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Abstract: The betweenness centrality is a widely used property to identify important nodes in social networks. Sev-
eral algorithms have been studied to efficiently compute the top-k nodes with the highest betweenness centrality on a
graph where all the data is available. However, all the graph data of real social networks are not typically available to
third parties such as researchers or marketers, and hence, an estimation algorithm based on sampling the graph data
is required. Accurately estimating the top-k nodes with the highest betweenness centrality from a small sample of a
graph is a challenging task. First, the top-k nodes need to be included in the small sample. Second, nodes with the
high betweenness centrality that is defined on the whole graph need to be accurately identified from the small sample.
We propose a random walk-based algorithm to estimate the top-k nodes with the highest betweenness centrality by
utilizing the ego betweenness centrality that has a high correlation with the betweenness centrality in social networks.
The proposed algorithm firstly obtains a small sample that includes many of top-k nodes with the highest betweenness
centrality via a random walk on a social network. Then, we obtain unbiased estimates of the ego betweenness central-
ity of sampled nodes and approximate the top-k nodes with the highest betweenness centrality as the top-k nodes with
the highest estimated ego betweenness centrality. The proposed estimator efficiently estimates the ego betweenness
centrality of each sample without additionally sampling the graph data by utilizing the neighbor data of the previous
and the next samples. The experiments using real social network datasets show that the proposed algorithm estimates
more accurately the top-k nodes with the highest betweenness centrality than existing algorithms when the sample size
is small.
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1. Introduction

Online social networks (OSNs) have been primarily studied to
understand the nature of the social structure such as human con-
nections and behaviors [1], [17], [25], [28]. The very large-scale
OSNs, such as Facebook with over 2 billion active monthly users
as of December 2019 [15], significantly improve the research ex-
tent and accuracy of social network analysis [7]. A basic and ef-
fective approach to analyze the structure is to calculate the prop-
erties of the graph that consists of nodes as users and edges as
users’ connections. This study focuses on the betweenness cen-

trality that is a property to measure the importance of nodes on a
graph.

We aim to identify the top-k nodes with the highest between-
ness centrality in OSNs. The betweenness centrality of a node
is defined as the sum of the ratio of the shortest paths that pass
through that node between any two nodes in a graph [16]. This
property has been used to analyze various networks, e.g., pro-
tein interaction networks [20] and airport networks [19], and so-
cial networks for clustering and community detection [31]. Users
with high betweenness centrality in OSNs have a considerable
advantage in terms of the spread of information or influence be-
cause nodes with high betweenness centrality exist on the shortest
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paths between many node pairs.
However, the accurate identification of the top-k nodes with the

highest betweenness centrality in social networks is a challenging
task because of the access limitations to the graph data. Several
efficient algorithms [3], [8], [10], [14], [23], [32], [34] have been
studied to efficiently compute the top-k nodes with the highest
betweenness centrality on a graph where all the data is available;
however, all the graph data of social networks is not typically
available to third parties such as researchers or marketers due to
the privacy or security concerns. In practical scenarios, we sam-
ple a part of graph data through the application programming in-
terfaces (APIs) [17] and then estimate top-k nodes from the sam-
ple.

It is non-trivial to accurately estimate the top-k nodes with the
highest betweenness centrality from a small sample of the graph
data. First, we need to obtain a sample that includes many of
the top-k nodes because we cannot estimate top-k nodes that are
not in the sample. Then, we need to accurately identify the top-k
nodes that are included in the sample. The betweenness centrality
of nodes in the small sample may differ greatly from the between-
ness centrality on the whole graph.

There are two existing algorithms to estimate top-k nodes with
the highest betweenness centrality via random walk-based sam-
pling [26], [27]. A random walk is an effective sampling ap-
proach to obtain a sample that includes many of the top-k nodes
with the highest betweenness centrality on social networks where
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the neighbor data of users can be obtained through querying the
APIs [26]. Maiya et al. [27] proposed an algorithm that approxi-
mates the top-k nodes with the highest betweenness centrality on
the original graph as the top-k nodes with the highest betweenness
centrality on a subgraph induced from the sample. Lim et al. [26]
proposed an algorithm that approximates the top-k nodes with the
highest betweenness centrality on the original graph as the top-k
nodes with the highest degree in sampled nodes.

The existing algorithms have room to improve estimation accu-
racy. Maiya et al.’s algorithm has a low estimation accuracy with
the small sample size because the betweenness centrality of nodes
in the induced subgraph has large errors between the original be-
tweenness centrality due to missing the large part of the graph
data [5], [12]. Lim et al.’s algorithm has achieved the improve-
ment of the estimation accuracy by utilizing the top-k nodes with
the highest degree that are accurately estimated with the small
sample size and are largely overlapping with the top-k nodes with
the highest betweenness centrality. We aim to further improve the
estimation accuracy by utilizing the top-k nodes with the highest
another centrality that are more largely overlapping with the top-
k nodes with the highest betweenness centrality than those with
the highest degree.

We propose a random walk-based algorithm that approximates
the top-k nodes with the highest betweenness centrality as the
top-k nodes with the highest estimated ego betweenness central-

ity. The ego betweenness centrality of a node is defined as the
sum of the ratio of the shortest paths that pass through that node
between only the neighbor pairs [14]. We have observed that
more of the top-k nodes with the highest ego betweenness cen-
trality are the top-k nodes with the highest betweenness centrality
than those with the highest degree in real social networks. Fur-
ther, the proposed algorithm obtains unbiased estimators of the
ego betweenness centrality of sampled nodes by a random walk.
The proposed estimator efficiently estimates the ego betweenness
centrality of each sample without additionally sampling the graph
data by utilizing the neighbor data of previous and next samples.
The experimental results show that the proposed algorithm im-
proves the estimation accuracy of top-k nodes with the highest
betweenness centrality in real social network datasets when the
sample size is small.

This paper is an extended version of our previous study [29].
The differences are as follows. First, we provide a time complex-
ity analysis of the proposed algorithm in Section 4.2. Second, we
empirically show that more of the top-k nodes with the ego be-
tweenness centrality in real social networks are the top-k nodes
with the betweenness centrality than those with the highest de-
gree in Section 5.2. Finally, we evaluate the computation time of
the existing and proposed algorithms in Section 5.3.

2. Related Work

Brandes’ algorithm is currently the fastest known algorithm to
exactly calculate the betweenness centrality of all the nodes in a
graph [8]. This algorithm solves the single-source shortest path
problem (SSSP) from every node, v, and then traverses backward
on these paths to efficiently compute the contribution of the short-
est paths from, v, to the betweenness centrality of other nodes.

The algorithm requires at least O(nm) time for the unweighted
graphs and O(nm + n2logn) time for the weighted graphs, where
n is the number of nodes and m is the number of edges. The ex-
act identification of the top-k nodes with the highest betweenness
centrality on a large graph takes considerably computation time.

Several algorithms have been studied to reduce the computa-
tion time by approximating the top-k nodes with the highest be-
tweenness centrality [3], [10], [14], [23], [32], [34]. Previous al-
gorithms are classified into two main approaches. The first ap-
proach is to approximate the betweenness centrality of all nodes
via a random sampling [3], [10], [34]. Brandes and Pich solved
the SSSP using a small set of nodes randomly sampled from
nodes in a graph [10]. Bader et al. proposed an adaptive sampling
algorithm that computes the approximation for nodes with high
betweenness centrality by keeping track of the partial contribu-
tion of each sampled node [3]. Riondato and Kornaropoulos ap-
proximated the betweenness centrality of all nodes by randomly
sampling the shortest paths between any two nodes [34].

The second approach is to approximate the top-k nodes with
the highest betweenness centrality as the top-k nodes with the
highest another centrality that can be fast calculated and are
largely overlapping the top-k nodes with the highest betweenness
centrality [14], [23], [32]. Everett and Borgatti proposed and uti-
lized the ego betweenness centrality that is defined as the sum
of the proportion of the shortest paths that pass through a node
between the neighbor pairs [14]. Pfeffer and Carley utilize the
k-betweenness centrality, proposed by Borgatti and Everett [6],
that is defined as the sum of the proportion of the shortest paths
that pass through a node between node pairs whose shortest path
length is not more than k [32]. Kourtellis et al. proposed and uti-
lized the k-path centrality which is defined on random paths in a
graph whose length is k or less but which need not necessarily be
the shortest paths [23].

The proposed algorithm that utilizes the ego betweenness cen-
trality corresponds to the second approach described above; how-
ever, our study is different from a previous study [14] in terms of
the assumption that only a small part of the graph data is avail-
able. While the previous study [14] exactly computes the ego
betweenness centrality of nodes, the proposed algorithm obtains
unbiased estimators of the ego betweenness centrality of sampled
nodes via a random walk. Similarly, our study is different from
the previous studies mentioned above because of the assumption
that the available graph data is limited.

Another main related work is the previous studies that aimed
to obtain unbiased estimators of the properties of social net-
works via random walk-based sampling [2], [11], [13], [17], [21],
[22], [26], [27], [33], [37]. Gjoka et al. designed a practical
framework to obtain unbiased estimators of properties of so-
cial networks via the re-weighted random walk scheme where
each sample obtained by a random walk is re-weighted to re-
move the sampling bias [17]. The algorithms based on re-
weighted random walk have been studied for several graph prop-
erties [11], [13], [21], [22], [33], [37]. The proposed algorithm
is based on the re-weighted random walk and is inspired by
the algorithm to estimate the clustering coefficient via a random
walk [21]; however, the unbiased estimator of the ego between-
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ness centrality has not been studied. There are several stud-
ies [2], [26], [27] that focus on estimating the centrality of nodes
via a random walk. Avrachenkov et al. studied an algorithm to
accurately estimate high degree nodes via a random walk with
the small sample size [2]; however, they do not focus on the be-
tweenness centrality that is our interest.

3. Preliminaries

3.1 Notations and Definitions
We represent a social network as a connected, simple, and

undirected graph G = (V, E), where V = {v1, v2, ..., vn} denotes the
set of n nodes (users), and E denotes the set of edges (friendship).
We assume that G is static. Let N(i) = {v j ∈ V : (vi, v j) ∈ E} de-
note the set of neighbors of a node vi and di = |N(i)| denote the
degree of a node vi. We define the sum of degrees as D =

∑
vi∈V di.

Let dmax denote the maximum degree of a node in the graph. Let
Nj(i) = N(i)\(N( j) ∪ {v j}) denote the set of neighbors of vi that
are not v j and not neighbors of v j. Let σ j,k denote the number of
shortest paths between v j and vk, and σ j,k(i) denote the number of
shortest paths between v j and vk that pass through vi. If j = k, let
σ j,k = 1 by convention [8], [9].

The betweenness centrality [16] of vi is defined as the sum of
the proportion of the shortest path between all pairs of nodes in
the graph that pass through vi as follows:
Definition 1. The betweenness centrality of vi is defined as

BC(i) =
∑

v j ,vk∈V\{vi}

σ j,k(i)

σ j,k
.

The ego betweenness centrality [14] of vi is defined as the sum
of the proportion of the shortest path between the neighbor pairs
of vi as follows:
Definition 2. The ego betweenness centrality of vi is defined as

eBC(i) =
∑

v j ,vk∈N(i)

σ j,k(i)

σ j,k
.

3.2 Random Walk Sampling and Our Goal
We sample indices and their neighbors of nodes by perform-

ing a random walk on a graph G. In a random walk, a walker
repeatedly moves to a randomly selected neighbor. The transition
probability of node vi to node v j in a random walk is defined as

pi, j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
di

(v j ∈ N(i))

0 (otherwise)
.

Let R = {xs}rs=1 be a sequence of indices of r sampled nodes
via random walk, where xs denotes an index of the s-th sampled
node. Let Pr[A] denote the probability that event A occurred.
We denote the distribution induced by a sample sequence, R, as
follows:

πR = (Pr[xr = 1], Pr[xr = 2], ..., Pr[xr = n]).

After many steps of a random walk, the probability Pr[xr = i]
converges to a certain value, di

D , for each node vi [21]. The fol-
lowing vector π is called the stationary distribution of G:

π =

(
d1

D
,

d2

D
, ...,

dn

D

)
.

Our goal is to accurately estimate the top-k nodes with the
highest betweenness centrality on G from a sequence of indices
and neighbors of r sampled nodes by a random walk, denoted by
{(xs,N(xs))}rs=1.

3.3 Existing Algorithms
There are two existing algorithms to estimate top-k nodes with

the highest betweenness centrality via random walk-based sam-
pling in social networks [26], [27].

Maiya and Berger-Wolf proposed an algorithm that approxi-
mates the top-k nodes with the highest betweenness centrality on
the original graph as the top-k nodes with the highest between-
ness centrality on a subgraph induced from sampled nodes [27].
The running time of computing the betweenness centrality of all
nodes in the induced subgraph is O(n′m′) by using Brande’s al-
gorithm [8], where n′ and m′ are the number of nodes and edges
in the induced subgraph, respectively.

Lim et al. proposed an algorithm that approximates the top-
k nodes with the highest betweenness centrality on the origi-
nal graph as the top-k nodes with the highest degree in sampled
nodes [26]. The running time of computing the degree central-
ity of r sampled nodes is O(r). This algorithm achieves the im-
provement of the estimation accuracy by utilizing the top-k nodes
with the highest degree that can be accurately estimated with
the small sample size and are largely overlapping with the top-k
nodes with the highest betweenness centrality in real social net-
works [4], [18], [30].

4. Proposed Algorithm

We propose an algorithm that approximates the top-k nodes
with the highest betweenness centrality as the top-k nodes with
the highest estimated ego betweenness centrality in sampled
nodes. The proposed algorithm obtains unbiased estimators of the
ego betweenness centrality of sampled nodes via random walk.
The proposed estimator efficiently estimates the ego betweenness
centrality of each sample, vxs , without additional sampling the
graph data by calculating the ratio of the shortest paths that pass
through vxs between the previous and next samples, vxs−1 and vxs+1 .

4.1 Unbiased Estimation of Ego Betweenness Centrality
We propose an unbiased estimator of the ego betweenness cen-

trality of each sampled node via a random walk.
First, we show the following lemma regarding the ego be-

tweenness centrality of a node vi on a simple graph:
Lemma 1. If G is a simple graph, i.e., G has no loops and mul-

tiple edges, the ego betweenness centrality of each node vi is as

follows:

eBC(i) =
∑
v j∈N(i)

∑
vk∈N j(i)

1
|N( j) ∩ N(k)| .

Proof. If vk = v j, the number of shortest paths between v j and
vk that pass through vi equals 0 because there is a shortest path
from v j to vk because of the definitions and the path does not pass
through vi. If vk ∈ N( j), the number of shortest paths between
v j and vk that pass through vi equals 0 because (v j, vk) ∈ E. If
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vk ∈ Nj(i), the number of shortest paths between v j and vk that
pass through vi equals 1 because there are no multiple edges and
(v j, vk) � E. Additionally, σ j,k = |N( j)∩N(k)| holds because there
is a shortest path between v j and vk for each common neighbor of
v j and vk. Therefore, for each v j ∈ N(i), it holds

σ j,k(i)

σ j,k
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|N( j)∩N(k)| (vk ∈ Nj(i))

0 (otherwise)
.

�

Then, we define the set of the ordinal numbers of a sample
sequence between 2 and r − 1 where a node vi is sampled as:

I(i) = {s : xs = i, 2 ≤ s ≤ r − 1}.

If s ∈ I(i), it means that a node vi is sampled at s-th step of a
random walk, where s is between 2 and r − 1.

For each s ∈ I(i), we define the proportion of the shortest paths
that pass through vxs between the previous and next samples, vxs−1

and vxs+1 , as a variable φs(i) as follows:

φs(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|N(xs−1)∩N(xs+1)| (vxs+1 ∈ Nxs−1 (i))

0 (otherwise)
.

We define the estimate of the ego betweenness centrality,
˜eBC(i), of a node vi as the average of φs(i) that is weighted with

d2
i to remove the sampling bias due to a random walk:

Definition 3. We define the estimate of the ego betweenness cen-

trality as

˜eBC(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
|I(i)|

∑
s∈I(i) di

2φs(i) (|I(i)| > 0)

0 (otherwise)
.

We obtain the following lemma regarding the estimate of the
ego betweenness centrality, ˜eBC(i):
Lemma 2. ˜eBC(i) is an unbiased estimator of the ego between-

ness centrality of vi, eBC(i).

Proof. We show E[ ˜eBC(i)] = eBC(i). We obtain

E[ ˜eBC(i)] = E[di
2φs(i)]

= di
2

∑
v j ,vk∈N(i)

Pr[xs−1 = j, xs+1 = k|xs = i]E[φs(i)|xs−1 = j, xs+1 = k]

= di
2

∑
v j∈N(i)

∑
vk∈N j(i)

Pr[xs−1 = j, xs+1 = k|xs = i]
1

|N( j) ∩ N(k)| .

The first equation holds because of the linearity of the expec-
tation. The second equation holds because of the law of total
expectation and both vxs−1 and vxs+1 are neighbors of vxs for each
s ∈ I(i). The third equation holds because of the definition of
φs(i). Pr[xl−1 = j, xl+1 = k|xl = i] is derived as follows:

Pr[xs−1 = j, xs+1 = k|xs = i] =
Pr[xs−1 = j, xs = i, xs+1 = k]

Pr[xs = i]

=
Pr[xs−1 = j]Pr[xs = i|xs−1 = j]Pr[xs+1 = k|xs−1 = j]

Pr[xs = i]

=

d j

D · 1
d j
· 1

di

di

D

=
1

di
2
.

Fig. 1 Example of a random walk. xs denotes the index of s-th sample.

The first equation holds because of the definition of the condi-
tional probability. The second and third equations hold because
of the transition probability and stationary distribution of a ran-
dom walk. Therefore, we obtain the following equation by using
the above equations and Lemma 1:

E[ ˜eBC(i)] = di
2

∑
v j∈N(i)

∑
vk∈N j(i)

1

di
2

1
|N( j) ∩ N(k)| = eBC(i).

�

It is remarkable that we can obtain an unbiased estimator of
the ego betweenness centrality, that needs the neighbor data in
the calculation, without additionally sampling the neighbor data.
The proposed estimator avoids additionally sampling the neigh-
bor data by calculating the proportion of the shortest paths that
pass through each sample between the previous and next samples,
φs(i).

Algorithm 1 describes the algorithm to obtain an unbiased es-
timator of the ego betweenness centrality of each sampled node
via a random walk.

Example: Let vi = i (1 ≤ i ≤ 8) as shown in the graph in
Fig. 1. Let R = (x1, x2, x3, x4) = (1, 2, 3, 5) be a sequence of in-
dices of the nodes sampled by a random walk with four steps. It
holds I(2) = {2}, I(3) = {3} and I(1) and I(5) are empty sets. First,
we calculate ˜eBC(2). It holds φ2(2) = 0 because vx3 = 3 is not in
Nx1 (2) = N1(2) = {4}. Thus, we conclude that ˜eBC(2) = 0. Then,
we calculate ˜eBC(3). It holds φ3(3) = 1, because vx4 = 5 is in
Nx2 (3) = N2(3) = {5, 6} and N(2) ∩ N(5) = {3}. Thus, we con-
clude that ˜eBC(3) = d2

3φ3(3) = 25. Finally, ˜eBC(1) = ˜eBC(5) = 0
because I(1) and I(5) are empty sets.

4.2 Number of Queries and Time Complexity
The proposed algorithm does not perform additional queries on

obtaining unbiased estimators of the ego betweenness centrality
of sampled nodes because we utilize the neighbor data of the pre-
vious and next sampled nodes, vxs−1 and vxs+1 , to calculate a vari-
able, φs(i), of each sampled node, vxs (see the definition of φs(i)).
Therefore, the proposed algorithm performs the same number of
queries as existing algorithms [26], [27].

The running time of the proposed algorithm with r samples is
O(rdmax), because the running time of computing φs(xs) for each
sample vxs , at lines 7 and 8 in Algorithm 1, is O(dmax). The pro-
posed algorithm computes considerably faster than Maiya et al.’s
algorithm which requires O(n′m′) computation time, where n′

and m′ are the number of nodes and edges in the induced sub-
graph, respectively. The proposed algorithm is slower than Lim
et al.’s algorithm which requires O(r) computation time; however,
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Algorithm 1 Unbiased estimation of the ego betweenness cen-
trality of sampled nodes via a random walk.
Input: A sequence of the sets of an index and neighbors sampled by a ran-

dom walk with r steps, denoted by {(xs,N(xs))}rs=1.

Output: A set of unbiased estimators of the ego betweenness centrality of

sampled nodes

// initialization

1: for s = 1 to r do

2: r(xs)← 0

3: ˜eBC(xs)← 0

4: end for

// unbiased estimation of ego betweenness centrality

5: for s = 2 to r − 1 do

6: r(xs)← r(xs) + 1

7: if vxs+1 ∈ Nxs−1 (xs) then

8: ˜eBC(xs)← ˜eBC(xs) +
|N(xs)|2

|N(xs−1)∩N(xs+1)|
9: end if

10: end for

11: for s = 1 to r do

12: if r(xs) > 0 then

13: ˜eBC(xs)← ˜eBC(xs)
r(xs)

14: else

15: ˜eBC(xs)← 0

16: end if

17: end for

18: return {(vxs , ˜eBC(xs)), for each sampled node vxs }

the difference is subtle with the small sample size.

5. Experiments

We evaluate the proposed algorithm using real social network
datasets from the following two viewpoints:
( 1 ) Estimation accuracy: We show that the proposed algorithm

improves the estimation accuracy of the top-k nodes with the
highest betweenness centrality with the small sample size.

( 2 ) Computation time: We show that the proposed algorithm
performs considerably fast with the small sample size.

5.1 Experimental Setup
We use publicly available datasets*1 of Epinions, Buzznet,

Gowalla, Academia, Dogster, and Flickr. For these six datasets,
we focus on undirected, simple, and connected graphs by per-
forming the following preprocessing: (1) we remove the direc-
tions of edges if the graphs are directed; (2) we treat multiple
edges as a single edge and delete the loops; and then (3) we delete
the nodes that are not contained in the largest connected compo-
nent of the original graphs. Table 1 lists the number of nodes
and edges of six datasets that were used in our experiments. We
conducted experiments on a Linux server with an Intel Xeon E5-
2698 (2.20 GHz) processor and 503 GB of main memory. All
algorithms were implemented in C++.

We performed independently the following simulations 100

*1 The Epinions, Buzznet, Gowalla, Academia, Dogster, and Flickr are pub-
licly available at
http://konect.uni-koblenz.de/networks/soc-Epinions1,
http://networkrepository.com/soc-buzznet.php,
http://konect.uni-koblenz.de/networks/loc-gowalla edges,
http://networkrepository.com/soc-academia.php,
http://konect.uni-koblenz.de/networks/petster-friendships-dog,
http://networkrepository.com/soc-flickr.php.

Table 1 Datasets.

Network |V | |E|
Epinions [24] 75,877 405,739
Buzznet [35] 101,163 2,763,066
Gowalla [24] 196,591 950,327
Academia [35] 200,167 1,022,440
Dogster [24] 426,485 8,543,321
Flickr [35] 513,969 3,190,452

times for various values of sample size, n′, and k:
( 1 ) We sample n′ nodes, not including duplicates, from a target

graph by a random walk. We select randomly a seed of a
random walk from nodes on a graph.

( 2 ) We estimate top-k nodes from the same samples by using
each algorithm, Maiya et al.’s [27], Lim et al.’s [26], and the
proposed algorithm.

We use the overlap coefficient [36] to evaluate the accuracy of
the estimated top nodes obtained by the algorithms. The overlap
coefficient between two sets is defined as the size of the inter-
section divided by the size of the smaller set and measures the
similarity between two finite sets. The overlap coefficient is from
0.0 to 1.0 and a higher value means that two sets are more similar.

5.2 Estimation Accuracy
Figure 2 shows the mean and variance of overlap coefficients

of each algorithm between two sets of the exact and estimated
top-10 nodes with the highest betweenness centrality when the
sample size, n′, is changed from 1,000 to 5,000 in increments of
1,000. The upper limit of the mean is calculated by the overlap
coefficient between a set of exact top-10 nodes with the highest
betweenness centrality and a set of all the sampled nodes. We
note that the upper limits of the three methods are equal because
the top-k nodes by each method are estimated from the same sam-
ple. We show the average upper limit of the mean over 100 runs
on each dataset. Table 2 shows the mean and variance of over-
lap coefficients of each algorithm between two sets of exact and
estimated top-k nodes with the highest betweenness centrality for
various values of k when the sample size is 1,000 and 5,000, re-
spectively.

First, we observe that many of the top-k nodes with the highest
betweenness centrality are collected via random walk-based sam-
pling with the small sample size (see Fig. 2). For example, Fig. 2
(e) shows that 80% of top-10 nodes on average are contained in
only 1,000 sampled on Dogster. We see that almost all the top-10
nodes with the highest betweenness centrality are collected with
5,000 samples on all the datasets. The previous study [26] simi-
larly observed that a random walk can collect many of the top-k
nodes with the highest betweenness centrality with the small sam-
ple size.

The proposed algorithm has a higher mean of overlap coeffi-
cients than that of Lim et al.’s algorithm with 5,000 samples for
various values of k (see Fig. 2 and Table 2). The improvement
of the estimation accuracy results from the following two facts.
The first fact is that more of the top-k nodes with the highest ego
betweenness centrality are the top-k nodes with the highest be-
tweenness centrality than the top-k nodes with the highest degree
in real social networks. Table 3 shows the overlap coefficients
between a set of exact top-k nodes with the highest betweenness
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Fig. 2 The mean and variance of overlap coefficients of each algorithm between two sets of exact and
estimated top-10 nodes with the highest betweenness centrality for various sample sizes.

Table 2 The mean (variance) of overlap coefficients of each algorithm between two sets of the exact and
estimated top-k nodes with the highest betweenness centrality for various values of k when the
sample size is 1,000 and 5,000, respectively. The highest mean is shown in bold.

1,000 sample 5,000 sample
Dataset k Maiya et al. [27] Lim et al. [26] Proposed Maiya et al. [27] Lim et al. [26] Proposed

k = 10 0.706 (0.009) 0.754 (0.004) 0.662 (0.023) 0.840 (0.003) 0.800 (0.000) 0.879 (0.004)
k = 20 0.626 (0.006) 0.677 (0.003) 0.627 (0.007) 0.795 (0.001) 0.750 (0.000) 0.825 (0.002)

Epinions k = 30 0.590 (0.004) 0.653 (0.005) 0.583 (0.006) 0.768 (0.001) 0.767 (0.000) 0.814 (0.002)
k = 40 0.582 (0.003) 0.621 (0.003) 0.556 (0.004) 0.791 (0.001) 0.775 (0.000) 0.792 (0.001)
k = 50 0.551 (0.003) 0.594 (0.003) 0.527 (0.003) 0.784 (0.001) 0.740 (0.000) 0.763 (0.001)
k = 10 0.789 (0.001) 0.867 (0.003) 0.801 (0.007) 0.800 (0.000) 0.900 (0.000) 0.905 (0.003)
k = 20 0.740 (0.002) 0.880 (0.001) 0.806 (0.003) 0.788 (0.001) 0.900 (0.000) 0.923 (0.001)

Buzznet k = 30 0.750 (0.001) 0.800 (0.001) 0.765 (0.002) 0.737 (0.000) 0.800 (0.000) 0.853 (0.001)
k = 40 0.641 (0.001) 0.689 (0.001) 0.708 (0.002) 0.655 (0.000) 0.725 (0.000) 0.784 (0.001)
k = 50 0.654 (0.001) 0.722 (0.001) 0.700 (0.001) 0.719 (0.000) 0.740 (0.000) 0.795 (0.001)
k = 10 0.582 (0.008) 0.731 (0.009) 0.710 (0.009) 0.809 (0.008) 0.801 (0.000) 0.850 (0.003)
k = 20 0.476 (0.008) 0.615 (0.008) 0.578 (0.007) 0.723 (0.004) 0.795 (0.000) 0.773 (0.001)

Gowalla k = 30 0.452 (0.008) 0.563 (0.007) 0.540 (0.006) 0.757 (0.002) 0.794 (0.000) 0.777 (0.001)
k = 40 0.414 (0.007) 0.516 (0.005) 0.494 (0.005) 0.721 (0.002) 0.736 (0.000) 0.754 (0.001)
k = 50 0.392 (0.004) 0.492 (0.006) 0.470 (0.005) 0.717 (0.002) 0.721 (0.000) 0.740 (0.001)
k = 10 0.607 (0.010) 0.700 (0.014) 0.692 (0.015) 0.795 (0.005) 0.801 (0.000) 0.847 (0.002)
k = 20 0.495 (0.009) 0.575 (0.011) 0.573 (0.011) 0.842 (0.003) 0.856 (0.000) 0.851 (0.002)

Academia k = 30 0.411 (0.006) 0.484 (0.008) 0.484 (0.008) 0.748 (0.002) 0.814 (0.001) 0.830 (0.001)
k = 40 0.342 (0.004) 0.414 (0.005) 0.413 (0.005) 0.647 (0.002) 0.775 (0.001) 0.772 (0.001)
k = 50 0.320 (0.003) 0.385 (0.005) 0.383 (0.005) 0.653 (0.002) 0.737 (0.001) 0.740 (0.001)
k = 10 0.762 (0.011) 0.799 (0.010) 0.800 (0.013) 0.869 (0.002) 0.900 (0.000) 0.907 (0.004)
k = 20 0.668 (0.008) 0.689 (0.007) 0.675 (0.007) 0.858 (0.002) 0.752 (0.000) 0.848 (0.002)

Dogster k = 30 0.591 (0.005) 0.631 (0.005) 0.607 (0.004) 0.850 (0.001) 0.793 (0.000) 0.814 (0.001)
k = 40 0.544 (0.004) 0.575 (0.005) 0.576 (0.007) 0.807 (0.000) 0.781 (0.000) 0.814 (0.001)
k = 50 0.547 (0.004) 0.563 (0.003) 0.558 (0.004) 0.806 (0.002) 0.844 (0.000) 0.877 (0.001)
k = 10 0.442 (0.024) 0.451 (0.023) 0.408 (0.020) 0.692 (0.005) 0.679 (0.002) 0.751 (0.008)
k = 20 0.323 (0.010) 0.297 (0.011) 0.316 (0.009) 0.583 (0.003) 0.503 (0.001) 0.598 (0.003)

Flickr k = 30 0.288 (0.007) 0.268 (0.007) 0.285 (0.007) 0.591 (0.002) 0.414 (0.001) 0.602 (0.003)
k = 40 0.271 (0.005) 0.257 (0.005) 0.269 (0.005) 0.588 (0.002) 0.351 (0.001) 0.561 (0.003)
k = 50 0.262 (0.004) 0.253 (0.004) 0.265 (0.004) 0.558 (0.002) 0.334 (0.000) 0.564 (0.002)
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Fig. 3 The mean and variance of overlap coefficients of the proposed algorithm between two sets of the
exact and estimated top-10 nodes with the highest ego betweenness centrality for various sample
sizes.

Table 3 The overlap coefficients between a set of the exact top-k nodes with
the betweenness centrality and each set of the exact top-k nodes
with the degree (Degree) and ego betweenness centrality (EBC)
for various values of k. The highest value is shown in bold.

Dataset k Degree EBC
k = 10 0.800 1.000
k = 20 0.750 0.900

Epinions k = 30 0.767 0.900
k = 40 0.775 0.850
k = 50 0.740 0.840
k = 10 0.900 0.900
k = 20 0.900 0.950

Buzznet k = 30 0.800 0.867
k = 40 0.725 0.800
k = 50 0.740 0.820
k = 10 0.800 0.900
k = 20 0.800 0.800

Gowalla k = 30 0.800 0.800
k = 40 0.725 0.775
k = 50 0.740 0.780
k = 10 0.800 0.800
k = 20 0.850 0.850

Academia k = 30 0.800 0.833
k = 40 0.825 0.850
k = 50 0.780 0.820
k = 10 0.900 1.000
k = 20 0.750 0.900

Dogster k = 30 0.800 0.900
k = 40 0.775 0.850
k = 50 0.860 0.920
k = 10 0.700 0.900
k = 20 0.500 0.700

Flickr k = 30 0.433 0.767
k = 40 0.375 0.775
k = 50 0.320 0.740

centrality and each set of exact top-k nodes with the highest de-
gree and ego betweenness centrality. We see that more of the
top-k nodes with the highest ego betweenness centrality are in-
cluded in a set of the top-k nodes with the highest betweenness
centrality than the top-k nodes with the highest degree for vari-
ous values of k on all the datasets. The second fact is that the
proposed algorithm accurately estimates the top-k nodes with the
highest ego betweenness centrality with the small sample size.
Figure 3 and Table 4 show that the mean and variance of overlap
coefficients of the proposed algorithm between two sets of exact
and estimated top-k nodes with the highest ego betweenness cen-
trality when the sample sizes and the values of k are changed,
respectively. The proposed algorithm achieves the high mean of
overlap coefficients with the small sample size and various values
of k.

The proposed algorithm has a lower mean of overlap coeffi-
cients with 1,000 sample size and a higher variance with most

Table 4 The mean (variance) of the overlap coefficients of the proposed al-
gorithm between two sets of the exact and estimated top-k nodes
with the highest ego betweenness centrality for various values of k
when the sample size is 1,000 and 5,000, respectively.

1,000 sample 5,000 sample
Dataset k Mean (Variance) Mean (Variance)

k = 10 0.662 (0.018) 0.879 (0.004)
k = 20 0.649 (0.007) 0.881 (0.002)

Epinions k = 30 0.600 (0.006) 0.872 (0.002)
k = 40 0.579 (0.005) 0.860 (0.001)
k = 50 0.563 (0.004) 0.858 (0.001)
k = 10 0.807 (0.007) 0.937 (0.003)
k = 20 0.833 (0.003) 0.959 (0.001)

Buzznet k = 30 0.804 (0.002) 0.915 (0.001)
k = 40 0.783 (0.002) 0.899 (0.001)
k = 50 0.783 (0.001) 0.912 (0.001)
k = 10 0.747 (0.012) 0.930 (0.003)
k = 20 0.642 (0.009) 0.922 (0.002)

Gowalla k = 30 0.580 (0.008) 0.879 (0.002)
k = 40 0.532 (0.006) 0.861 (0.001)
k = 50 0.497 (0.006) 0.838 (0.001)
k = 10 0.713 (0.014) 0.934 (0.003)
k = 20 0.595 (0.011) 0.928 (0.002)

Academia k = 30 0.509 (0.007) 0.919 (0.001)
k = 40 0.444 (0.007) 0.889 (0.002)
k = 50 0.399 (0.005) 0.840 (0.002)
k = 10 0.800 (0.013) 0.907 (0.004)
k = 20 0.680 (0.009) 0.883 (0.002)

Dogster k = 30 0.612 (0.005) 0.849 (0.001)
k = 40 0.593 (0.004) 0.851 (0.001)
k = 50 0.558 (0.004) 0.888 (0.001)
k = 10 0.410 (0.022) 0.771 (0.009)
k = 20 0.354 (0.012) 0.744 (0.005)

Flickr k = 30 0.312 (0.007) 0.684 (0.004)
k = 40 0.289 (0.006) 0.648 (0.004)
k = 50 0.278 (0.004) 0.620 (0.003)

sample sizes than those of Lim et al.’s algorithm (see Fig. 2 and
Table 2). The main reason for this result is that Lim et al.’s algo-
rithm obtains the exact degree of each sample while the proposed
algorithm obtains the estimates of the ego betweenness central-
ity. The proposed algorithm causes errors of the rank order the
estimated top nodes because of the relatively large errors of the
estimates of the ego betweenness centrality of each sample when
the sample size is considerably small.

Finally, we observe that Maiya et al.’s algorithm has a lower
mean of overlap coefficients than that of other algorithms in all
datasets (see Fig. 2 and Table 2). This is because the betweenness
centrality of nodes in the subgraph induced from small samples
has typically large errors between the betweenness centrality in
the original graph [5], [12].
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Fig. 4 Computation time of each algorithm when the sample size is 5,000.

Fig. 5 Computation time of each algorithm for various sample sizes.

5.3 Computation Time
Figure 4 shows the running time to estimate the top-k nodes

from samples in each algorithm when the sample size is 5,000.
Figure 5 shows the computation time of each algorithm for var-
ious sample sizes on (a) Dogster and (b) Flickr. The proposed
algorithm and Lim et al.’s algorithm are faster than Maiya et al.’s
algorithm for all the sample sizes. Although the computation time
of Maiya et al.’s algorithm can be reduced by utilizing some algo-
rithms [3], [10], [34] for approximating the betweenness central-
ity, the estimation accuracy of the top-k nodes with the highest
betweenness centrality should fall because of the approximation.
The proposed algorithm is slower than the Lim et al.’s algorithm;
however, the difference is subtle with small sample size.

6. Conclusion

We have proposed a random walk-based algorithm to estimate
the top-k nodes with the highest betweenness centrality in social
networks. The proposed algorithm obtains unbiased estimators
of the ego betweenness centrality of sampled nodes via a random
walk and approximates the top-k nodes with the highest between-
ness centrality as the top-k nodes with the highest estimated ego
betweenness centrality. The experimental results show that the
proposed algorithm improves the estimation accuracy of top-k
nodes with the highest betweenness centrality in real social net-
work datasets.
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