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Abstract: Next Generation Hotspot (NGH) is being introduced as a new standard that brings higher security and us-
ability to Public Wireless LANs. There has been progress in recent years toward connecting some Roaming Consortia
(RCs) by NGH to develop large-scale Wireless LAN roaming systems. However, a communication routing problem
has been identified in the identity federation network when an RC consisting of multiple operators is connected. A
typical example is eduroam, the roaming system for research and education institutions, which has thousands of dif-
ferent realms. It is hard for wireless Service Providers (SPs) to find which RC the authentication requests should be
sent to without having a large realm-RC mapping list. In addition, introducing a new system for realm list exchanges
among the operators is not easy as some RCs have difficulties in modifying their existing systems due to operational
constraints. To deal with these problems, we developed a Hub Proxy with automatic RC discovery and routing fea-
tures. In this study, the effectiveness of the system was confirmed through experiments using a virtual inter-federation
roaming network.
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1. Introduction

Public Wireless LAN (WLAN) is now quite popular at vari-
ous places such as cafes, airports, train stations, and tourist sites.
However, it has been noted that most Access Points (APs) cur-
rently providing so-called “Free Wi-Fi” have a wide variety of
security problems including eavesdropping and evil twin AP at-
tacks. A standard known as Next Generation Hotspot (NGH) was
developed in order to improve the security and usability of Pub-
lic WLANs and is being introduced worldwide [1]. The NGH
standard is based on the specification known as Hotspot 2.0 or
Passpoint [2], which is based on the IEEE 802.1X standard [3].

NGH-enabled Public WLAN systems are expected to play im-
portant roles not only in the tourism industry but also to sup-
port the rapid growth of telecommunications traffic. Many tele-
com companies are interested in deploying NGH in cities and
so are some governments and enterprises in the tourism indus-
try. A good example can be seen in the City Wi-Fi Roaming
trial conducted by the Wireless Broadband Alliance (WBA) [4].
Although international roaming used to be available in some con-
ventional commercial WLAN services, development of a roam-
ing system for secured Public WLANs has just begun. Besides
progress within industries, one of the most successful WLAN
roaming systems is “eduroam” [5], which was developed for re-
search and education institutions. Another example is “govroam”
for public-sector and government organizations [6], which was
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developed based on the eduroam architecture [7]. Eduroam, as
well as govroam, is a WLAN Roaming Federation. A Roaming
Federation is a group of operators that is also referred to as a
Roaming Consortium (RC).

There has been great interest in enabling eduroam/govroam
services on Public WLANs at various places. Since eduroam ar-
chitecture is based on the IEEE 802.1X standard, we can expect
that deploying the NGH systems will greatly facilitate the adop-
tion of eduroam/govroam and will also contribute to better public
services in the digital era. We have been developing an NGH-
based identity federation system interconnecting not only various
Public WLAN systems worldwide but also eduroam/govroam [8].
The current Passpoint/NGH systems also have the benefit of be-
ing able to provide backward compatibility for 802.1X-only de-
vices. If an AP is connected to the identity federation network,
we can enable eduroam/govroam just by adding their SSIDs. A
communication routing problem was identified as follows.

On the identity federation network, a network Service Provider
(SP) has to deliver the authentication request from the user’s de-
vice to the authentication server at the user’s home operator or
institution. RADIUS (Remote Authentication Dial-In User Ser-
vice) [9] is the most popular protocol for authentication requests
and reply exchanges. In general, the realm name attached to the
user ID is used to find the route to the authentication server. If the
number of roaming operators is small, each SP can easily iden-
tify the user’s home operator, also referred to as Identity Provider
(IdP), by using a small list consisting of realms, roaming partner
operator names, and their RADIUS server addresses.

Suppose an SP provides roaming services for some large RCs
as shown in Fig. 1, and each RC has many realms. For example,
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Fig. 1 Routing problem in a roaming system connecting large RCs.

eduroam is an RC spanning thousands of universities worldwide.
The SP needs to send the authentication request to the RC to
which the user belongs. However, the SP cannot always find the
correct destination by simply looking at the realm because the RC
name is not usually embedded in the realm.

Some methods have been developed to deal with this routing
problem. Yamaki et al. proposed a method using an Organization
Identifier (OI) [10], as defined in the Hotspot 2.0 specification [2].
The OI is also known as RCOI since it may show the RC. The
user’s device handles prepending of the OI to the username en-
abling the AP to find the correct RC. This method requires spe-
cially designed APs which are not currently available in the mar-
ket. In addition, changing all existing usernames is required at
every single IdP, and many eduroam member universities would
find this difficult. A similar idea can be seen in the “Roaming
Consortium Selection element” newly introduced in Hotspot 2.0
Version 3.0 [11]. Neither of these methods can provide backward
compatibility for 802.1X-only devices, while Hotspot 2.0 systems
can normally provide backward compatibility.

We have developed a partial solution to the routing problem
in our previous work [8] along with an inter-federation roaming
architecture based on the eduroam architecture. A regional Hub
Proxy placed in each country has a realm list consisting of the
realm-RC pairs in the region and then handles authentication re-
quest routing. To our knowledge this architecture is the only one
available and tested internationally with eduroam [4] as of the
time of this writing. However, compilation of the realm list re-
mains to be addressed and it currently must be done manually by
a human operator. System automation for labor reduction is one
of our requirements for developing a practical system incorporat-
ing eduroam.

In this paper, we focus on realm-based routing at the Hub
Proxy. The inter-federation roaming system should accommo-
date both the 802.1X-only and Hotspot 2.0 environments because
we aim at prompt adoption of eduroam on the NGH. We have de-
veloped an automatic realm-RC mapping mechanism that works
on the Hub Proxy and that does not require any modification on
the RC side. This condition is crucial since we are aiming to
include as many eduroam member institutions as possible. It
would be technically possible to develop a realm list synchro-
nization system among the RCs instead of this automatic map-
ping mechanism. However, our long experience in the operation
of the eduroam infrastructure shows that asking other operators
to introduce an additional function is not always easy for various
reasons that include the difficulty of system modification, limited
budgets, and operational constraints.

This paper is organized as follows. Section 2 presents the sys-

tem architecture and proposes a new method for RC discovery
and routing. The security of the proposed system is also ana-
lyzed. In Section 3, our system implementation is described and
the effectiveness of the system is confirmed through some exper-
iments. Although we presented the basic idea of RC discovery
in our conference paper [12], the details were necessarily omitted
as it was a short work-in-progress report and, more importantly,
our early data structure and algorithms worked under only some
limited conditions and we did not fully prove the effectiveness of
our approach. The evaluations were done only on a simulator and
no actual device was used. A new system developed from scratch
and its evaluation results using actual user devices are presented
in this paper. Conclusions are given in Section 4.

2. Automatic Roaming Consortium Discovery
and Routing

2.1 RADIUS-based User Authentication and Roaming
IEEE 802.1X is a user authentication standard for network ac-

cess control which is often implemented using the RADIUS pro-
tocol [3], [9]. The 802.1X standard supports the Extensible Au-
thentication Protocol (EAP), which provides various authentica-
tion methods [13]. Some representative examples are EAP-TLS,
EAP-TTLS, and PEAP. EAP messages are exchanged between
the user device and the authentication server via the AP and some
RADIUS proxies. EAP-TLS is a certificate-based mutual authen-
tication protocol in which the user device and the server authenti-
cate each other by using digital certificates issued by a Certificate
Authority (CA). EAP-TTLS is an asymmetric mutual authenti-
cation protocol in which the user device first authenticates the
authentication server using a server certificate, and after the au-
thentication succeeds, the server authenticates the user by using
a user ID/password pair. PEAP is similar to EAP-TTLS. Both
PEAP and EAP-TTLS utilize an end-to-end Transport Layer Se-
curity (TLS) tunnel established between the user device and the
authentication server to protect sensitive information such as real
user IDs and passwords from a wide range of attacks includ-
ing eavesdropping, falsification, and replay. No device between
the user device and the authentication server can see or mod-
ify the information in the tunnel. The RADIUS proxies and the
APs can see only the outer identity of EAP method and some
RADIUS attributes. In real roaming applications, such as
eduroam, server authentication has been strongly recommended
for security reasons.

These EAP methods consist of two-part conversations: server
authentication part followed by user authentication part. The
user device sends Access-Request packets and the server sends
Access-Challenge packets until the authentication is complete.
The sequence of the RADIUS packets for each authentication can
be tracked by using attributes such as “State” and “Proxy-State”
at the RADIUS proxies. The beginning of an authentication se-
quence can be detected by checking the absence of the State at-
tribute in the Access-Request packet.

When server authentication fails, the user device will not pro-
ceed to the user authentication part because this might disclose
the user’s credential to an incorrect authentication server. In the
RADIUS protocol, the authentication server returns an Access-
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Reject packet to the user device immediately if any value of the
received response is not acceptable. However, the user device
does not need to send an Access-Reject packet back to the authen-
tication server when the presented server certificate is not accept-
able. Indeed, some devices including iPhone silently terminate
the conversations without sending an Access-Reject packet to the
authentication server. Therefore, in such a case, the authentica-
tion process might be suddenly restarted by a new authentication
sequence instead of receiving a response.

A network roaming system can be realized by creating an iden-
tity federation network connecting the RADIUS servers and prox-
ies of some operators. Realm names have been quite widely used
for identifying the IdPs in roaming environments. The username
consists of two parts, “user ID” and “realm,” concatenated using
the @ symbol in many cases. The realm part is used to represent
the name of the operator to which the user belongs. For eduroam
and govroam, the realm is aligned with the Domain Name System
(DNS) for routing convenience. For example, a student named
Alice at Tohoku University may have “alice@tohoku.ac.jp” as a
username. We can easily see in this example that the user belongs
to Tohoku University in Japan, and the authentication requests
should therefore be forwarded to the university. Note that the
RADIUS proxies can see only the outer identity that often carries
an anonymized username like “anonymous@tohoku.ac.jp,” while
the inner identity of EAP carries the actual username.

A group of WLAN operators on an identity federation network
may form an RC. Note that each RC has its own identity feder-
ation network isolated from the other roaming federations. The
realm does not always provide a hint about the users’ home RC.
We therefore need a new method to realize an inter-federation
roaming system.

2.2 Inter-federation Roaming System
Suppose there are a small number of large RCs and an inter-

federation roaming system is developed by connecting those RCs
somehow. The eduroam architecture [7] uses the identity feder-
ation network logically isolated from other RCs and allows all
member operators to trust each other without authenticating the
peer IdPs or SPs. If such a federation network were simply con-
nected to another one, and if the authentication requests became
routable between the networks, anyone could get on any AP even
without a roaming agreement between the different RCs. For ex-
ample, the APs on the eduroam network would accept users from
foreign RCs, but use of the APs should normally be restricted to
the research and education community. An access control mech-
anism is required in order to avoid such an over-federation prob-
lem. As explained in Section 1, it is not always easy for the SP
to determine the destination RC by simply looking at the realm.
As long as the destination RC remains unknown, implementing
access control is also difficult.

In our previous work [8], we proposed an inter-federation
roaming architecture in which every country or territory has their
own Hub Proxy server accommodating all local operators using
the corresponding ccTLD (country code Top-Level Domain) in
the realms. Figure 2 shows the proposed architecture. The Hub
Proxy handles the realm-based routing. The Hub Proxy collects

Fig. 2 Inter-federation roaming system using regional Hub Proxies [8].

all the realms from the local operators of the RCs to compile a
regional realm list in advance. Thus, the workload of compiling
the realm list, as well as the roaming system operation, can be
dispersed around the world, and each regional realm list would
be of a manageable size. This distributed architecture is similar
to the eduroam’s that contributed to the high scalability of the
system. Since eduroam is much larger than commercial WLAN
roaming systems with respect to the number of operators, any
inter-federation roaming system accommodating eduroam natu-
rally develops into a large scale.

The authentication requests from the local SPs are initially sent
to the Hub Proxy and then forwarded to the correct RC. If the
realm has a foreign ccTLD, the request is transferred to the Hub
Proxy in the corresponding region. The Hub Proxy also handles
the access control according to roaming agreements.

For example, in eduroam, there are roughly 970 IdPs in
Germany, 640 in the US, 360 in the UK, and 270 in Japan, as
of writing. There has not been any RC as big as eduroam, and
the regional realm list would not be so large. However, in reality,
handling 1,000 institutions manually is not an easy task for the
human operator of the regional hub.

Although the number of institutions is limited to some extent
in a region, each member institution may use some sub-realms,
making the table larger. We may be able to make the regional
realm list smaller by using a priori knowledge in regions where
special realms are used.

In the case of eduroam, for example, the following base realms
are used in Japan.
• <inst name>.ac.jp
• <inst name>.eduroam.jp
• <inst name>.f.eduroam.jp
• <inst name>.v.eduroam.jp
• <inst name>.go.jp
• <inst name>.jp

All the realms including .ac.jp and the .eduroam.jp sub-realms,
shown in bold, obviously belong to eduroam. Authentication re-
quests with these realms can be easily captured using regular ex-
pressions (regex). Since most of the eduroam members in Japan
are using these realms, the regional realm list can be made much
smaller. If the Hub Proxy sees one of them, it ignores the in-
stitution name part and forwards the Access-Request packet to a
proxy in the eduroam RC immediately.

Making a group of eduroam institutions by using regex may not
be practical in some countries where the use of general-purpose
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Fig. 3 Overview of the proposed system.

ccTLD domains is popular.
Although Japan has not joined govroam as of this writing, we

assume that the govroam consortium exists. The .go.jp realms
may be used by eduroam and govroam. Some institutions in
eduroam use .jp realms aligned with general-purpose JP domains.
The .jp realms may be used by eduroam, govroam, and other RCs.
Therefore, each of these realms including the institution name
needs to be registered separately on the regional realm list.

2.3 Basic Idea of Automatic RC Discovery
As described in Section 1, the realm collection and list compi-

lation tasks must still be done manually by a human operator, and
the labor aspect cannot be ignored as in our earlier work [8]. We
think that these problems can be solved by introducing a mecha-
nism in which the Hub Proxy automatically finds the forwarding
address of the received request. This paper proposes a new sys-
tem for automatic RC discovery and routing. Although we have
already described the basic idea of the system in our conference
paper [12], some important details have not yet been described.
This section reviews the idea and provides its details.

Figure 3 shows an overview of the system. Suppose there are
n RCs and their representative proxies are registered in a buffer of
maximum size n. When the Hub Proxy has received an Access-
Request packet from a user device, it forwards the request to one
of the RCs. If the authentication is successful, the proxy stores
the realm–RC pair and will reuse it in future processes. If the au-
thentication fails, then the proxy switches the forwarding address
to another RC. After a certain number of authentication attempts
the Hub Proxy will eventually find the correct forwarding address
as long as one of the users has a valid credential. The proxy will
be able to register the address so that the proxy can forward the
authentication requests with the same realm immediately after-
ward.

Using EAP and enabling server authentication are important
parts of ensuring sufficient security in all WLAN systems. As de-
scribed in Section 2.1, a TLS tunnel is used in some EAP meth-
ods. Therefore, no proxy can duplicate the authentication request
and send the copied requests to multiple RCs to find the correct
RC. RC discovery is challenging because the proxy cannot send
RADIUS messages as broadcasts or probe requests even though
they are popular in various network protocols. The Hub Proxy
is unable to see which realm belongs to which RC until a valid
authentication request goes through it. One of our key ideas is

Table 1 Proxy table containing fixed/learned realms.

realm name (exact or regex) forwarding address
*.ac.jp eduroam proxy
*.eduroam.jp eduroam proxy
*.example1.jp XXroam proxy
*.example2.jp govroam proxy
· · · · · ·

Table 2 Realm tracker table for RC discovery.

inst. base realm current RC ID
example3.go.jp 1 (eduroam)
example4.jp 4 (XYroam)
· · · · · ·

Table 3 Authentication tracker table.

inst. base realm forwarding address tracking key
(State attribute, etc.)

example3.go.jp eduroam proxy · · ·
example4.jp eduroam proxy · · ·
example4.jp XXroam proxy · · ·
· · · · · · · · ·

to use the authentication retry function which all user devices are
equipped with to find the RC. User devices normally repeat au-
thentication trials when an authentication fails.

We consider the RC sending back an Access-Accept packet to
be the correct one. The user authentication succeeds only when
a valid user credential is delivered to the user’s home authentica-
tion server in the correct RC. Once the Hub Proxy has received
the Access-Accept packet for the given realm, it stores the realm–
RC pair. In this paper, to “learn” means that the Hub Proxy stores
the realm–RC mappings found by the RC discovery. The secu-
rity features of the EAP methods ensure that the authentication
requests sent to incorrect RCs always fail, with or without an ex-
plicit Access-Reject reply.

2.4 System Design for RC Discovery and Routing
This section presents the system design for RC discovery and

routing. Since our early data structure and algorithms [12] failed
to fully demonstrate the effectiveness of our proposed method, we
have designed a new system from scratch.

The Hub Proxy has a proxy table used for realm-based routing
just like the normal RADIUS proxy. The proxy table, shown in
Table 1, may initially contain some pre-defined entries for known
base realms such as .ac.jp and .eduroam.jp. New entries are added
during automatic RC discovery. Once a realm has been registered
in the table, proxy operation for the same realm takes place im-
mediately and skips the RC discovery.

The Hub Proxy uses two more tables, a realm tracker table
(Table 2) and an authentication tracker table (Table 3), for con-
trolling automatic RC discovery. These tables are initially empty.
One entry is inserted into the realm tracker table when the Hub
Proxy has received an authentication request with an unknown
realm. Sub-realms are stripped off if present, and only the base
realm including the institution name is recorded. Each entry cor-
responds to an individual ring buffer containing the RCs in the
same base realm class. One entry may be shared by multiple user
devices that run the authentication sequences with the same insti-
tution base realm. All RCs are numbered, and each is represented
by an integer RC ID (IDentifier). The initial RC ID is chosen
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randomly, although the selection algorithm is not so important
since it is implemented to give each RC the same opportunity in
terms of the authentication retry count. We apply the Least Re-
cently Used (LRU) algorithm to remove the old entries with failed
realms that accumulate and might fill up the table.

Each entry on the authentication tracker table is created for
each authentication sequence or device, in other words, when
the Hub Proxy has received a new authentication request with
an unknown realm. Note that this table may have duplicate base
realms, e.g., example4.jp, when there are multiple devices trying
authentication with the same realm. The tracking key field is for
tracking the authentication sequence. This table is used to cap-
ture the current forwarding address and to retain it until the Hub
Proxy receives an Access-Accept packet. The proxy feature of
the Hub Proxy uses the entries in both the proxy table in Table 1
and the authentication tracker table in Table 3.

Suppose two user devices are running authentication sequences
for the same realm concurrently. If the authentication tracker ta-
ble did not exist and if the realm tracker table were used for for-
warding, the problem might occur that one of the devices changes
the forwarding address just after the other receives an Access-
Accept packet and before it registers the original address to the
proxy table. Our early system [12] had this problem. To avoid
an incorrect realm–RC pair being registered, we need mutual
exclusion and serialization mechanisms which make concurrent
processing difficult. These problems can be automatically elim-
inated by utilizing the authentication tracker table as long as the
RADIUS server software can track the authentication sequences
correctly.

When the Hub Proxy has received an Access-Accept packet,
the corresponding realm–RC pair found in the authentication
tracker table is added to the proxy table.

2.5 Details of the Algorithms
2.5.1 RADIUS Packets

The Hub Proxy receives four types of RADIUS packets,
Access-Request, Access-Accept, Access-Reject, and Access-
Challenge during the authentication sequence. The proposed sys-
tem uses them as the triggers for various processes.

It might seem natural to switch the destination RC during RC
discovery when the Hub Proxy detects an authentication failure.
However, using the Access-Reject packet does not always work
because some devices do not explicitly send Access-Reject pack-
ets as described in Section 2.1. If Access-Reject were used, those
devices would continue trying the current RC when server au-
thentication fails and lose a chance to try other RCs. This prob-
lem was found in our first prototype system [12]. To avoid this
problem, our new system proceeds to the next RC when the first
Access-Request packet is received. Therefore, no additional pro-
cessing exists for Access-Reject packets, and we consider three
situations only. The following sub-sections describe the algo-
rithms.
2.5.2 Access-Request

Figure 4 shows a flowchart for the algorithm initiated by an
Access-Request packet. The blocks in the dashed boxes represent
Denial-of-Service (DOS) suppression which will be explained in

Fig. 4 The flowchart for Access-Request packets.

detail later. When the Hub Proxy receives an Access-Request
packet, it checks the device’s Media Access Control (MAC) ad-
dress found in the Calling-Station-Id attribute in the RADIUS
protocol. If the MAC address is found in the exception list which
retains the addresses of potentially malicious devices, the Hub
Proxy responds immediately with an Access-Reject packet with-
out relaying the Access-Request packet for the current RC.

If the request is not the first one, then the proxy takes no partic-
ular action and forwards it to the RC with the matching realm by
using the proxy table (Table 1) and the authentication tracker ta-
ble (Table 3). If the request is the first one of a new authentication
sequence, then the Hub Proxy tries to find whether the proxy ta-
ble has an entry matching with the realm in the request. If there is
a match for the realm, then the request is forwarded immediately.

If no matching entry is found, then the Hub Proxy looks up the
realm tracker table (Table 2). Next, sub-realms are stripped off in
order to obtain the institution’s base realm. Some a priori knowl-
edge about the regional base names is used here to find the level
of the institution name which is on the second or third level. In
our examples we only consider the .go.jp and .jp realms. If the
realm is new, a new entry is inserted into the realm tracker table.
The same realm is registered in the authentication tracker table.

If the Hub Proxy successfully finds a matching realm in the
realm tracker table, the proxy increments the current RC ID in a
round-robin manner to change the forwarding address. Then, the
authentication tracker table is updated. A new entry is created if
the authentication request originated from a new device.

Users may sometimes type in wrong user IDs and/or wrong
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Fig. 5 DoS suppression processing.

realms during WLAN configuration on their devices. The Hub
Proxy may see many authentication failures, and the authentica-
tion tracker table would thus become large. The First-In First-Out
(FIFO) algorithm is used to clean up expired entries and to limit
the table size. If a device repeats failed authentication frequently,
probably due to a bad implementation, it can be captured by the
DoS suppression processing explained later.
2.5.3 Access-Challenge

Access-Challenge packets are sent from the authentication
server back to the user’s device. When the Hub Proxy receives
an Access-Challenge packet, the proxy updates the tracking key
in the authentication tracker table and forwards the packet.
2.5.4 Access-Accept

When the Hub Proxy receives an Access-Accept packet, it
checks whether the realm in the packet has already been reg-
istered. If the realm is found in the proxy table, the server
does not have to carry out any processing and simply terminates
the authentication sequence. Otherwise, the proxy picks up the
forwarding address in the matching entry on the authentication
tracker table. The address is registered in the proxy table together
with the corresponding realm name. Note that we do not use the
realm tracker table because the current RC may be modified by
another user device just before the Access-Accept packet arrives.
2.5.5 DoS Suppression

A possible attack on the proposed system would be a DoS at-
tack. It has been reported that some devices failed in authentica-
tion repeatedly, causing some congestion at the RADIUS prox-
ies. Another scenario would be that a malicious person tries fill-
ing up the realm tracker table and the authentication tracker table
by crafting and sending many fake authentication requests with
non-existent realms. The legitimate users would suffer from tem-
porary authentication failures if such an attack were to occur.

To mitigate the impact of this kind of attack, we have intro-
duced a mechanism for DoS suppression as a precaution. Since
the time parameters and the count threshold in this process will
need some fine tuning in a real system in the future, this paper
only demonstrates that such functionality is possible. Note that
this feature is for protecting the system from simple and casual
attacks rather than from any elaborate attacks.

Figure 5 shows a flowchart of the algorithm. The Hub Proxy
performs the processing only if it receives first Access-Request

Table 4 Authentication counter table.

Name of column Content
timestamp time stamp of the last rejection
mac addr MAC address of the device
auth count number of authentication failures

Table 5 Device exception list.

Name of column Content
timestamp time stamp of the registration
mac addr MAC address of the device

packets with unknown realms. When the proxy sees a new de-
vice identified by its MAC address, it registers the device in the
authentication counter table (Table 4) and sets the counter to 1.
The proxy increments the counter every time it receives a similar
packet from the same device. If the counter value exceeds a pre-
defined threshold value within a short period of time, the device
MAC address is registered in the device exception list shown in
Table 5. After the device is registered in the device exception
table, the Hub Proxy always replies to the device with an Access-
Reject packet, skipping RC discovery.

The device is removed from the authentication counter table
after a pre-defined time has passed or the table becomes full. In
the same way, the device is removed from the device exception
list after a pre-defined time has passed or the list becomes full.
The LRU algorithm is used for both table and list.

A limitation of this DoS suppression is that it cannot deal with
attacks with MAC address changes. The MAC address may be
easily changed on recent devices. This type of attack fools the
RADIUS proxies and may apply a harmful load to the identity
federation network as well. Therefore, such an attack should be
handled on the AP system or on a device which is as close to the
user device as possible.

2.6 Security Considerations
In the proposed method, the Hub Proxy may inevitably trans-

fer an Access-Request packet with an unknown realm to some
incorrect RCs owing to the nature of the algorithm. Since the
Access-Request packet may carry sensitive information, such as
passwords, disclosure of such information to an incorrect server
would be a problem. The IEEE 802.1X standard provides some
mechanisms for avoiding such information leakage as follows.

As already explained in Section 2.1, an end-to-end TLS tun-
nel between the user device and the authentication server is used
in the EAP to protect sensitive information from eavesdropping.
The user device can check the authenticity of the authentication
server in a secure manner before transmitting the sensitive infor-
mation if the CA certificate for the correct server is installed in
advance. Therefore, in the proposed system, it is necessary to
install the correct CA certificate in advance on the user device.
Note that this requirement is not specific to our proposed method
since enabling server authentication has become popular in many
WLAN systems including eduroam for security reasons.

Even if the server authentication was not enabled for some rea-
son, other mechanisms would still protect the user credentials.
EAP-TLS is a recommended authentication method because it is
based on digital certificates instead of a password. If conventional
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user/password authentication is preferred for operational reasons,
and if MS-CHAPv2 is adopted, the security is limited to some
extent since a vulnerability has been reported [14].

From the viewpoints of RCs, receiving authentication requests
from users in foreign RCs would be a little bit noisier. How-
ever, this would not be a significant problem since we already
see many stray authentication attempts, including those involving
foreign realms, in the eduroam infrastructure as well as in some
actual roaming systems today.

Operations that the proposed method can perform are limited to
monitoring the server/user authentication status at the Hub Proxy,
switching the destination RC, and retaining the routes to the cor-
rect RCs. Since no proxy is capable of intervening the traffic in-
side the TLS tunnel, we cannot find any security threat added by
our system. If any were to be found, it would result in a security
breach of the EAP method being used.

3. Implementation and Evaluation

3.1 Environment and Setting
We have developed a proof-of-concept inter-federation roam-

ing system to evaluate the proposed method. FreeRADIUS is
used as the RADIUS software since it is quite popular in eduroam
and govroam. To implement the required functions, we use
Python and Perl modules both of which work in FreeRADIUS.

The system consists of some virtual servers constructed by
Docker on the Ubuntu operating system, and an access point is
connected to one of the Docker containers acting as the SP. De-
tails of these environments are shown in Tables 6 and 7.

Figure 6 shows the network layout of the virtual servers. Three
RCs are assumed to exist and their top-level servers are connected
to the Hub Proxy. We consider the number of RCs to be suffi-
cient for evaluating the RC discovery method. Even if the num-
ber is more than three, we can expect that only the number of
retries increases and that the function itself is not affected. At

Table 6 Environment of the host server.

OS Ubuntu 16.04
RADIUS Server FreeRADIUS 3.0.15
Virtualization software Docker 18.06.1-ce
Certificate management software OpenSSL 1.0.2g

Table 7 Environment of the virtual servers.

OS on all servers Ubuntu 16.04
RADIUS Server FreeRADIUS 3.0.15
module 1 Python 2.7.12
module 2 Perl v5.22.1
SQL database PostgreSQL 9.5.12

Fig. 6 Overview of the virtual network.

the beginning of this work, we confirmed that the federation net-
work worked well by sending some Access-Request packets from
the Hub Proxy to each RC by manual operation. Five tables ex-
plained in Sections 2.4 and 2.5 are created in the PostgreSQL
database in addition to the normal schema for the RADIUS user
database.

We cannot use the proxy.conf file in FreeRADIUS to dynami-
cally change the destinations of the authentication requests since
the file is read only once at start up. The destinations can be
changed dynamically using a PostgreSQL database attached to
FreeRADIUS. We register the addresses of the proxies of all RCs
in the proxy.conf file in advance since they are static. Each RC
is identified by a numbered name such as “proxy1,” and the Hub
Proxy switches the forwarding address by specifying the name
instead of the actual IP address.

As shown in Table 8, we assigned some realms to each virtual
server acting as an RC. Some regex entries are registered for only
the fixed realms. For example, “˜ˆ(.+\.)?ac\.jp$” is used for
grouping .ac.jp realms.

We used three types of operating systems as shown in Table 9.
All the devices were configured with the server authentication
feature enabled in advance.

3.2 Evaluation of RC Discovery and Learning
We must ensure that there is no problem in the system even in

the worst case scenarios. In order to produce such cases inten-
tionally, we have changed the RC ID initialization process in the
following evaluations. The current RC ID in the realm tracker
table is initialized so that the correct RC is the farthest.

The devices send Access-Request packets to the Hub Proxy.
Figure 7 shows a portion of the authentication log in the SQL log
file. The first three lines are for an iPhone 8 (iOS device) with
the username test1-1@test1.jp. The Hub Proxy forwarded the
first authentication request to proxy2, and then the second one to
proxy3. The Hub Proxy did not receive any Access-Reject packet
because the server authentications failed but the device did not
send an Access-Reject packet. When the third request was sent to
proxy1, which contains the realm test1.jp, both the server authen-
tication and the user authentication were successful and the Hub
Proxy received an Access-Accept packet. When that happened,
the realm test1.jp was registered in the proxy table. No further

Table 8 Registered realms.

Roaming Consortium institution base realms
Container 1 test1.ac.jp

test1.eduroam.jp
test1.v.eduroam.jp
test1.f.eduroam.jp

test1.jp
Container 2 test2.go.jp

test2.jp
Container 3 test3.jp

Table 9 Specification of user devices.

Name of the device OS version Registered user ID
iPhone 8 iOS 12.1.4 test1-1@test1.jp
Nexus 7 Android 6.0.1 test2-1@test2.jp

test2-2@test2.jp
Moto G6 (XT1925-7) Android 8.0.0 test3-1@test3.jp
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Fig. 7 Examples of RC discovery.

Table 10 Authentication retry parameters of various devices (averaged over 10 retries).

device number of continuous retries first interval (sec) second interval (sec) total time (sec) 1 auth time (sec)
iPhone 8 3 11.41 0.60 12.41 0.40
Nexus 7 more than 10 11.59 11.81 23.75 0.35
Moto G6 5 13.74 13.14 27.26 0.37

RC discovery takes place for this base realm.
Lines 4–9 of the SQL log file are for an Android device with

the username test2-1@test2.jp. The device was intentionally con-
figured with an incorrect password. The Hub Proxy received an
Access-Reject packet even for the correct destination (proxy2),
and RC discovery continued. Then, the device was reconfigured
with another username test2-2@test2.jp in the same realm as the
previous one. As shown in line 12, the Hub Proxy received an
Access-Accept packet, and the realm was registered. Android de-
vices seem to return Access-Reject packets explicitly when server
authentication fails as we explained earlier.

The last three lines are for an Android device with the user-
name test3-1@test3.jp. The Hub Proxy received an Access-
Accept packet from the correct destination (proxy3).

As a result, we have confirmed that the proposed RC discov-
ery system works as designed. All Access-Request packets with
correct realms that were not registered on the Hub Proxy ulti-
mately reached their correct authentication servers. In addition,
we confirmed that the Hub Proxy stores the forwarding address
correctly when the authentication has been successful once, and
that subsequent authentication requests go smoothly without RC
discovery.

The functionality is good since all possible combinations of
the realm–RC mappings have been tested. In order to check the
practicality of the method, we carried out the following additional
testing. We created 3,000 accounts with random realms (institu-
tion names) per RC, i.e., 9,000 in total, and fed them to the Hub
Proxy. We confirmed that all the realms were mapped to the cor-
rect RCs without any failure cases. Since the number of eduroam
member operators is at most around 1,000 per country as of this
writing and since we have not seen any RC larger than this so far,
the proposed system is considered to have enough capacity with
respect to the number of operators.

Table 10 shows the measured parameters of the authentica-
tion retry functions for each device used. We counted the num-
ber of continuous retries and measured the average time per

authentication sequence over 10 trials. The first interval in Ta-
ble 10 shows the time between the first and second trials. The
second interval shows the time between the second and third tri-
als. The total time is the amount of time required for the Hub
Proxy to finish the three trials and to succeed in authentication.
The “1 auth time” is the amount of time required for the Hub
Proxy to finish one authentication sequence.

As shown in Table 10, the number of continuous retries on
iPhone 8 was fairly low. This limitation may result in a worse
user experience when the number of RCs becomes larger. How-
ever, we do not expect this to be a serious problem since RC
discovery only takes place at the first connection of a new RC.
In general, some Operating Systems (OSs) have a longer pause
after continuous authentication failures and resume the authenti-
cation attempts later. Thus, there is still a chance for the device
to reach the correct authentication server. In addition, each RC is
expected to have many users and their multiple devices perform
authentications using the same realm. The effective number of
authentication requests is much larger than the number of RCs in
such a situation.

Since there have been only a few large RCs in the world so far,
we assumed that the number of RCs would not be so large in this
work. Our recommendation is that new RCs be designed to uti-
lize the realms embedded with RC-specific keywords so that the
RCs can be easily identifiable.

3.3 DoS Suppression
To simulate a DoS attack on the Hub Proxy, we created a large

number of Access-Request packets including those with non-
existent realms, and sent them from a device to the Hub Proxy.
As a result, the Hub Proxy successfully blocked the authentica-
tion requests after the specified number of authentication retries.

As explained in Section 2.5.5, in an actual roaming system, the
AP system at each SP should handle suppression of DoS attacks
locally and should try to minimize congestion on the identity fed-
eration network.
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4. Conclusions

In this paper we address the realm-based routing problem that
arises in a roaming system connecting some large RCs, each of
which has many realms. We developed a method for automatic
RC discovery and routing, which is used by the regional Hub
Proxies in our inter-federation roaming architecture developed
earlier. Our main objective is to automate the routing table cre-
ation removing the additional labor at the RC side in particular.
Our final goal however is to achieve an inter-federation roam-
ing system. The new method works with conventional 802.1X-
based systems and maintains backward compatibility even in
Passpoint/NGH environments. The effectiveness of the method
was confirmed using a virtual inter-federation roaming network.
The most important advantage of our solution compared with ex-
isting ones is that no IdP or SP is affected in the presented frame-
work. Since there is no additional system or task on the RC side,
the system is expected to contribute to faster development and
adoption of large-scale WLAN roaming systems.

Our future work includes further testing of the system in a real
large-scale roaming environment to analyze the performance of
RC discovery in detail. We have been operating an NGH-based
roaming system in Japan since 2017 [15], and its proxy will be
a good candidate for prototyping and testing after other large
RCs have been connected in the future. The automatic discov-
ery mechanism we propose in this paper would also be useful for
finding active paths, and we will seek for more applications that
improve the service availability of WLAN roaming systems.
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