
IPSJ SIG Technical Report

Adaptive Supersampling for Rendering Reflections
on Water Surfaces

Namo Podee1,a) Nelson Max3 Kei Iwasaki2 Yoshinori Dobashi1

Abstract: Reflections on a dynamic surface such as a water surface are difficult render accurately in real-time
due to aliasing from its highly reflective sub-pixel geometric structures. We propose a real-time rendering
method for water surfaces that can remove both spatial and temporal aliasing while preserving the reflections
from the sub-pixel geometric details. Our method first renders an aliasing-free image by approximating the
distribution of normals due to the sub-pixel details with a Gaussian distribution. Then, our method detects
the pixels that include significant high-contrast reflection detail from the sub-pixel geometry and renders
sub-pixel reflections by supersampling.

Keywords: real-time rendering, anti-aliasing, reflection, water surface, adaptive supersampling

1. Introduction

Aliasing has been an important problem since the begin-

ning of computer graphics. It is an artifact that is created

when the data is not sampled enough. For example, if we

only sample one position in a pixel that has two surfaces

with different attributes inside, the result will most likely

be unpredictable. This problem is even more prominent in

water surface rendering.

Water surfaces usually have a high detail and animated

geometric structure. This contributes to aliasing in both

spatial and temporal domains. The traditional rendering

method only samples the surface once per pixel, which is not

enough most of the time for water surfaces. Many systems

utilize the supersampling method and geometric simplifica-

tion to tackle this problem. Supersampling is a method to

sample a pixel multiple times to decrease aliasing. However,

its computational cost is too high. Geometric simplification

removes those details on the water surface that could cause

any aliasing. This method is very cost-effective but it also

removes the details from the rendering result.

We propose a method that utilizes both supersampling

and geometric simplification to have a spatio-temporal anti-

aliasing solution for rendering water surfaces comprised of

sine waves. Our method is cost-effective yet provides detail

and an accurate result.

Our main contributions are:

• A sine waves clamping method that removes waves caus-

ing aliasing and approximates their reflection contribu-

tion.

1 Hokkaido University
2 Wakayama University
3 University of California, Davis
a) namo@ime.ist.hokudai.ac.jp

• A method that evaluates the reflection detail of each

pixel.

• Amethod that computes parallel super sampling of each

pixel proportionally to its evaluated detail.

• A demonstration that by combining our methods, we

can render detailed anti-aliased reflections on water sur-

faces in real-time.

2. Related work

This research is built on our previous work [9], which

can remove both temporal and spatial aliasing. However,

it erases details from the reflection as well. Related work

to preserve the details can be categorized into two groups:

adaptive anti-aliasing and analytic anti-aliasing.

Adaptive anti-aliasing or supersampling is mainly

about multi-sampling each pixel according to some evalua-

tion. Lau and Rynson [4] introduce adaptive supersampling

to remove hidden surfaces at the edge of geometry. Jin et

al. [3] evaluate pixels in both image and object space then

multi-sample them with ray tracing accordingly. Barringer

et al. [1] render a scene first on a GPU and then evaluate and

sample each pixel if needed with a CPU. Hollander et al. [2]

apply adaptive supersampling in deferred rendering by us-

ing a supersampling g-buffer to help evaluate and shade each

pixel appropriately. Lee et al. [5] introduce tile-based adap-

tive supersampling and undersampling ray tracing. Marrs et

al. [6] remove artifacts from temporal anti-aliasing [10], [11]

by evaluating artifact pixels and multi-sample them with ray

tracing. These methods usually need a small number of ad-

ditional samples (e.g. less than 16) per pixel. However, for

rendering water surfaces, especially surfaces in a distance,

the pixels can contain highly detailed geometries and more

samples are usually required.

ⓒ 2020 Information Processing Society of Japan 1

Vol.2020-CG-178 No.3
2020/6/25



IPSJ SIG Technical Report

Analytic anti-aliasing is about coming up with a math-

ematical solution to solve or reduce the aliasing issue. We

will borrow a lot of mathematical analyses from this type of

research. Clamping [7] evaluates and removes any aliasing

source from a texture by using the Nyquist theorem. EWA

volume splatting [12] is a volume rendering anti-aliasing

method by using elliptical Gaussian reconstruction kernels.

LEAN mapping [8] approximates the accumulation of nor-

mal map values within one pixel as a Gaussian distribution.

This helps remove aliasing from normal map sampling.

3. Proposed method

Fig. 1: The overview of our method.

Our main objective is to render the reflection of disk light

sources on a water surface comprised of sine waves, without

aliasing and without losing any details. An overview of our

method will be explained first then we will go into the detail

in each section.

Our method can be separated into two parts: an approx-

imate reflection rendering and a detail reflection rendering.

As shown in Fig. 1, our method starts with the approxi-

mated reflection rendering, which shares a lot of similarities

to our previous work [9], to create a reflection result with-

out aliasing and detail. Then, the detail reflection rendering

evaluates the detail potential of each pixel of the approx-

imated result. After that, it computes the multi-sampling

of each pixel according to its evaluation. In the end, the

multi-sampling result is combined and composed with the

approximated result to create a final result.

3.1 Approximate reflection rendering

In our method, the water surface is represented by a com-

bination of sine waves with different frequencies and ampli-

tudes. We want to remove spatial-aliasing by removing every

sine wave that causes spatial-aliasing from the water surface

geometry, and then compensating for its removal by adding

its contribution to the LEAN mapping reflection rendering.

First, we utilize the clamping method [7] to identify which

sine waves will cause spatial-aliasing on each pixel. To ex-

plain further, each sine wave in a pixel will be projected to

the screen space, then any sine wave whose projected fre-

quency is larger than the Nyquist frequency is considered

to be a spatial-aliasing wave. Every spatial-aliasing wave

will be removed from the geometric calculation of the water

surface.

Second, the clamped geometry will be rendered by our

temporal ray tracing to remove any temporal-aliasing that

it might have. Temporal ray tracing is done by calculating

the time-integrated light contribution between the current

frame and the previous frame. This can be done easily in

our disk light source scenario. Our method calculates the in-

tersection points between the plane of the disk light source

and the reflected rays for both the current and the previous

frames. Then we calculate the overlapped length between

the disk light source and the line segment between the two

intersection points. The time-integrated light contribution

is calculated by the ratio of the length of the overlapped

line segment to that of the line segment between the two

intersection points.

Third, we have to compensate for the removed sine waves

for any pixels where the sine waves causing spatial-aliasing.

We combine the removed sine waves and approximate the

normal distribution function (NDF) for those waves with

a Gaussian distribution using the LEAN mapping method

[8]. Then we transform the NDF to the reflection distri-

bution function (RDF) by using Gaussian kernel transfor-

mation technique in EWA volume splatting [12]. Then the

light contribution can be calculated from a convolution of

the RDF and the disk light source. We calculate this con-

volution by using numerical integration on a GPU.

Lastly, we can combine the result of temporal ray trac-

ing and RDF-disk-light convolution to have a final approx-

imated result. However, the result of the two methods is

too different. Combining them directly will lead to a non-

smooth result. Thus, we transition the wave clamping by a

gradually reducing the amplitude of each wave when its pro-

jected frequency gets close to Nyquist frequency. With this

method, we can blend the result between the two methods

very smoothly.

3.2 Detail reflection rendering

The approximated result that we created earlier doesn’t

contain enough details in the reflection because the spatial-

aliasing waves are approximated with a Gaussian distribu-

tion NDF, which is not accurate enough. An accurate result

can be obtained by supersampling each pixel. However, wa-

ⓒ 2020 Information Processing Society of Japan 2

Vol.2020-CG-178 No.3
2020/6/25



IPSJ SIG Technical Report

ter surfaces are very complicated and some pixels might need

even more than 1000 samples, which is impossible in real

time for all pixels with a traditional method. Our method

tackles this problem by efficiently scheduling a million GPU

threads to help compute a few pixels that make a difference

in the detail of the overall reflection result.

First, our method evaluates the importance value of each

pixel by using its pixel value from the approximated result.

In this current stage, we simply put the approximated result

into a Gaussian function, so that a pixel on the edge of the

light source reflection area is considered more important,

and any pixel that is not in that reflection at all is ignored.

This can be described as:

vi = gρ(Ra(i)− c), (1)

where vi is the importance value of i-th pixel, gρ is a 1D

Gaussian function with variance of ρ2, Ra(i) is the approx-

imated result of pixel i, and c is a center of the Gaussian

function. We adjust both ρ and c manually for each scene.

Any pixel that has an importance value above a threshold

will generate a sampling task, which contains its pixel po-

sition, sampling position, and the importance value. Every

sampling task will be added to a sampling task list.

Second, our method calculates a prefix sum of the impor-

tance value of all tasks in the sampling task list. This can

be done in parallel on a GPU as well.

Third, our method dispatches a fixed number of GPU

threads to work on sampling tasks. Our objective is to assign

a task to a group of threads, whose size is as proportional as

possible to the task’s importance value. This can be done

by associating each GPU thread id to each task’s prefix sum

value of importance value. Each thread first calculates the

following searching value:

sk = k
N∑

j=0

vj , (2)

where k is a GPU thread id, N is the size of the sampling

tasks, vj is the importance value of j-th task. Then we use

a binary search to find a task that has the maximum prefix

sum value that is still lower or equal to its sk value. Now

each GPU thread knows which task to execute.

Fourth, each GPU thread computes its task by randomly

sampling the position within the task’s pixel then using our

temporal ray tracing to shade that ray.

Fifth, the result from each GPU thread is atomically col-

lected into the detail result.

Last, the detail result is blended with the approximated

result by using a weighting value for the detail result. We

can calculate the weight a of i-th pixel of the detail result

from the ratio of a size of threads that working on this pixel

and the sample size needed to satisfy the Nyquist limit,

which is:

ai = clamp(M ∗ vi∑N
j=0 vj

∗ fnyquist

max(fk)
, 0, 1), (3)

where M is a total thread size, vi is the importance value

of i-th pixel, fk is a projected frequency of k-th sine wave,

and fnyquist is the Nyquist frequency. The blended result

R of i-th pixel will be:

Ri = (1− ai) ∗Ra,i + ai ∗Rd,i, (4)

where Ra,i is the result of the approximate reflection ren-

dering, and Rd,i is that of the detail reflection rendering.

4. Results

We implemented our method using OpenGL and our

method runs entirely on a GPU. We currently experiment

with just one scene, which is a sunset scene, with param-

eters: c = 0.1, ρ = 0.04. Fig. 2 shows the comparison re-

sult between the reference image, the result without anti-

aliasing, the result with 32x MSAA, and the result with our

method. The reference image is calculated by the tiling 128x

supersampling method. Table 1 shows the computation

time comparison of the mentioned methods. Fig. 3 shows

the internal result of our method. Fig. 3a and Fig. 3b show

the result from the approximate and the detail reflection ren-

dering method respectively. Fig. 3c shows the importance

value of each pixel.

Table 1: The computational time comparison.
Rendering Method Rendering Time
Reference 8326 ms
No AA 3 ms
32x MSAA 10 ms
Our Method 15 ms

Our method can achieve a similar result and detail to the

reference image while being in real-time, unlike the 128x

supersampling method.

The rendering times are measured on a laptop with an

Intel Core i7 @ 2.50Ghz, Memory 16 GB, and an NVIDIA

GeForce GTX 860M.

5. Conclusion

We have presented a real-time rendering method for mov-

ing water surfaces with a highly detailed reflection of a

disk light source. However, many problems remain, namely:

pixel importance value evaluation, limited geometry, and

light source support. In our current progress, our method

parameters need to be adjusted manually for each scene to

achieve the best result. Also, our method only supports sine

waves for the water surfaces geometry and disk light source

for a light source type. These problems make our method

still impractical for many real applications.

We are working on fixing these problems and making our

research useful in rendering a beautiful reflections on a water

surface in real-time.

Acknowledgment

This work was supported by JSPS KAKENHI Grant

Number JP18H03348.

ⓒ 2020 Information Processing Society of Japan 3

Vol.2020-CG-178 No.3
2020/6/25



IPSJ SIG Technical Report

(a) Reference image (b) Without AA (c) 32x MSAA (d) Our method

Fig. 2: The comparison result from the sunset scene.

(a) Approximate result (b) Detail result (c) Importance value

Fig. 3: The internal result of our method.

ⓒ 2020 Information Processing Society of Japan 4

Vol.2020-CG-178 No.3
2020/6/25



IPSJ SIG Technical Report

References

[1] Barringer, R. and Akenine-Möller, T.: A4: Asyn-
chronous Adaptive Anti-Aliasing Using Shared Memory,
ACM Trans. Graph., Vol. 32, No. 4 (online), DOI:
10.1145/2461912.2462015 (2013).

[2] Holländer, M., Boubekeur, T. and Eisemann, E.:
Adaptive Supersampling for Deferred Anti-Aliasing,
Journal of Computer Graphics Techniques (JCGT),
Vol. 2, No. 1, pp. 1–14 (online), available from
⟨http://jcgt.org/published/0002/01/01/⟩ (2013).

[3] Jin, B., Ihm, I., Chang, B., Park, C., Lee, W. and Jung,
S.: Selective and Adaptive Supersampling for Real-Time Ray
Tracing, Proceedings of the Conference on High Performance
Graphics 2009, HPG ’09, New York, NY, USA, Associa-
tion for Computing Machinery, p. 117–125 (online), DOI:
10.1145/1572769.1572788 (2009).

[4] Lau, R. W. H.: An Adaptive Supersampling Method,
Proceedings of the Third International Computer Science
Conference on Image Analysis Applications and Computer
Graphics, ICSC ’95, Berlin, Heidelberg, Springer-Verlag, p.
205–214 (1995).

[5] Lee, W.-J., Hwang, S. J., Shin, Y., Ryu, S. and Ihm,
I.: Adaptive Multi-Rate Ray Sampling on Mobile Ray
Tracing GPU, SIGGRAPH ASIA 2016 Mobile Graphics
and Interactive Applications, SA ’16, New York, NY,
USA, Association for Computing Machinery, (online), DOI:
10.1145/2999508.2999523 (2016).

[6] Marrs, A., Spjut, J., Gruen, H., Sathe, R. and McGuire, M.:
Adaptive Temporal Antialiasing, Proceedings of the Confer-
ence on High-Performance Graphics, HPG ’18, New York,
NY, USA, Association for Computing Machinery, (online),
DOI: 10.1145/3231578.3231579 (2018).

[7] Norton, A., Rockwood, A. P. and Skolmoski, P. T.: Clamp-
ing: A Method of Antialiasing Textured Surfaces by Band-
width Limiting in Object Space, Proceedings of the 9th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’82, New York, NY, USA, ACM,
pp. 1–8 (online), DOI: 10.1145/800064.801252 (1982).

[8] Olano, M. and Baker, D.: LEAN Mapping, Proceedings of
the 2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, I3D ’10, New York, NY, USA, ACM,
pp. 181–188 (online), DOI: 10.1145/1730804.1730834 (2010).

[9] Podee, N., Max, N., Iwasaki, K. and Dobashi, Y.: Temporal
and Spatial Anti-Aliasing for Rendering Reflection on a Wa-
ter Surface, ACM SIGGRAPH 2019 Posters, SIGGRAPH
2019, New York, NY, USA, Association for Computing Ma-
chinery, (online), DOI: 10.1145/3306214.3338599 (2019).

[10] Shinya, M.: Spatial Anti-aliasing for Animation Sequences
with Spatio-temporal Filtering, Proceedings of the 20th An-
nual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’93, New York, NY, USA, ACM,
pp. 289–296 (online), DOI: 10.1145/166117.166154 (1993).

[11] Tatarchuk, N., Karis, B., Drobot, M., Schulz, N., Charles,
J. and Mader, T.: Advances in Real-Time Rendering
in Games, Part I (Full Text Not Available), ACM SIG-
GRAPH 2014 Courses, SIGGRAPH ’14, New York, NY,
USA, Association for Computing Machinery, (online), DOI:
10.1145/2614028.2615455 (2014).

[12] Zwicker, M., Pfister, H., van Baar, J. and Gross, M.:
EWA Volume Splatting, Proceedings of the Conference
on Visualization ’01, VIS ’01, Washington, DC, USA,
IEEE Computer Society, pp. 29–36 (online), available from
⟨http://dl.acm.org/citation.cfm?id=601671.601674⟩ (2001).

ⓒ 2020 Information Processing Society of Japan 5

Vol.2020-CG-178 No.3
2020/6/25


