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High-performance cloud computing
for exhaustive protein–protein docking

Masahito Ohue1,2,a) Kento Aoyama1,3 Yutaka Akiyama1,2

Abstract: Public cloud computing environments have achieved remarkable improvements in computational
performance in recent years, and are also expected to be able to perform massively parallel computing. As the
cloud enables users to use thousands of CPU cores and GPU accelerators casually, and various software types
can be used very easily by cloud images, the cloud is beginning to be used in the field of bioinformatics. In
this study, we ported the original protein–protein interaction prediction (protein–protein docking) software,
MEGADOCK, into Microsoft Azure as an example of an HPC cloud environment. A cloud parallel comput-
ing environment with up to 1,600 CPU cores and 960 GPUs was constructed using four CPU instance types
and two GPU instance types, and the parallel computing performance was evaluated. Our MEGADOCK
on Azure system showed a strong scaling value of 0.93 for the CPU instance when H16 instance with 100
instances were used compared to 50, and a strong scaling value of 0.89 for the GPU instance when NC24
instance with 20 were used compared to 5. Moreover, the results of the usage fee and total computation
time supported that using a GPU instance reduced the computation time of MEGADOCK and the cloud
usage fee required for the computation. The developed environment deployed on the cloud is highly portable,
making it suitable for applications in which an on-demand and large-scale HPC environment is desirable.

Keywords: cloud computing, Microsoft Azure, GPU computing, protein–protein docking, MEGADOCK

1. Introduction

The cloud computing environment is regarded as an im-

portant computing resource in large-scale data analysis [1].

The cloud computing environment is often used for calcu-

lation and analysis accompanied by big data, such as ge-

nomics and biomedicine [2, 3]. The development of pub-

lic clouds such as Microsoft Azure, Amazon AWS, and the

Google Cloud Platform has contributed to the performance

of large-scale bioinformatics analysis on the cloud environ-

ment [4–6]. Bioinformatics problems including sequence ho-

mology searches [7–9], similarity searches of tertiary protein

structures [10], ab initio tertiary protein structure predic-

tion [11], and protein–ligand docking [12, 13] are applied in

cloud computing environments as a computing resource.

Among the numerous merits of several existing cloud com-

puting platforms, the pay-as-you-go concept whereby a user

can use as much as he/she wishes at any time is the great-

est advantage. Large-scale parallel computing using super-

computers enables large-scale simulation and processing of

substantial amounts of data, but a user account approval

procedure is required according to the institutional rules or

the services are available only for the member of the organi-

zation possessing the supercomputer. In particular, several
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barriers exist to use for commercial purposes and owing to

factors such as publicness, security and national strategy in

supercomputer at public institution. Generally it is difficult

for external people to use the public institution supercom-

puter casually. However, if it is on a cloud, anyone can

use computational resources on thousands of cores instantly

when necessary.

Distributed computing has mainly been selected as the

method for cloud computing. With the development of grid

computing, computation on the cloud by Apache Hadoop

has been conducted extensively [2, 4, 6, 7] and support tools

for constructing Hadoop clusters on the cloud have been es-

tablished [14]. However, while Hadoop/MapReduce can eas-

ily construct a distributed task calculation environment, it is

versatile and therefore contains an excessive amount of func-

tions. These tools exhibit limited applicability to certain ar-

eas such as data mining, because MapReduce provides poor

performance on problems with an iterative structure present

in the linear algebra that underlies a substantial amount of

data analysis [15]. To improve the performance and enable

flexible design according to scientific applications, an origi-

nal task distribution system has been constructed based on

the message passing interface (MPI) in several cases [8].

Fortunately, AWS and Azure provide instances and net-

works with awareness of parallel high-performance comput-

ing (HPC). For example, in Azure, which was used in this

research, an instance of a remote direct memory access

(RDMA) network (InfiniBand) is also provided. Such an
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environment is expected to highly effective for parallel com-

puting applications. However, information such as which

instance should be used, the amount of scalability obtained,

and the price has not been sufficiently clarified in previous

studies.

Therefore, in this study, a large-scale parallel computa-

tion of a bioinformatics application was performed on sev-

eral cloud instances with suggestions for the choice of the

public cloud usage environment. We focused on protein–

protein interaction predictions, particularly the protein–

protein docking problem, as a bioinformatics application.

Protein–protein docking, which is a computational method

for predicting the structure of a protein complex from known

component structures, is a powerful approach that facili-

tates the discovery of otherwise unattainable protein com-

plex structures. Fast Fourier transform (FFT)-based rigid-

body initial protein–protein docking tools are the main-

stream of protein–protein docking [16]. Several applications

also require a huge number of dockings, such as consensus-

based refinement [17], large-scale interactome predictions

[18,19], and the identification of protein binders [20,21]. We

previously developed the supercomputer-powered software

MEGADOCK [18, 22, 23], and we drew on this experience

to develop a protein–protein docking tool for efficient HPC

computation on the public cloud. A protein–protein dock-

ing environment that can achieve large-scale analysis on the

cloud is necessary in the current global situation, in which

large-scale computing environments are readily available on

the cloud.

In this study, we demonstrated the implementation

and performance of high-performance cloud protein–protein

docking. We evaluated the parallelization efficiency (strong

scaling) of MEGADOCK implemented on Microsoft Azure,

and verified its usage efficiency for GPU instances.

2. Materials and Methods

2.1 Configuration of Azure cloud computing en-

vironment

A unit of computing environment on Azure is called an

instance or virtual machine (VM). The machine architecture

on Azure is composed of multiple VMs and storage, as il-

lustrated in Fig. 1. Each VM and storage is first deployed

from AzureCLI and then registered as a resource group in

Azure. Thereafter, the computation task is executed on mul-

tiple VMs by means of MPI communication. The programs

for the bulk VM deployment and bulk undeployment were

developed in this study.

2.2 MEGADOCK: protein–protein docking tool

MEGADOCK [23] is our software for protein–protein in-

teraction prediction. The 3D structures (PDB data) of two

proteins for predicting interaction are input, and presence

or absence of the interaction is output in the form of a score.

MEGADOCK is a multi-threaded implementation that

uses OpenMP and runs on a multi-core CPU. Furthermore,

a GPU-implemented version is available, which runs on the

Fig. 1 Configuration of Azure cloud computing environment

multiple GPUs using the CUDA library [24]. A multi-node

parallel implementation version was also created by hybrid

parallelization combined with MPI parallelization [18]. In

this work, we constructed parallel implementations for both

the CPU VMs and GPU VMs. The details of the paral-

lelization are presented in the following subsection.

2.3 Handling multiple VMs

In the multi-node implementation of MEGADOCK, a

master–worker-type task dispatching is performed using

MPI. Specifically, one process becomes the master process,

and tasks are allocated to the worker processes while the re-

maining tasks and computing resources are monitored. The

tasks are independent for each protein pair and can be data

parallelized.

In Azure cloud, we adopted the master–worker-type task

dispatching in parallel, whereby one process was the mas-

ter process and the remaining resources were used to ex-

ecute multiple worker processes, and MPI communication

was used to realize the task dispatching for the protein–

protein interaction prediction. Unlike the case in a normal

cluster-type computing environment, the distance between

real machines in a cloud computing environment tends to

be large, and MPI implementation is generally not consid-

ered as suitable. However, as MEGADOCK does not require

heavy communication between tasks (worker processes), it

was expected that the large-scale parallelization would not

cause serious slowdowns.

Among the Azure instances available for HPC applica-

tions, we targeted A9, DS14, H16, and H16r as CPU in-

stances with 16 CPU cores, as well as NC24 and NC24r

as GPU instances equipped with 24 CPU cores and 4 GPU

chips. The details of each instance are displayed in Table 1.

For each process to be able to use one GPU, a task dispatch-

ing was performed to run four processes per instance (on a

VM). That is, the number of CPU cores allocated to each

task was 1/4 of the number of cores in each VM: 4 cores for

CPU instances and 6 cores for GPU instances.

2.4 Experimental settings

The dataset was the total of 59 protein heterodimeric

complexes in the ZLAB protein–protein docking benchmark

(version 1.0) [25]. The 59 heterodimers were divided, and

all-to-all (cross) docking calculations were performed on the

59 receptor proteins and 59 ligand proteins.
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Table 1 Details of Azure instances used in study

Instance CPU # cores Total DP peak (CPU) GPU Network Price (at Mar 2017)
DS14 Xeon E5-2660 @2.20 GHz×2 16 281.6 GFlops N/A - 1.39 USD/h
A9 Xeon E5-2670 @2.60 GHz×2 16 332.8 GFlops N/A RDMA 1.93 USD/h
H16 Xeon E5-2667v3 @3.20 GHz×2 16 691.2 GFlops N/A - 1.75 USD/h
H16r Xeon E5-2667v3 @3.20 GHz×2 16 691.2 GFlops N/A RDMA 1.92 USD/h
NC24 Xeon E5-2690v3 @2.60 GHz×2 24 883.2 GFlops Tesla K80×4 - 4.32 USD/h
NC24r Xeon E5-2690v3 @2.60 GHz×2 24 883.2 GFlops Tesla K80×4 RDMA 4.75 USD/h

Table 2 Results of MEGADOCK on Azure CPU instances (val-
ues in parentheses are the ratio of the calculation speed
to H16.)

Instance 50 instances 100 instances Strong scaling
DS14 3,283 s (0.47) 1,696 s (0.48) 0.968
A9 2,369 s (0.64) 1,352 s (0.61) 0.876
H16 1,527 s (1) 820 s (1) 0.931
H16r 1,640 s (0.93) 953 s (0.86) 0.861

3. Results and Discussion

3.1 MEGADOCK on multiple CPU instances

The results of the parallel execution of MEGADOCK on

50 and 100 instances using the CPU instances DS14, A9,

H16, and H16r are presented in Table 2. The calculation

time values were the median values measured three times.

In this case, strong scaling was the value calculated as strong

scaling = (T50/T100)/(100/50) when the computation times

of 50 and 100 instances were T50 and T100, respectively.

The experimental results demonstrated that the compu-

tation using the H16 instance was the fastest, followed by

H16r, A9, and DS14. This ordering is naturally correspond-

ing to the order of CPU performance (total DP peak) pre-

sented in Table 1.

When 100 H16 instances (1,600 CPU cores) were used,

the calculation was completed in 820 s. This was the speed

at which protein–protein docking calculations could be per-

formed at 255 pairs per minute.

The calculation for the H16r instance was slightly slower

than that for H16. The H16r is an instance that can

use the RDMA network interface and exhibits higher com-

munication performance than the H16, but MEGADOCK

achieves higher performance even without RDMA network.

An RDMA network may not be necessary for many bioinfor-

matics applications in which data parallelization is possible.

Moreover, as an instance with an RDMA network is more

expensive than an instance without it, it is more reasonable

not to use an RDMA network from a cost perspective.

The strong scaling was greater than 0.85 in the range of

this measurement in all instances.

3.2 MEGADOCK on multiple GPU instances

Using the GPU instances NC24 and NC24r, we measured

the computation times with using 5, 10, 20, and 40 instances.

Fig. 2 presents the measured calculation times and speed

improvement rates. Owing to the limit of Microsoft Azure

on the number of maximum concurrent GPUs (quota limit),

the maximum number of allocated instances was 40. In the

comparison between the NC24 and NC24r, the NC24r with
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Fig. 2 Results of calculation time measurements on GPU in-
stances: (a) computation time for each number of in-
stances and (b) speed ratio with respect to 5 instances

an RDMA network slightly outperformed the NC24 in terms

of speed, but the difference was very small. As with the CPU

instance, the GPU instance would not require an RDMA

network for this application.

NC24 is discussed below. When using 40 instances of

NC24 (960 CPU cores and 160 GPUs), the calculation was

completed within 448 s. This was faster than the result for

the CPU instance indicated in Table 2 (H16: 1,600 CPU

cores), and enabled 466 pairs of protein–protein docking to

be performed per minute. For strong scaling, the paralleliza-

tion efficiency of 20 instances was 0.89 for 5 instances, which

was similar to that of the CPU instances. However, when 40

instances were used, the speed improvement was only 5.91-

fold faster than that of 5 instances, with a strong scaling

value of 0.74.

3.3 Which instance should be used from a cost

perspective

CPU instance According to the comparison of CPU

instances, the computation speed of the H16 instance was

the most favorable. Comparing the H16 with the less expen-

sive DS14, the speed improvement ratio was 1,696 s/820 s =

2.07. The price ratio between H16 (1.75 USD/h) and DS14

(1.39 USD/h) was 1.75 USD/ 1.39 USD = 1.26. As a result,

it is more reasonable to use the H16 than the DS14, as the

value of the speed improvement ratio is larger than the price

ratio. Both A9 and H16r are slightly more expensive because

they have an RDMA network, but MEGADOCK does not

need to use these instances because no increase obtained

in the computation speed when using an RDMA network.

When using applications that require a powerful network,

we recommend the H16r, which is approximately the same

price as the A9, but provides higher CPU performance.

GPU instance A significant increase in the speed was

achieved when using the GPU instance. However, unlike the

H16 and DS14, the NC24 has 24 CPU cores, making a direct

comparison difficult. In the following, we consider the max-
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Table 3 Summary of results for H16 and NC24 instances

Instance # inst. CPU cores GPUs Time Price (1 inst.) Total fee∗

H16 100 1,600 N/A 820 s 1.75 USD/h 39.9 USD
NC24 40 960 160 448 s 4.32 USD/h 21.5 USD
∗ The total fee was obtained by Price × Time (h) × # inst.

imum measurements at H16 (100 instances, 1,600 cores, and

820 s) and NC24 (40 instances, 960 cores and 160 GPUs, and

448 s) in terms of the cost. Table 3 provides a summary

of these results. In Table 3, the total fee was calculated by

ignoring the time required for factors such as VM deploy-

ment and assuming that the product of {calculation time ×
number of instances} used was the total cloud usage time.

Consequently, the same calculation could be performed for

21.5 USD for NC24, compared to 39.9 USD for H16. The

NC24 has a shorter execution time and is almost twice as

advantageous in terms of usage fees. For GPU-enabled ap-

plications, the use of GPU instances offers the potential to

yield computational results rapidly and inexpensively, and

active consideration thereof is recommended.

4. Conclusions

We constructed a computing environment for large-scale

protein–protein docking calculations with the MEGADOCK

software on the public cloud of Microsoft Azure, and per-

formed large-scale parallel calculations on approximately

1,000 GPUs. We found that MEGADOCK provided the

fastest GPU computation on the NC24 instance and the

cloud computing cost was lower than that of using CPU

instances. Large-scale data analysis with MEGADOCK re-

quires high CPU and GPU performance, but does not re-

quire high communication performance. For bioinformatics

applications similar in properties to MEGADOCK, it would

be most cost-effective to use the NC24 instance or the similar

instance without high-bandwidth network, like RDMA.

The use of the public cloud environment is advantageous

owing to the portability and reproducibility of computing

applications, and it allows for the rapid construction of

large-scale applications such as the one investigated in this

study. In addition to the protein–protein docking calcula-

tions demonstrated in this study, various other bioinformat-

ics applications operating on the public cloud will certainly

contribute to accelerating the research in this field.
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