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Abstract: We consider the clustering problem of attributed graphs. Our challenge is how we design an effective clus-
tering method that captures the complicated relationship between the topology and the attributes in real-world graphs.
We propose NAGC, a new attributed graph clustering method that bridges the attribute space and the topology space.
The feature of NAGC is two-hold. 1) NAGC learns a projection function between the topology space and the attribute
space so as to capture their complicated relationship, and 2) NAGC leverages the positive unlabeled learning to take
the effect of partially observed positive edges into the cluster assignment. We conducted experiments extensively to
validate that NAGC performs higher than or comparable to prior arts regarding the clustering quality.
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1. Introduction

Graph is a fundamental data structure for representing vertices
and their relationships. Graph data appear everywhere in many
application domains, such as web graph [7], social network [8],
protein complexes [4], traffic planning [10], computer vision [15],
and gene expressions [2], [23]. The authors of Ref. [31] con-
ducted an online survey and showed that graph database is be-
coming increasingly prevalent across many application domains
and, in particular, the graph clustering is the most widely used
technique in the machine learning field.

Graphs in the real world usually have attributes on vertices.
Actually, the graph databases support attributed graphs or prop-
erty graphs [9], [32]. However, most of the graph cluster-
ing techniques [18], [27], [34] do not leverage the attributes of
vertices since their design is limited to simple graphs without
having attributes. Therefore, these techniques can not extract
precise clusters without leveraging the attributes. There are
emerging researches that tackle the clustering problem for at-
tributed graphs [1], [14], [29], [35], [43] and the representation
learning problem for attributed graphs, such as ANRL [41] and
AANE [13]. Despite the considerable improvements made by
those methods, they have not fully leveraged the virtue of at-
tributed graphs. There are two fundamental aspects of the at-
tributed graphs we should consider. First, the topology and the
attributes of real-world graphs have complicated relationship with
each other, because they are obtained from different viewpoints in
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real-world but these viewpoints correlate each other. Therefore,
we need to balance the effects of the topology and the attributes
for each cluster independently: some cluster takes larger effect
from the topology and some other does from the attributes. No-
tice that ANRL and AANE use hyperparameters to control the ef-
fect of the topology to the attributes for all clusters, however, they
can not control it for each cluster independently. This is because
they simply propagate the attributes by random walk on graph.
Second, typical graphs consist only of partially observed positive
edges, which implies that there are missing positive edges, be-
cause real-world graphs follow the open world assumption: “ab-
sence of information is interpreted as unknown information, not
as negative” [19]. For example, a social graph may not reflect
precisely the social connections in the real world: we can only
observe positive connections between people such as “likes” and
“friendships”, but cannot observe negative ones [12].

We take the above two aspects into account and propose
NAGC, a New Attributed Graph Clustering method by bridging
the attribute space and topology space and by taking the effect
of partially observed positive edges. To achieve high clustering
quality, 1) NAGC learns a projection function between the topol-
ogy space and the attribute space so as to capture their compli-
cated relationship. The projection function consists of a rescale
function and a transfer matrix that balances the effect from the
attribute space to the topology space for each cluster indepen-
dently, and 2) NAGC leverages PU (positive-unlabeled) learn-
ing [6], [12], [26] to take the effect of partially observed positive
edges into the cluster assignment. To the best of our knowledge,
our method is the first method that learns the representation of at-
tributed graphs 1) by capturing the complex relationship between
the topology and the attributes and 2) by applying the PU learning
to the missing positive edges. Our method can precisely capture
clustering results by revealing the relationship between the topol-

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

ogy and the attributes in real-world graphs.
We extensively made experiments for various clustering meth-

ods and representation learning methods over various real
datasets with ground truth. We also made a micro benchmark
to validate the effectiveness of learning projection function and
PU learning to the clustering quality. With these experiments,
we confirm that our method performs higher than or compara-
ble to the existing methods in terms of the clustering quality. In
addition, we confirm that NAGC actually captures complicated
relationships between attribute space and topology space by vi-
sualizing the transfer matrix. We also confirm that our method is
stable against the hyperparameter selection.

The rest of this paper is organized as follows. We introduce
fundamental techniques for our method, Non-negative Matrix
Factorization, Symmetric Non-negative Matrix Factorization, and
Biased Matrix Completion in Section 2. We propose our method
in Section 3. Section 4 gives the purpose and results of the evalu-
ations. Section 5 addresses the details of the related work and we
conclude this paper at Section 6.

2. Preliminaries

Notation: We denote a matrix and its i-th row vector as upper
boldface X and under boldface xi. The set of non-negative real
numbers is R+. We denote a graph G = (V, E) comprising a set of
vertices V = {1, 2, . . . , n} and edges E = {(i, j)} ⊆ [n] × [n]. We
construct an weighted adjacency matrix S ∈ Rn×n

+ from G, where
si, j is set to a positive value if there is a edge between two vertices
i and j or set to 0 otherwise. We denote a non-negative attribute
matrix X ∈ Rn×m

+ that represents n vertices with m attributes *1.
|| · ||F and || · ||∗ are Frobenius norm and the nuclear norm, respec-
tively. We use � and � to denote element-wise multiplication and
element-wise division, respectively.

2.1 Non-negative Matrix Factorization
Given the number of clusters for topology and attributes, k1, k2

� min{m, n}, respectively, we suppose a cluster assignment ma-
trix U ∈ Rn×k1

+ and an attribute factor matrix V ∈ Rm×k2
+ . Let

us denote a transfer matrix H ∈ Rk1×k2
+ that represents the re-

lationship between topology and attributes. Non-negative Ma-
trix Tri-Factorization (NMTF) [5], which is a novel extension of
Non-negative Matrix Factorization (NMF) [24], estimates local
optimal parameters U , V , and H by minimizing a non-convex
loss:

min
U ,V ,H≥0

||X −UHV 
||2F . (1)

NMF is treated as a special case of NMTF where H is set to an
identity matrix. Compared with the original NMF, which esti-
mates U , V , NMTF generates more precise model by introduc-
ing transfer matrix H . However, NMTF is limited to consider
only linear relationships between topology and attributes.

2.2 Symmetric Non-negative Matrix Factorization
The goal of graph clustering is to find a partition of ver-

tices in a graph where the similarity between vertices is high
*1 We can convert the domain of matrix elements into positive one when

they have some negative values.

within the same cluster and low across different clusters. Kuang
et al. proposed Symmetric Non-negative Matrix Factorization
(SNMF) [21], [22], and showed an interesting relationship among
SNMF and graph clustering methods [28]. SNMF estimates a
cluster assignment matrix U by minimizing a non-convex loss
function that uses an adjacency matrix S as input:

min
U≥0
||S −UU
||2F . (2)

Thanks to the non-negative constraint, we can obtain a cluster-
ing result by assigning i-th vertex to the k′1-th cluster that has the
largest value in ui, that means k′1 = argmaxl{ui,l | l = (1, . . . , k)}.
We don’t need to apply additional clustering techniques such as
k-means to the vertex vectors.

2.3 Biased Matrix Completion
Hsieh et al. [12] considered a matrix completion problem when

only a subset of positive relationships is observed, such as rec-
ommender systems and social networks where only “likes” or
“friendships” are observed. The problem is an instance of PU
learning, i.e. learning from only positive and unlabeled exam-
ples that has been studied in the classification problems. They
introduced the ρ-weighted loss for a bipartite graph G′ = (V ′, E′)
comprising a set of vertices V ′ = {{1, 2, . . . , n}, {1, 2, . . . ,m}} and
edges E′ = {(i, j)} ⊆ [n] × [m]:

�ρ(zi, j) = ρ1(i, j)∈E′ (zi, j − 1)2 + (1 − ρ)1(i, j)�E′z
2
i, j, (3)

where ρ = [0, 1], 1(i, j)∈E′ (·), and 1(i, j)�E′ (·) are a bias weight, an in-
dicator function for positive edges, and an indicator function for
unlabeled edges, respectively. This loss can change a weight for
reconstruction errors among positive and unlabeled edges. When
we set ρ = 0.5, it treats the positive and unlabeled entities equally.
With this loss, they proposed a biased matrix completion as:

min
Z :||Z ||∗≤λ

∑

(i, j)∈E′
ρ(zi, j − 1)2 +

∑

(i, j)�E′
(1 − ρ)z2

i, j. (4)

where λ ≥ 0 is a hyperparameter.

3. NAGC: New Attribute Graph Clustering

As we mentioned in Section 1, we need to consider two fun-
damental aspects of the attributed graphs: 1) the topology and
the attributes of real-world graphs have a complicated relation-
ship and 2) typical graphs usually have a subset of positive edges
implying that there are missing positive edges. The novelty of
NAGC is three-hold:
• We jointly decompose the topology (adjacency) matrix and

the attribute matrix into factor matrices to represent the ver-
tex features in the topology space and the attribute space. We
employ SNMF and NMTF to decompose adjacency matrix
and attribute matrix, respectively.

• NAGC learns a projection function between the topology
space and the attribute space. The projection function con-
sists of a rescale function and a cluster assignment transfer
matrix. The rescale function bridges the scale gap between
the two spaces. The transfer matrix bridges the two spaces
by balancing the effect from the attribute space to the topol-
ogy space for each cluster independently.
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Table 1 Definition of main symbols.

Variable Explanation
S ∈ Rn×n

+ adjacency matrix
X ∈ Rn×m

+ attribute matrix
U ∈ Rn×k1

+ topology cluster assignment matrix
V ∈ Rm×k2

+ attribute factor matrix
H ∈ Rk1×k2

+ cluster assignment transfer matrix
W ∈ Rn×n

+ mask matrix of S
k1 ∈ N number of clusters for topology
k2 ∈ N number of clusters for attributes

λ ≥ 0
balancing parameter between
the topology and the attributes

ρ = [0, 1] bias weight for S
t ∈ N number of iterations

Fig. 1 Illustration of NAGC. S and X are an adjacency matrix and an at-
tributed matrix, respectively. U, V , and H denote a topology clus-
ter assignment, an attribute factor, and a cluster assignment transfer
matrices, respectively. f is a rescale function.

• We leverages PU learning to take the effect of partially ob-
served positive edges into the cluster assignment. That is,
we put larger bias to partially observed positive edges than
unlabeled edges.

Table 1 lists the main symbols and their definitions.

3.1 NAGC Model
We formalize our method as a minimization problem of a non-

convex loss as follows:

min
U ,V ,H≥0

Lρ(S −UU
) +
λ

2
||X − f (UH )V 
||2F . (5)

Figure 1 depicts the design of NAGC. The adjacency matrix S is
decomposed into UU
, so U represents the matrix of the topol-
ogy cluster assignment. In contrast, the attribute matrix X is
decomposed into f (UH )V 
, so f (UH ) represents the matrix
of the attribute cluster assignment. By transforming the matrix
of the topology cluster assignment (U ) to the matrix of the at-
tribute cluster assignment ( f (UH )) with the rescale function f

and transfer matrix H , our method enables to capture the com-
plex relationship among the topology cluster assignment and the
attribute cluster assignment. In particular, H bridges the two as-
signments by balancing the effect from the attribute space to the
topology space for each cluster independently. In addition, λ is
a hyperparameter that balances globally the effects between the
topology and the attribute for all clusters. f denotes an element-
wise rescale function and we use the sigmoid function as f for
simplicity: f (x) = 1

1+e−x . There are two reasons we adopt the sig-

moid function. First, the sigmoid function is differentiable so the
parameter update rules of the existing method can be used with
minor modifications. Second, the sigmoid function is one of the
simplest functions for rescale function.

This choice can be generalized to any non-linear functions. We
use Lρ(Z) to denote an error of the adjacency matrix S with ρ-
weighted loss.

Lρ(Z) =
∑

(i, j)∈E

ρ(zi, j − 1)2 + (1 − ρ)
∑

(i, j)�E

z2
i, j. (6)

Note that, the number of clusters k2 for attribution is not neces-
sary the same as the number of clusters k1 for topology, since
we suppose that the cluster structure embedded in attributes dif-
fers from that in topology. NAGC can be seen as a generalized
SNMF, because NAGC simulates SNMF by setting λ = 0 and
ρ = 0.5: no effects from attributes and partially observed positive
edges.

3.2 Optimization
Since our loss is non-convex for U , V , and H , we derive

a parameter estimation procedure that alternately updates each
parameter by utilizing the method of Lagrange multipliers [5].
Following the standard theory of constrained optimization, we
introduce Lagragian multipliers P ∈ Rn×k1 , Q ∈ Rm×k2 , and
R ∈ Rk1×k2 for the non-negative constraints U ,V ,H ≥ 0. We
define the Lagrangian function of our proposed method as:

L(U ,V ,H ; P ,Q,R)

= Lρ(S −UU
) +
λ

2
||X − f (UH )V 
||2F

+ Tr(P 
U ) + Tr(Q
V ) + Tr(R
H ). (7)

For each parameter, we derive partial differences of L.

∂L
∂U
= −2ρSU − λ{(XV ) � f ′(UH )}H


+ 2ρ(UU
 �W )U + 2(1 − ρ)(UU
 �W ′)U

+ λ[{ f (UH )V 
V } � f ′(UH )]H
 + P . (8)

∂L
∂V
= −λX
 f (UH ) + λV f (UH )
 f (UH ) +Q. (9)

∂L
∂H

= −λU
{ f ′(UH ) � (XV )}
+ λU
{ f ′(UH ) � f (UH )}V 
V +R. (10)

W ∈ Rn×n
+ is a mask matrix whose elements are set to wi, j = 1 if

si, j � 0 or wi, j = 0 otherwise, and W ′ = 1 −W . The KKT com-
plementarity conditions are: P �U = 0,Q � V = 0,R �H =

0, ∂L
∂U = 0, ∂L

∂V = 0, and ∂L
∂H = 0. By satisfying these conditions,

we can derive multiplicative update rules.

U ← U � [2ρSU + λ{(XV ) � f ′(UH )}H
]�
[2ρ(UU
 �W )U + 2(1 − ρ)(UU
 �W ′)U

+ λ{( f (UH )V 
V ) � f ′(UH )}H
]. (11)

V ← V � {X
 f (UH )} � {V f (UH )
 f (UH )}. (12)

H ←H � [U
{ f ′(UH ) � (XV )}]
� [U T { f ′(UH ) � f (UH )}V 
V ]. (13)
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Algorithm 1 NAGC-U algorithm
Input: S,X, k1, k2, λ, t

Output: clustering result C

1: Preprocess: S,X

2: Initialize: U,V ,H

3: while t′ < t do

4: # alternately update parameters

5: U(t′+1) ← update (U(t′)) by Eq. (11)

6: V (t′+1) ← update (V (t′)) by Eq. (12)

7: H(t′+1) ← update (H(t′)) by Eq. (13)

8: end while

9: while n′ < n do

10: # assign each vertex to the clusters

11: cn′ ← argmaxl{un′ ,l | l = (1, . . . , k1)}
12: end while

Our loss is convex with respect to V and H , however, as men-
tioned in Ref. [21], the loss is a fourth-order non-convex function
with respect to U . That means, it is difficult to guarantee the
monotonic convergence of our parameter estimation method; thus
we expect a good convergence property that every limit point is a
stationary point.

Algorithm 1 shows the algorithm for our method. Since non-
convex minimization problems have multiple local minima, we
apply k-means to the attribute matrix X and use the result to
initialize U and V . H is initialized by random values in the
same way as the standard NMTF. There are two variations of our
method, NAGC-U and NAGC-UH. They obtain clusters based on
the topology cluster assignment U and attribute cluster assign-
ment UH , respectively.

3.3 Computational Complexity
Let t be the number of iterations in the matrix decomposi-

tion. Since the cost for SNMF is O(n2kt) [21], [22], the cost
for updating rules of NAGC is equal to O((n2 + mn)kt) where
k = max(k1, k2) and k � n in general. For example, the operation
of NAGC finishes in 3 seconds for WebKB which is a small size
dataset, in 60 seconds for Citeseer which is a middle size dataset,
and in 250 seconds for Flickr which is a large size dataset *2.

4. Experiments

The purpose of our experiments is to answer the following
questions:
Q1 Does NAGC perform higher than former methods? (Sec-

tion 4.4)
Q2 Does NAGC capture the complicated relationship between

the topology and the attributes? (Section 4.5)
Q3 How largely the parameters affect the performance? (Sec-

tion 4.6)
In detail, the first purpose of the experiments is to evalu-

ate the clustering quality of NAGC *3 compared with various
methods: representation learning methods for attributed graphs
(AANE [13], ANRL [41]), an attributed graph clustering method
(JWNMF [14]), graph clustering methods without using attributes

*2 The experiments are implemented on Python3.
*3 The source code of NAGC is available at https://github.com/

seijimaekawa/NAGC.

(METIS [18], DANMF [38]), and a typical attribute-based clus-
tering method (k-means). We used publicly available codes for
those methods. As for the representation learning methods, we
learned the vertex representation by using the same setting used
in each paper. Then, we obtain clustering results by applying k-
means to the learned representation by taking the same approach
used in Refs. [11], [38]. We also evaluate simple graph cluster-
ing methods without using attributes, METIS [17], and attribute-
based clustering methods, k-means, so that how much only the
topology or attributes of the graphs contribute to the clustering
quality. We use two variations of our method, NAGC-U and
NAGC-UH, based on the topology cluster assignment and the at-
tribute cluster assignment, respectively. We perform five restarts
for each method and report the average of the results for all the
above experiments.

The second purpose is to evaluate how effectively the trans-
fer matrix bridges the two spaces to capture their complicated
relationship, because the transfer matrix is designed to balance
the effect from the attribute space to the topology space for each
cluster independently.

The third purpose of our experiments is to investigate the de-
tails of the quality improvement achieved by our method: we
evaluate the effectiveness of PU learning and the effect of the hy-
perparameters.

4.1 Datasets
We choose seven real-world datasets with ground truth in our

experiments. They cover wide variety of graph types and sizes.
They are used in the related papers of the attributed graph clus-
tering. The graph types of our datasets (web graph, blogs,
Wikipedia, citation networks, social network) cover more than
half of the categories used in SNAP *4 graph data archive. Also,
the graph sizes are from small to large (the number of nodes from
877 to 7,564 and the number of edges from 1,480 to 239,365).
• WebKB *5 is a web graph of four universities: the label for

a vertex indicates the owner university of the page. The at-
tributes of a vertex represent the words appeared in the page.

• Polblog *6 is a network of hyperlinks between blogs on US
politics: the label of a vertex indicates whether the blog is
liberal or conservative. The attributes of a vertex represent
the sources of the blogs.

• Wiki is a document network and the link among different
vertices is the hyperlink in a web page. The attributes repre-
sent the TFIDF matrix of this datasets.

• Citeseer and Cora *5 are citation networks. The label of a
vertex corresponds to a research field of the paper. The at-
tributes of a vertex consist of the words appeared in the pa-
per.

• BlogCatalog is a blogger community network, where users
interact with each other. The attributes of a vertex represent
keywords of their blogs.

• Flickr is an online community that people can share photos

*4 Stanford Large Network Dataset Collection: https://snap.stanford.edu/
data/index.html

*5 http://linqs.cs.umd.edu/projects/projects/lbc/index.html
*6 http://www-personal.umich.edu/˜mejn/netdata/
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Table 3 Clustering performance of different datasets. The boldface font represents the best performance
for each dataset.

Dataset WebKB Polblog Wiki Cora Citeseer BlogCatalog Flickr Avg.
ARI NAGC-U 0.992 0.646 0.315 0.336 0.269 0.200 0.136 0.413

NAGC-UH 0.802 0.100 0.367 0.360 0.303 0.259 0.141 0.333
AANE 0.974 0.003 0.137 0.221 0.184 0.174 0.086 0.254
ANRL 0.990 0.000 0.212 0.439 0.296 0.252 0.053 0.320
JWNMF 0.908 0.513 0.132 0.309 0.077 0.149 0.133 0.317
DANMF 0.850 0.556 0.174 0.249 0.084 0.129 0.067 0.301
METIS 0.909 0.575 0.187 0.246 0.155 0.143 0.069 0.326
k-means 0.274 0.000 0.040 0.062 0.169 0.000 0.000 0.078

AMI NAGC-U 0.987 0.547 0.440 0.374 0.266 0.260 0.199 0.439
NAGC-UH 0.742 0.078 0.459 0.404 0.290 0.310 0.168 0.351
AANE 0.962 0.006 0.447 0.336 0.216 0.289 0.172 0.347
ANRL 0.984 0.000 0.378 0.491 0.349 0.337 0.095 0.376
JWNMF 0.899 0.442 0.260 0.232 0.087 0.215 0.202 0.334
DANMF 0.853 0.484 0.292 0.334 0.133 0.194 0.105 0.342
METIS 0.889 0.471 0.299 0.336 0.173 0.186 0.105 0.351
k-means 0.292 0.000 0.174 0.117 0.207 0.005 0.001 0.114

Table 2 The statistics of the datasets. Mod. and Ent. indicate the modularity
and the average entropy, respectively.

Dataset Vertex Edge Attribute Label Mod. Ent.
WebKB 877 1,480 1,703 4 0.739 0.152
Polblog 1,490 16,630 7 2 0.405 0.379
Wiki 2,405 12,761 4,973 17 0.524 0.320
Cora 2,708 5,278 1,433 7 0.640 0.054
Citeseer 3,312 4,660 3,703 6 0.544 0.039
BlogCatalog 5,196 171,743 8,189 6 0.224 0.036
Flickr 7,564 239,365 12,047 9 0.121 0.012

and follow each other. We use the tags attached on each im-
age as the attribute information.

Table 2 summarizes the statistics of the datasets. We also in-
clude the modularity [27] and the average entropy for each of the
true cluster assignment: the modularity and the entropy repre-
sent the topological aspect and attribute aspect, respectively. In-
tuitively, higher modularity indicates there are dense connections
in the same cluster but sparse connections between different clus-
ters. Lower average entropy indicates there are similar attribute
values in the same cluster but dissimilar attribute values between
different clusters. Average entropy is defined as:

Average entropy =
m∑

i=1

k∑

j=1

|C j|
nm

entropy(ai,C j) (14)

where entropy(ai,C j) is the information entropy of attribute ai

in cluster C j. The values with respect to the modularity and the
average entropy fall within the range of [−1, 1] and the range of
[0, 1], respectively.

4.2 Measurements
The modularity and entropy are not suitable measurements for

the clustering evaluation of attributed graphs, because the result-
ing clusters should take into account both aspects of the topology
and attributes. We utilize two measures, Adjusted Rand Index
(ARI) [39] and Adjusted Mutual Information (AMI). AMI is an
adjusted version of Normalized Mutual Information (NMI). They
are typical measurements used for assessing the clustering quality
with ground truth labels *7. They are adjusted in a sense that ran-
dom cluster assignments make ARI and AMI scores close to zero.

*7 We choose AMI since NMI is not adjusted for chance. Note that the
chance rates of ARI and AMI are 0.

On the other hand, non-adjusted measures such as NMI have a
dependency between the number of clusters and the number of
samples used to compute the measure. Therefore, the adjusted
measures are more preferable for cluster evaluation.

4.3 Parameter Settings
We searched for optimum parameters, λ, k2, and ρ for each

dataset and used them in our experiments. λ is chosen from
the set {10−10, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10,
100, 1000} by following the settings used in Ref. [14]. The model
does not work well when λ > 100.

Let k be the number of true clusters for each dataset. k2 is cho-
sen from the set {k, 5, 7, 10, 15, 20} for NAGC-U *8 so that we can
learn the model more precisely than when we use k. ρ is chosen
from the set {0.5, 0.55, 0.75, 0.95, 0.995}. To mitigate the different
scales between S and X , we normalize S by multiplying each
element of S with |X |

|S | . The iterate computation of our method
converges very fast (usually in 100 iterations) so the number of
the iterations t is fixed at 100 in all the experiments.

4.4 Clustering Quality
Table 3 shows the results of evaluating the clustering quality.

NAGC-U is obtained from the topology cluster assignment and
NAGC-UH is obtained from the attribute cluster assignment. The
last column (Avg.) indicates the average for all datasets. NAGC
achieves the best performance not only in the average results, but
also in six datasets (out of seven) in ARI measurement and three
datasets in AMI measurement. The benefit of NAGC is that it
balances and combines the effects of both the topology and the
attributes, as we can see that NAGC is always better than METIS
and k-means. Moreover, NAGC generally works well regardless
of the entropy of the datasets (see Table 2). In particular, NAGC
performs better than other methods even when the entropy is large
(WebKB, Polblog, Wiki). NAGC also performs best when the at-
tributes do not effectively contribute to the clustering result, such
as when k-means works poorly (Flickr) *9. This behavior implies

*8 We do the same by replacing k2 with k1 for NAGC-UH.
*9 k-means decides the centroids of clusters by treating all nodes equally

so it does not work well when most elements of the attribute matrix are
zero. Actually, 99% of the nodes are assigned to a single cluster in Flickr.
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Table 4 Modularity and average entropy for WebKB dataset.

Modularity Entropy ARI
NAGC-U 0.737 0.152 0.992
AANE 0.731 0.152 0.974
ANRL 0.737 0.152 0.990
JWNMF 0.741 0.153 0.908
DANMF 0.718 0.153 0.850
METIS 0.741 0.153 0.909
k-means 0.252 0.146 0.274

that NAGC selectively chooses the effect from the attribute space
to the topology space for each cluster independently.

In contrast, ANRL generally works well when the entropy is
small (Cora, Citeseer, BlogCatalog) but not otherwise *10. ANRL
learns the representation equally from all the attributes, so it does
not control the effect of each attribute cluster independently to the
topology cluster assignment: ANRL is even worse than METIS
for Polblog and Flickr.

To investigate more on the difficulty of the attributed graph
clustering, we show that the topology and the attributes of real-
world graphs have different cluster assignments. Table 4 gives
the modularity and the average entropy for the clustering result
of WebKB. Our method achieves the highest ARI but does not
achieve either the best modularity or the best average entropy.
This result implies that we should not optimize the model only
to either the topology or the attributes, but balance the effects be-
tween the topology and the attributes.

4.5 Bridging Topology and Attribute Spaces
One of the most important contributions is how effectively

NAGC captures the complex relationship between the topology
space and the attribute space. Figure 2 depicts the heatmaps of
the transfer matrix H for Polblog and Wiki. We choose these
datasets in which NAGC-U and NAGC-UH achieve the best re-
sults for both ARI and AMI. X and Y axes depict attribute clusters
and topology clusters, respectively. The darker elements indicate
there is larger effect from attribute cluster to topology cluster. In
detail, in Fig. 2 (a), most attribute clusters (1, 3, 7–10, 15–17) are
coloured in light colour, this indicates that there is almost no ef-
fect from those attribute clusters to topology clusters. In other
words, those attribute clusters do not have any correlations with
topology clusters. Considering a web graph with word informa-
tion as an example, there is no correlation between general words
(such as “abstract” or “introduction” for academic papers) and
topology clusters. In contrast, the attribute cluster of 0, 5, 11,
18, 19 indicate theses attribute clusters effect mostly to topology
cluster 0. In Fig. 2 (b), the dark elements in the matrix, such as
(5, 5), (12, 8), (13, 3), show clear effect from an attribute cluster to
a topology cluster. Also, we can observe that the topology cluster
of 4 receives almost equal effects from multiple attribute cluster
of 1, 4, 7, 8, 10, 11, 14, 16.

These results validate that there is actually a complex relation-
ship between topology space and attribute space and justify our

*10 The average entropy tends to be low when most elements of the attribute
matrix are zero regardless of the correlation between the attributes and
the true label. Considering the summation of all elements of the attribute
matrix divided by the numbers of nodes and attributes, Flickr has the
smallest value, 0.0280. It is much smaller than the average value of all
datasets, 0.128. For this reason, Flickr has low entropy.

Fig. 2 Heatmaps of the transfer matrix H. The darker elements indicate
there is larger effect from attribute cluster to topology cluster.

Fig. 3 Effect of λ and ρ on ARI in our method for two datasets.

Fig. 4 Effect of k2 and ρ on ARI in our method for two datasets.

motivation: we should learn a projection function between the
topology space and the attribute space.

4.6 Hyperparameter Analysis
We discuss the effect of the hyperparameters of our method.

Figure 3 shows the effect of λ to the clustering results. Other
parameters are fixed at the values when ARI becomes highest for
each λ. There is a peak in each dataset (λ = 10−4 on WebKB and
λ = 10−2 on Cora) which indicates that the effect to the model is
well balanced by λ between the topology and the attributes *11.

The effect of k2 and ρ to ARI is shown in Fig. 4. Figure 4 (a)
shows that ARI slightly increases when k2 increases. ARI of the
WebKB is enough high (almost 1.0) when k2 = 20. Figure 4 (b)
shows that there is a peak of ARI on Cora when ρ = 0.95 and
k2 = 10. From Figs. 3 and 4, we confirmed that ARI is stable
against the selection of λ (when λ < 0.1) and k2 in a wide range.
Thus, in practice, we suppose our method would perform well
when λ and k2 may be simply chosen e.g., λ = 0.01 and k2 = k1.

*11 Even when λ is close to 0, the attributes contribute to the clustering re-
sults so the clustering performance is kept high. When lambda=0, we
observe that ARI and AMI largely decrease.
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Table 5 Effect of ρ on ARI achieved by our method. The density indicates
the (# of partially observed positive edges)/(# of all possible edges),
that is |E|/ n2.

Dataset WebKB Polblog Cora Citeseer
Density 0.18% 0.75% 0.07% 0.04%
ρ = 0.5 0.990 0.621 0.270 0.221
ρ = 0.55 0.992 0.625 0.296 0.216
ρ = 0.75 0.991 0.625 0.297 0.229
ρ = 0.95 0.512 0.646 0.336 0.254
ρ = 0.995 0.433 0.529 0.266 0.269

Table 6 NMI score for NAGC-U and NAGC-UH

Dataset WebKB Polblog Wiki Cora
NMI (U,UH) 0.834 0.000 0.735 0.838

Dataset Citeseer BlogCatalog Flickr
NMI (U,UH) 0.941 0.866 0.428

As for the hyperparameter of PU learning, ρ has a large influ-
ence on the performance of our method as shown in Figs. 3 and 4.
Note that, when ρ = 0.5, PU learning is not applied because the
weights for 0 and 1 are treated as the same. To evaluate the effec-
tiveness of the Positive Unlabeled approach, we show the effect
of ρ to ARI achieved by our method in Table 5. It shows that,
when the density is low, the best ρ tends to be high in general.
This results clarify the effect of PU learning, because this setting
puts more bias to positive edges and most real-world graphs are
sparse. The WebKB dataset behaves differently, since it is the
web graph managed by universities so there is almost no missing
positive edges

4.7 Discussion about NAGC-U and NAGC-UH
NAGC-U is obtained from the topology cluster assignment

and NAGC-UH is obtained from the attribute cluster assignment.
Here we have a question: which clustering result the users should
choose obtained from NAGC-U or NAGC-UH? If we know the
grand truth beforehand, we can choose either of them depending
on the grand truth. However, the grand truth is usually unknown
in real applications. In practice, we provide the both results to the
users so that they can choose more suitable one. This is a type of
trial-and-error tasks during clustering analysis, such as choosing
the suitable number of clusters.

We show NMI scores between the clustering results of NAGC-
U and NAGC-UH in Table 6. NAGC-U and NAGC-UH obtain
the similar clusters in five datasets which are WebKB, Wiki, Cora,
Citeseer, and BlogCatalog since NMI scores are high. The differ-
ence between the clusters obtained from NAGC-U and NAGC-
UH indicates that there are nodes whose cluster assignments
differ depending on whether the topology or the attribute more
largely effects to the clusters. On the other hand, NMI is 0.000 in
Polblog. This result implies that the topology is independent from
the attributes in this dataset. We can also observe that there is a
complicated relationship between the topology and the attributes
in Flickr since its NMI score is relatively low.

5. Related Work

There are many clustering methods for attributed graphs [1],
[14], [29], [35], [43] and representation learning techniques for
attributed graphs [13], [37], [41]. Most of the representation

learning for attributed graphs are influenced by graph embedding
techniques [3], [11], [30], [33], [38].

5.1 Attributed Graph Clustering
SNMF is recently extended to consider both the topology

and the attributes for discovering clusters of data entities.
DANMF [38] is one of graph embedding techniques extended
from SNMF. It learns hierarchical mappings between the orig-
inal network and the final community assignment based on a
deep autoencoder-like architecture. CDE [25] shares the same
design with ours in that it decomposes topology matrix and at-
tribute matrix by using NMF, but it is also orthogonal to ours in
that 1) it newly introduces a community structure embedding ma-
trix (distance matrix from vertex to vertex in cluster space) used
as a topology matrix, whereas 2) our approach learns a projec-
tion function between the topology space and the attribute space
and also leverages PU learning. TLSC [40] is based on genera-
tive model and it is usually not perform better than NMF-based
approaches. Indeed, the experiments reported in Ref. [25] show
that CDE performs higher than TLSC in terms of the NMI mea-
sure. JWNMF [14] factorizes both the topology and the attribute
matrices at the same time, however, the clustering quality is not
high since it does not use the transfer matrix between the topol-
ogy space and attribute space: the transfer matrix effectively bal-
ances the effect between those two spaces. SA-Cluster [42] and
its efficient version Inc-Cluster [43] are attributed graph cluster-
ing methods expanded from distance-based graph clustering. The
key idea is to embed vertex attributes as new vertices into the
graph. A unified distance for the augmented graph is defined
by the random walk process, and the graph is partitioned by k-
medoids. It is hard to apply these methods to large graphs since
the augmented steps increase the size of the graph considerably.
BAGC/GBAGC [35], [36] learns a posterior distribution over the
model parameters. This method assumes that the vertices in the
same cluster should have a common multinomial distribution for
each vertex attribute and a Bernoulli distribution for vertex con-
nections. The attributed graph clustering problem can be formu-
lated as a probabilistic generative model. PAICAN [3] performs
anomaly detection and clustering on the attributed graph at the
same time. PAICAN explicitly models partial anomalies by gen-
eralizing the ideas of Degree Corrected Stochastic Block Mod-
els [16] and Bernoulli Mixture Models.

5.2 Representation Learning
The representation learning generates vertex features for at-

tributed graphs and the features can be used for various tasks,
clustering, link prediction, and classification.

ANRL [41] combines a neighbor enhancement autoencoder
and an attribute-aware skip-gram model for learning vertex fea-
tures that preserve the attributes and the network structure. It
controls the topology effect by tuning parameters for the con-
tribution of the neighbor enhancement autoencoder and for the
window size on random walk. AANE [13] uses a hyperparame-
ter λ that balances globally the effects between the topology and
the attribute for all clusters. However, both ANRL and AANE
can not control the effect of the attribute cluster independently
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to the topology cluster assignment. TADW [37] employs NMTF
to decompose the topology matrix into the product of two factor
matrices and text feature matrix. TADW is not robust to the text
feature since factors are not extracted from the text feature. Graph
Convolutional Networks [20], that is a semi-supervised learning
method for a graph, has obtained considerable attention from ma-
chine learning and data mining fields due to its high performance
in classifying graph vertices. However, this approach needs a sub-
set of true cluster labels on vertices, and thus its goal is different
from that of the attributed graph clustering.

6. Conclusion

We considered the clustering problem of attributed graphs. We
designed an effective clustering method, NAGC, a new attributed
graph clustering method by bridging the attribute space and the
topology space and taking the effect of partially observed posi-
tive edges. The features of our method are two holds and both of
them largely contribute to the quality of the clustering results. 1)
NAGC learns a projection function between the topology space
and the attribute space. The projection function consists of a
rescale function and a transfer matrix that balances the effect from
the attribute space to the topology space for each vertex indepen-
dently. 2) NAGC leverages PU learning to take the effect of par-
tially observed positive edges into the cluster assignment.

Our future work is as follows. First, PU learning is effective but
its effect is not controlled for every vertex. We extend NAGC to
control the effect depending on each vertex: some vertex should
take larger effect from partially observed positive edges. Sec-
ond, NAGC uses the adjacency matrix for the topology matrix.
We extend it to cover the affinity matrix so as to more precisely
extract the topology feature. Finally, we will employ sampling
techniques to archive an efficient matrix factorization.
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[3] Bojchevski, A. and Günnemann, S.: Bayesian Robust Attributed
Graph Clustering: Joint Learning of Partial Anomalies and Group
Structure, Proc. AAAI (2018).

[4] Brohee, S. and Van Helden, J.: Evaluation of clustering algorithms
for protein-protein interaction networks, BMC Bioinformatics, Vol.7,
No.1, p. 488 (2006).

[5] Ding, C., Li, T., Peng, W. and Park, H.: Orthogonal nonnegative ma-
trix t-factorizations for clustering, Proc. SIGKDD (2006).

[6] Elkan, C. and Noto, K.: Learning classifiers from only positive and
unlabeled data, Proc. SIGKDD (2008).

[7] Flake, G.W., Lawrence, S., Giles, C.L. and Coetzee, F.M.: Self-
organization and identification of web communities, Computer,
Vol.35, No.3, pp.66–70 (2002).

[8] Fortunato, S.: Community detection in graphs, Physics Reports,
Vol.486, No.3-5, pp.75–174 (2010).

[9] Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T.,
Marsault, V., Plantikow, S., Rydberg, M., Selmer, P. and Taylor, A.:
Cypher: An Evolving Query Language for Property Graphs, Proc.
SIGMOD (2018).

[10] George, B., Kim, S. and Shekhar, S.: Spatio-temporal network
databases and routing algorithms: A summary of results, International
Symposium on Spatial and Temporal Databases (2007).

[11] Grover, A. and Leskovec, J.: node2vec: Scalable feature learning for
networks, Proc. SIGKDD (2016).

[12] Hsieh, C.-J., Natarajan, N. and Dhillon, I.S.: PU Learning for Matrix
Completion, Proc. ICML (2015).

[13] Huang, X., Li, J. and Hu, X.: Accelerated attributed network embed-
ding, Proc. SDM, SIAM (2017).

[14] Huang, Z., Ye, Y., Li, X., Liu, F. and Chen, H.: Joint weighted nonneg-
ative matrix factorization for mining attributed graphs, Proc. PAKDD
(2017).

[15] Jain, A., Zamir, A.R., Savarese, S. and Saxena, A.: Structural-RNN:
Deep learning on spatio-temporal graphs, Proc. CVPR (2016).

[16] Karrer, B. and Newman, M.E.: Stochastic blockmodels and commu-
nity structure in networks, Physical Review E, Vol.83, No.1, p.016107
(2011).

[17] Karypis, G. and Kumar, V.: A Fast and High Quality Mul-
tilevel Scheme for Partitioning Irregular Graphs, SIAM J. Sci.
Comput., Vol.20, No.1, pp.359–392 (online), DOI: 10.1137/
S1064827595287997 (1998).

[18] Karypis, G. and Kumar, V.: Multilevelk-way partitioning scheme
for irregular graphs, Journal of Parallel and Distributed Computing,
Vol.48, No.1, pp.96–129 (1998).

[19] Keet, C.M.: Open World Assumption, p.1567, Springer New York
(2013).

[20] Kipf, T.N. and Welling, M.: Semi-Supervised Classification with
Graph Convolutional Networks, Proc. ICLR (2017).

[21] Kuang, D., Ding, C. and Park, H.: Symmetric nonnegative matrix fac-
torization for graph clustering, Proc. SDM (2012).

[22] Kuang, D., Yun, S. and Park, H.: SymNMF: Nonnegative low-rank
approximation of a similarity matrix for graph clustering, Journal of
Global Optimization, Vol.62, No.3, pp.545–574 (2015).

[23] Kulis, B., Basu, S., Dhillon, I. and Mooney, R.: Semi-supervised
graph clustering: A kernel approach, Machine Learning, Vol.74, No.1,
pp.1–22 (2009).

[24] Lee, D.D. and Seung, H.S.: Learning the parts of objects by non-
negative matrix factorization, Nature, Vol.401, No.6755, p.788 (1999).

[25] Li, Y., Sha, C., Huang, X. and Zhang, Y.: Community Detection in
Attributed Graphs: An Embedding Approach, Proc. AAAI (2018).

[26] Liu, B., Dai, Y., Li, X., Lee, W.S. and Yu, P.S.: Building text classifiers
using positive and unlabeled examples, Proc. ICDM (2003).

[27] Newman, M.E.: Modularity and community structure in networks,
Proc. National Academy of Sciences, Vol.103, No.23, pp.8577–8582
(2006).

[28] Ng, A.Y., Jordan, M.I. and Weiss, Y.: On spectral clustering: Analysis
and an algorithm, Proc. NIPS (2002).

[29] Parimala, M. and Lopez, D.: Graph clustering based on Structural At-
tribute Neighborhood Similarity (SANS), Proc. ICECCT, pp.1–4 (on-
line), DOI: 10.1109/ICECCT.2015.7226087 (2015).

[30] Perozzi, B., Al-Rfou, R. and Skiena, S.: DeepWalk: Online Learning
of Social Representations, Proc. SIGKDD (2014).

[31] Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J. and Özsu, M.T.: The
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