line 39
8 barrier(CLK LOCAL MEM FENCE) . barrier as in line 41

9 volume← sum . update volume as in lines 44∼45

Fig. 3: The reconstructed volume data using open source data in
RabbitCT [7].

Table 1: Evaluation environment.

Intel CPU Xeon Xeon Xeon Core
E5-2630 v4 E5-2650 v3 Gold 6140 i7-9700K

Cores 10 10 18 8
Threads/core 2 2 1 1

Frequency 2.2GHz 2.3GHz 2.3GHz 3.6GHz
Sockets 2 2 2 1
Memory 256GB 256GB 192GB 32GB

OS CentOS 7.4 CentOS 7.4 CentOS 7.4 Ubuntu 16.04

host codes, ”-O3 -fopenmp -lpthread -std=c++11 -march=native
-fno-tree-vectorize -fno-tree-slp-vectorize” is adopted for compi-
lation. Since the arithmetical computation is independent of the
content of projections and volume data, we use volume data of
RabbitCT [7] as in Figure 3 to generate a wide variant of projec-
tions by a forward-projection tool in RTK library [22]. The sizes
of the experimental projections include 2562, 5122, 10242. The
number of projections is fixed as 512.

In Table 2, we list a collection of back-projection kernels us-
ing algorithms as illustrated in Section 3. We take advantage
of both OpenMP and OpenCL to optimize back-projection, the
characteristics of employed optimization techniques are named as
”Transpose”, ”Share”, ”Symmetry”, ”Scratchpad”, ”LocalMem”,
and ”Prefetching”. Regarding these techniques, the ”Trans-
pose” corresponds to the algorithm in Listing 4, ”Share” in List-
ing 5, ”Symmetry” in Listing 6, ”Scratchpad” in Listing 7. ”Lo-
calMem” indicates the use of sub-line algorithm in Figure 2a
in OpenCL-optimized implementation. ”Prefetching” means the
use of technique in Algorithm 1, which uses local memory via
OpenCL.

Table 2: Back-projection Kernel names and employed optimiza-
tions.

API Name Tr
an

sp
os

e

Sh
ar

e

Sy
m

m
et

ry

Sc
ra

tc
hp

ad

L
oc

al
M

em

Pr
ef

et
ch

in
g

baseline
transpose mp X

OpenMP share mp X X

symmetry mp X X X

scratchpad mp X X X X

transpose cl X

share cl X X

share lm cl X X X

OpenCL symmetry cl X X X

symmetry lm cl X X X X

symmetry pf cl X X X X X

4.2 Results & Discussion
In this section, we evaluate the performance of the kernels as

listed in Table 2 and discuss the performance gains according to
the characteristics of the implementations.
4.2.1 Impact of batched processing

This section discusses the impact of batched processing on
OpenCL-optimized back-projection kernels. We do not show the
performance impacts on the OpenMP-optimized algorithms due
to their performances are independent of such processing. Taking
Listing 1 for an instance, the pragma syntax in line 4 is inside
the loop of batched processing. Using our fastest kernel (namely
symmetry pf cl in Table 3) as an illustrative example, we show
its performance with different configurations of batch numbers in
Figure 4. It is clear that the performance increases greatly with a
smaller ratio of problems (as defined in Section 2.3), e.g. the per-
formance of problem 2562 × 512→ 2563 on all CPUs is nearly
linear to the number of batches. It is because using a large batch
help to improve the data locality and reduce global memory ac-
cess.
4.2.2 Performance on CPUs

As shown in Table 3, we report the performance of several
back-projection kernels on different CPUs. The evaluated prob-
lems are as follows: the sizes of input problems are 2562, 5122,
and 10242; the sizes of output problems are 2563, 5123, and
10243. The baseline implementation can refer to Listing 1,
the characteristics of all evaluated kernels can be found in Ta-
ble 2. Among OpenMP-optimized algorithms, the symmetry mp
achieves the highest performance due to the best uses of opti-
mizing techniques. Mostly, the symmetry pf cl achieves the best
performance as emphasized in blue color. Comparing to the re-
sults of baseline implementations as emphasized in blue color,
the symmetry pf cl performs up to 10× speed up. It is notewor-
thy that a part of the ratio of speed up can be found in Figure 5.
4.2.3 Discussing optimizations

In Figure 5, we display the detailed speed up the performance
of seven kernels by comparing to the kernel of baseline mp. We
can conclude as follows:
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(a) Performance of symmetry pf cl on dual E-2630 CPUs.
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(c) Performance of symmetry pf cl on dual Gold 6140 CPUs.
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(d) Performance of symmetry pf cl on a single i7-9700K CPU.

Fig. 4: Performance evaluation on kernel of symmetry pf cl with a variant of batch number, i.e. 1, 2, 4, . . . , 32.

(i) OpenCL-based kernels outperform the OpenMP-based kernels
due to the speed up by OpenMP-optimized kernels is less than
1.5× and OpenCL-optimized kernels can up to 10×, e.g. sym-
metry mp and symmetry pf cl.

(ii) The cache prefetching methodology (as in Section 3.2.2) is ef-
fective to improve the OpenCL kernels. We can find out the
symmetry pf cl performs better than symmetry pf cl in a vari-
ant of CPUs and problems.

(iii) Sub-line algorithm (as in Section 3.2.1) is very effective to im-
prove the performance of back-projection kernels. It is clear
that both share lm cl and symmetry lm cl perform better than
share cl and symmetry cl, respectively.

(iv) The used techniques such as sharing data and geometry sym-
metry as illustrated in Section 3.1 contribute to improving the
performance of back-projection kernels. Obviously, share cl,
share lm cl, and symmetry cl outperform the transposal cl.

5. Related work
Back-projection is a rich-researched computing kernel. Target-

specified hardware is often adopted to speed up the computation
of back-projection. In [3], Wu et al. used Application-Specific
Integrated Circuits (ASIC) to speed up the back-projection algo-
rithm. The authors in [4], [5], [31], [32] also employed FPGA to
tune the computation of FDK algorithm. Recently, there exists a
trend as in [4], [5], [31], [32] to use high-level synthesis method,
e.g. OpenCL, to generate the fast back-projection kernels on
FPGA accelerator rather than using HDL language for lower the
developing cost. In [18], [33], the authors employed the SIMD
instruction set extensions to speed up the FDK computation and
achieved outstanding performance on CPUs. In [34], Johannes
et al. optimized the RabbitCT benchmark on the Intel Xeon Phi
accelerator as performance engineering. Using a fixed-point DSP
(Digital Signal Processor) platform, Liang et al. presented an op-
timized implementation of the FDK and achieved state-of-the-art
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Table 3: Performance of back-projection on CPUs by OpenMP and OpenCL in an unit of GUPS. The batch number is fixed as 32.

CPU kernel Performance (GUPS)
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2
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2
→
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24

3

O
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nM
P

E
5-

26
30
×

2 baseline 1.22 1.27 1.35 1.25 1.29 1.37 1.12 1.28 1.37
transpose mp 1.05 1.23 1.32 1.04 1.24 1.32 1.03 1.27 1.33
share mp 1.45 1.63 1.75 1.41 1.59 1.74 1.21 1.64 1.77
symmetry mp 1.52 1.67 1.84 1.50 1.71 1.84 1.48 1.68 1.86
scratchpad mp 1.30 1.43 1.54 1.36 1.50 1.53 0.89 1.10 1.25

E
5-

26
50
×

2 baseline 1.25 1.30 1.38 1.29 1.30 1.41 1.22 1.31 1.41
transpose mp 1.08 1.27 1.36 1.08 1.27 1.36 1.04 1.28 1.36
share mp 1.43 1.67 1.81 1.42 1.68 1.81 1.35 1.66 1.81
symmetry mp 1.54 1.73 1.91 1.55 1.78 1.91 1.53 1.75 1.93
scratchpad mp 1.46 1.56 1.61 1.43 1.56 1.61 0.92 1.12 1.30

G
ol

d-
61

40
×

2 baseline 2.52 2.65 2.63 2.52 2.64 2.78 2.31 2.58 2.72
transpose mp 2.43 2.59 2.64 2.38 2.53 2.69 2.28 2.53 2.65
share mp 3.18 3.44 3.49 3.14 3.46 3.58 2.91 3.40 3.50
symmetry mp 3.41 3.29 3.40 3.20 3.41 3.37 3.02 3.49 3.55
scratchpad mp 2.19 2.81 2.85 1.71 2.80 2.96 1.67 1.99 2.92

i7
-9

70
0K
×

1 baseline 0.95 0.95 0.93 0.91 0.93 0.93 0.88 0.92 0.92
transpose mp 0.91 0.92 0.91 0.89 0.90 0.91 0.89 0.90 0.90
share mp 1.29 1.30 1.30 1.27 1.28 1.29 1.25 1.27 1.29
symmetry mp 1.31 1.20 1.18 1.31 1.22 1.19 1.29 1.28 1.24
scratchpad mp 0.91 0.93 0.92 0.88 0.93 0.96 0.65 0.80 0.86

O
pe

nC
L

E
5-

26
30
×

2

transpose cl 3.10 3.28 3.30 2.87 3.17 3.21 1.53 2.55 2.76
share cl 5.09 5.58 5.70 4.58 5.33 5.53 2.02 3.82 4.64
share lm cl 6.23 7.58 7.84 5.06 6.69 7.27 2.75 4.42 6.37
symmetry cl 4.97 5.51 5.59 4.24 4.99 5.19 1.91 3.11 4.11
symmetry lm cl 7.82 9.56 10.2 6.37 8.30 9.40 3.18 5.56 7.58
symmetry pf cl 8.10 9.78 10.8 6.40 8.58 9.93 3.15 5.75 8.08

E
5-

26
50
×

2

transpose cl 3.23 3.40 3.43 3.03 3.30 3.33 1.49 2.61 2.84
share cl 5.34 5.86 5.94 4.92 5.64 5.79 1.88 3.81 4.72
share lm cl 6.53 7.85 8.18 5.34 7.02 7.66 2.26 4.40 6.64
symmetry cl 5.15 5.64 5.69 4.48 5.17 5.25 1.84 3.19 4.22
symmetry lm cl 8.23 10.0 10.8 6.74 8.83 9.90 2.48 5.36 7.97
symmetry pf cl 8.52 10.2 11.3 6.85 9.11 10.3 2.48 5.44 8.48

G
ol

d-
61

40
×

2 transpose cl 5.45 5.94 6.03 4.70 5.92 6.06 2.65 4.05 5.93
share cl 9.02 11.3 11.8 7.25 11.1 11.8 3.95 6.38 11.2
share lm cl 13.1 17.7 19.4 10.1 15.6 17.9 4.94 10.2 15.4
symmetry cl 9.50 11.9 12.6 7.18 11.3 12.4 3.76 5.90 10.4
symmetry lm cl 16.4 24.8 28.8 11.6 21.4 26.6 5.52 11.2 20.4
symmetry pf cl 15.9 25.0 27.9 11.3 21.6 26.8 5.37 11.1 20.8

i7
-9

70
0K
×

1 transpose cl 2.00 1.92 1.91 1.87 1.88 1.90 1.06 1.58 1.72
share cl 3.05 3.14 2.93 2.76 3.14 2.98 1.19 2.28 2.58
share lm cl 4.70 5.37 5.49 2.88 4.62 4.97 1.04 2.41 4.25
symmetry cl 3.51 3.63 3.34 2.54 3.22 3.16 1.12 1.97 2.54
symmetry lm cl 5.63 6.34 6.36 3.34 5.03 5.89 1.14 2.57 4.58
symmetry pf cl 6.03 7.03 6.99 3.39 5.31 6.40 1.15 2.54 4.72

balance in cost and power consumption [6]. On several hardware
accelerators platforms (i.e. CPUs, GPGPUs, Intel Xeon Phi), Ser-
rano et al. [35] illustrated a parallelized FDK implementation. To
solve the out-of-core problem, the authors in [10], [28] discussed
decomposing the output problems into neighboured sub-volumes.

Using OpenCL is an effective approach to improve the per-
formance of applications on multicore CPUs. Comparing to the
naive vectorization, the authors in [36] demonstrated a novel data-
flow conversion algorithm and achieved an average speedup fac-
tor of 2.5 on Intel CPUs. In [37], the authors demonstrated the
performance advance of OpenCL on modern multicore CPUs.

Regarding CT image reconstruction, the major requirements
are lower radiation dosage, faster computation, and higher im-
age quality. In practice, Filtered back-projection methodology is
widely employed for image reconstruction due to the balanced
and acceptable performance [1] that meets the major require-
ments. Unlike the prevalent approach that employs expensive
accelerators (e.g. GPU, FPGA) to speed up the computation of
the FDK algorithm, we directly use the commonly accessible In-
tel CPU (×86 architecture).
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Fig. 5: Speed up evaluation on four kinds of Intel CPU. The baseline performance is from the function of baseline mp.

6. Conclusion & future work
To leverage the use of OpenCL on CPUs, this paper demon-

strates several algorithmic and paralleling optimizations for FDK
algorithms on several Intel ×86 multicore processes. Our results
show that the OpenCL-optimized back-projection performs up to
10 times faster than the multi-threading optimized implementa-
tion. Our implementations benefit from the high-level vectoriza-
tion, best use of the constant/local memory in OpenCL, and reg-
ular memory access to the host memory. We innovate a sub-line
algorithm to cache the projection for reducing the global mem-
ory access and reducing the arithmetic computations for bilinear
interpolation. The proposed algorithms can be used in medical
and industrial applications for high-resolution image reconstruc-

tion [38] due to its outstanding performance. Additionally, our
methodology can be applied in heterogeneous accelerators, e.g.
GPU, FPGA. In the future, we plan to implement our kernels us-
ing SYCL [39] for a wide variant of accelerators due to SYCL is a
C++ abstraction layer on the top of OpenCL and can simplify the
OpenCL programming. we also intend to apply OpenCL/SYCL
in the medical image processing applications such as volume ren-
dering [40].
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