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Abstract: In this paper, we deal with melody completion, a technique which smoothly completes partially-masked
melodies. Melody completion can be used to help people compose or arrange pieces of music in several ways, such as
editing existing melodies or connecting two other melodies. In recent years, various methods have been proposed for
realizing high-quality completion via neural networks. Therefore, in this research, we examine a method of melody
completion based on an image completion network. We represent melodies as images and train a completion network
to complete those images. The completion network consists of convolution layers and is trained in the framework
of generative adversarial networks. We also consider chord progression from musical pieces as conditions. From
the experimental result, it was confirmed that the network could generate original melody as a completion result and
the quality of the generated melody was not significantly worse than the result of a simple example-based melody
completion method.

Keywords: melody completion, automatic music composition, convolutional neural networks, generative adversarial
networks

1. Introduction

Automated music generation has been studied as a technol-
ogy that helps people who do not have musical knowledge or
skills to work on music creation [20]. Music generation is a tech-
nology that uses machines to automate music creation activities
such as composition, arrangement, and performance without hu-
man intervention. In addition to lowering the threshold of music
creation, research on music generation has been conducted with
backgrounds such as human cost reduction and understanding of
music creation.

The automatic composition is a sort of music generation. Us-
ing an automatic composition system, those who are not be able
to compose can obtain new music with less effort and time.

Many of those methods generate musical pieces according to
inputs such as lyrics, noise vectors, or some parameters such as
note density. On the other hand, for people who do not have
composition skills and want to create musical pieces with an at-
mosphere similar to specific existing pieces, a method to generate
music based on these pieces can be useful.

Therefore, we examine melody completion, which receives a
partially masked score and generates the masked part so that
the generated part naturally compensates the masked part. The
melody completion realizes partial editing of pieces by masking
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melodies and completing them. Moreover, by repeating masking
and completing sequentially from the beginning of the pieces, we
can generate a new piece that has the same structures and chord
progression as the original music.

In this research, we propose a melody completion network that
completes melodies considering both pitches and rhythms by ap-
plying image completion. In this research, we opt for applying
image completion to complete melodies. Image completion is a
technique that allows filling masked regions of images with al-
ternative contents. Recently, various methods for high-quality
completion via neural networks have been proposed. Thus we
express a melody as an image and investigate a melody comple-
tion network similar to the image completion network [19]. We
also consider the chord progression from musical pieces as con-
ditions.

2. Related Works

2.1 Automatic Composition and Melody Completion
As soon as the automatic computing device was invented, the

automatic composition was supposed to be an application of the
computation [5]. Since then, there have been many attempts to re-
alize automatic composition systems to date. Rule-based methods
have been used in the 1990s [28], and the methods of composition
were changed to that based on machine learning.

There have been many automatic composition methods; here
are a part of those works. Biles et al. proposed an automatic
composition system that generates a jazz solo using the genetic
algorithm [1]. Roig et al. developed an automatic composition
system that uses statistical models to model the rhythm patterns
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and pitch contour [25]. Fukayama et al. proposed an automatic
composition system Orpheus, which generates melodies based on
the prosody of Japanese lyrics [6]. In this system, the composi-
tion is regarded as the maximum likelihood search problem of
the sound path, and by solving the problem under the constraint
condition based on the prosody of the lyrics, the melody match-
ing the lyrics is generated. Yang et al. generated natural melody
using the Deep Convolutional Generative Adversarial Network
(DCGAN), which has been extensively used for artificial image
generation [30]. A similar method has been extended to gener-
ate multi-track melody generation [4]. Moreover, Columbo et al.
developed an automated composition system based on the recur-
rent neural network (RNN) [2]. They used two RNNs to generate
pitch and duration independently.

The melody completion is an application of the automatic com-
position, which automatically generates only a part of the melody
given the surrounding context. There have been several methods
to complete four-part Bach chorales using a convolutional neural
network (CNN), long-short term memories (LSTM) and Gibbs
sampling [10], [11], [17]. The problem of their methods is that
this method can be applied to the four-part chorales, and thus it
cannot be applied other genres such as pops.

2.2 Image Completion
Image completion or image inpainting [24] is a technique to

complement the deleted or lost parts of an image naturally. Tra-
ditionally, image completion was based on pasting the image
patches onto the missing region [16], [26]. In recent years,
methods based on neural networks have been studied [12], [23],
[29], [31]. Iizuka et al. proposed a method of image comple-
tion that results in images considering both local and global
consistency [12]. In this method, the completion network is a
CNN, trained using a generative adversarial network (GAN) tech-
nique [8] with global and local context discriminators.

3. Melody Completion

As described above, the melody completion is a technique to
generate a partial melody given the surrounding melody. Figure 1
shows an example of the melody completion. In this example, the
second measure is masked, and then the new melody is generated
so that the generated melody naturally fits the masked area.

In this paper, we develop a melody completion method based
on Iizuka’s work [12], where a melody is represented as an im-
age, and the partially-masked melody image is inpainted using
a convolutional neural network trained by the GAN framework.

Fig. 1 An example of melody completion.

The reason why we employed a CNN and GAN based method is
twofold. First, since many of neural-network-based music gener-
ation methods employ either RNN or CNN [2], [10], [15], [17],
[30], it is natural to employ RNN or CNN. Among them, a com-
bination of CNN and GAN is proved to be effective for sym-
bolic music generation [30]. Second, the CNN+GAN method by
Iizuka explicitly consider the local and global constraints, which
are interpreted as the short-term and long-term constraints in the
context of music generation. Besides, Iizuka’s method gave the
state-of-the-art performance for image completion. Thus we em-
ployed Iizuka’s method for melody completion.

There are a few aspects for evaluating the result of melody
completion. Since the image completion is used for restoring
the damaged image [22], naturalness is the most important metric
for image completion. If the image completion method restores
the original image, the method is regarded to be good. However,
our purpose of melody completion is not recovering the original
melody but obtaining a melody that naturally fits the masked part
and it has some originality [3]. Therefore, we need to evaluate
the result of melody completion from originality and naturalness
points of view. The GAN-based neural network is often used for
synthesizing a new image [21]. Therefore, we expect a GAN-
based network to generate a new melody that does not exist in the
training data.

4. Representation of Melody and Chord

In this section, we describe the ways to represent melodies and
chords as images.

4.1 Melody Representation
There are several choices as a representation of melody. For

example, DeepArtificialComposer [2] uses the symbolic repre-
sentation (alphabet) that uniquely expresses pitch and duration.
MidiNet [30] uses an image as a representation of a melody. Be-
sides, DeepBach [10] uses a list of symbols of four notes of a
chord. Among them, we expressed a melody as an image in a
similar way to that of MidiNet, because an image-like represen-
tation is easily combined with CNN, and we can combine other
information (such as the masked part) by overlaying them as dif-
ferent channels.

We extract four-measure melodies from musical pieces and
converted them into images. The vertical direction of the image
corresponds to the pitches of the notes, and the horizontal direc-
tion of the image corresponds to the beat/time. Each pixel value
of the image is set to 1 if there is a note of the corresponding
pitch at the corresponding time, otherwise 0. Then we obtain an
image like a piano-roll. We refer to this image as a melody image.
Note that we transposed all melodies and chords to C major or A
minor, according to the original key.

We prepared two configurations of image size as shown in Ta-
ble 1. The image width is determined so that an image contains
four measures. In both configurations, we assume that the rhythm
of a melody as four-four time. If we express a triplet of an eighth
or shorter note, width of a quater note should be a multiple of 6
so that both a half of the note and a one-third of the note can be
expressed. In configuration A, the width of a quarter note is 24
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Table 1 Configurations of image width and height.

Conf. Width of
a quarter
note

Width of a
measure

Image
width

Image
height

A 24 96 384 60
B 8 32 128 32

Fig. 2 An example of melody images. Above: original melody, below: im-
age representation of the melody.

so that it can represent a triplet. For example, the width of a 32nd
note is 3, and that of a triplet of eighth note is 8. In configura-
tion B, we do not treat triplet and represent the width so that a
32nd note becomes one. The image height of configuration A is
determined so that an image can represent a note from C2 to B6,
which covers the height of most of the data. The image height
of configuration B is 32, assuming that the too-high or too-low
notes are excluded since the frequencies of those notes are small.
Figure 2 shows an example of a melody image of configuration
A.

The reason why we employed two configurations is to inves-
tigate the balance between the power of expression of the repre-
sentation and the training data. From the expressive power point
of view, configuration A has more expressive than configuration
B. However, considering that we have limited amount of train-
ing data, the less expressive representation could give the better
result. Thus we compare the results of the two configurations to
determine which is better for the current experimental condition.

4.2 Chord
We considered that the chord progression is useful for the com-

pletion network. In our problem, we have an original melody and
its chord. If we can use the chord of the melody to be generated,
we can expect that the system complements the melody so that
the generated melody matches the given chord. The chord infor-
mation is also used in several automatic composing methods [30].
Chords were expressed as images (chord images) of the same size
as melody images. We can input a melody image and a chord im-
age together into the network by just stacking them as different
channels.

We converted chords into images in basically the same way as
melody image. Each pixel value of a chord image is set if the cor-
responding pitch is a constituent of the chord at the corresponding
time. Figure 3 illustrates how to express C major in this way.

4.3 Dataset
We used MIDI files of 288 Japanese popular songs from the

web store *1 to build a dataset. Those files have both monophonic
melody and chord information. Table 2 shows the frequency of
each kind of songs in the database. In addition, Table 3 shows the

*1 https://www3.ssw.co.jp/dl data

Fig. 3 Representation of C major chord.

Table 2 Type of songs in the database.

Type frequency
J-POP/K-POP 214
70’s/80’s (Kayōkyoku) 11
Enka 6
Anime songs 57

Table 3 List of artists in the database that appear three or more times.

Name Freq. Name Freq.
GACKT 10 SID 4
Hamasaki Ayumi 6 Yuzu 4
AKB48 5 Remioromen 4
Perfume 5 Nakagawa Shoko 4
Ikimono-gakari 5 BREAKERZ 3
Kobukuro 5 GIRL NEXT DOOR 3
EXILE 4 Fukuyama Masaharu 3
T.M.Revolution 4 Arashi 3
Jero 4

Table 4 Data size.

Conf. Training Test
A 20,041 3,351
B 16,240 2,816

frequently-appear artists (three or more times) in the database.
We cut melodies out from the pieces by shifting a four-measure

window measure by measure. For simplicity, we skipped sections
that include any whole rests. We obtained 23,392 melody images
and the same number of corresponding chord images. The im-
ages were divided so that melody images obtained from one song
are included in either the training set or the test set, avoiding both
sets share melodies of the same song. Table 4 shows the number
of samples. The reason why the number of samples is smaller in
configuration B is that we needed to exclude the data that includes
triplets and any too-high or too-low notes.

5. Melody Completion Network

In this section, we describe the architecture of the melody com-
pletion network and how we trained it.

5.1 Architecture
We used the same structure as the networks in Ref. [12], as

illustrated in Fig. 4. The completion network takes a melody im-
age, a chord image corresponding to the melody, and a mask im-
age that indicates the completion target region of the melody with
binary values (1 for a pixel to be completed). The pixels of the
completion target region were substituted to the mean pixel value
of the training set. The completion network consists of standard
convolutional layers, dilated convolutional layers, and deconvolu-
tional layers. Dilated convolution uses filters that are spread out
and can compute larger input areas [32]. Deconvolution layers,
which are convolutional layers with fractional strides, increase
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Fig. 4 Illustration of the networks.

the resolution of feature maps while normal stridden convolutions
decrease the resolution [18]. A Rectified Linear Unit (ReLU)
layer and a batch normalization layer [13] are inserted after each
convolutional layer except the last one. A sigmoid function is
employed for the output layer as the activation function. The net-
work outputs a completed melody image. In this image, the re-
gion outside of the completion target region is replaced with the
corresponding region in the input melody image.

The discriminator consists of a global context discriminator
and a local context discriminator, and both consist of convolu-
tional layers and fully-connected layers. The global discriminator
takes the completed melody image or the original image with the
corresponding chord image as an input. The local discriminator
takes only the completion target region of the melody image with
the same region of the chord image. In the case of the image is
not a completed image, a random patch of the same size from the
image is input. The outputs of these two discriminators are con-
catenated into a 2048-dimensional vector. The vector is input to
a fully-connected layer with a sigmoid function to output a value
which represents the probability that the input melody image is a
real sample.

We set the number of output channels, size of filters, and strides
as Table 5 after the description in Iizuka’s method [12].

5.2 Training
The completion network is trained in the framework of

GAN [9]. As well as Ref. [12], we jointly used two loss func-
tions. The first one is a Mean Squared Error (MSE) loss that is
weighted by a mask image. Let C(x,y,mc) denote the output
of the completion network with the input melody image x, the
input chord image y, and the mask image mc . The MSE loss is
defined as follows.

L(x,y,mc) = ||mc � (C (x,y,mc) − x)||2 (1)

Here, � is the pixel-wise multiplication, and || · || is the Euclidian
norm.

The other is the GAN loss. Let D(x,y,md) denote the output
of the discriminator, and md is a mask image which indicates the
random region of the same size as the completion target region.
The GAN loss is:

log D(x,y,md) + α log (1 − D(C (x,y,mc) ,y,mc)) (2)

Table 5 The architecture of the networks. FC: fully-connected layer.

Completion Network
Type Filter Dilation Stride Outputs
conv. 5 × 5 1 1 × 1 64
conv. 3 × 3 1 2 × 2 128
conv. 3 × 3 1 1 × 1 128
conv. 3 × 3 1 2 × 2 256
conv. 3 × 3 1 1 × 1 256
conv. 3 × 3 1 1 × 1 256

dilated 3 × 3 2 1 × 1 256
dilated 3 × 3 4 1 × 1 256
dilated 3 × 3 8 1 × 1 256
dilated 3 × 3 16 1 × 1 256
conv. 3 × 3 1 1 × 1 256
conv. 3 × 3 1 1 × 1 256

deconv. 4 × 4 1 1/2 × 1/2 128
conv. 3 × 3 1 1 × 1 128

deconv. 3 × 3 1 1/2 × 1/2 64
conv. 3 × 3 1 1 × 1 32
output 3 × 3 1 1 × 1 1

Global context discriminator
Type Filter Stride Outputs
conv. 5 × 5 2 × 2 64
conv. 5 × 5 2 × 2 128
conv. 5 × 5 2 × 2 128
conv. 5 × 5 2 × 2 256
conv. 5 × 5 2 × 2 512
conv. 5 × 5 2 × 2 512
conv. 5 × 5 2 × 2 512
FC – – 1024

Local context discriminator
Type Filter Stride Outputs
conv. 5 × 5 2 × 2 64
conv. 5 × 5 2 × 2 128
conv. 5 × 5 2 × 2 128
conv. 5 × 5 2 × 2 256
conv. 5 × 5 2 × 2 512
conv. 5 × 5 2 × 2 512
FC – – 1024

Here, α is a hyperparameter that balances between the discrimi-
nator output of the natural melodies and the completed melodies.
The larger value of this loss means that the discriminator more
correctly distinguishes melody images.

The loss function which is the combination of those two loss
functions becomes:

L(x,y,mc) + log D(x,y,md) (3)

+ α log (1 − D (C (x,y,mc) ,y,mc))

The completion network and the discriminator is optimized
to minimize and to maximize this, respectively. We use the
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ADADELTA [33] optimizer.
For the sake of stability, the training is performed in three

phases [12]. Firstly, the completion network is trained with only
the MSE for TC epochs. Next, the completion network is fixed,
and the discriminator is trained for TD epochs. Finally, both net-
works are trained jointly for T epochs.

Also, we made use of One-sided label smoothing [7], [27]
which is expected to regularize networks. It sets the label for
real image to 1 − β (0 < β � 1) instead of 1. By applying this,
Eq. (2) becomes as follows.

(1 − β) log D(x,y,md) + β log (1 − D (x,y,md)) (4)

+ α log (1 − D (C (x,y,mc) ,y,mc))

6. Experiment

6.1 Experimental Condition
We trained the networks as follows. A completion target region

was randomly set to the region corresponding to the entire second
measure or the entire third measure of the input melody. We em-
ployed mini-batch training. Table 6 describes mini-batch size,
numbers of epochs, weighing hyperparameter α and β in Eq. (4).
To evaluate the effect of using chord images, we did not train the
networks only with chord images but also without chord images.

6.2 Results of Configuration A
Figure 5 (a) shows two examples of the completion result with

closed inputs in each condition for configuration A. MSE and
GAN in Fig. 5 (a) stand for the completion results of the com-
pletion network which is trained only with MSE for TC epochs
and the result of the completion network after the whole training,
respectively.

The MSE results are very similar to the input images regardless
of the use of chord images. On the other hand, the GAN results
with chord are also similar to the input images, but there was
noise over the completion target regions. Without using chord
images, the GAN did not output any notes for most of the inputs.
According to these results, it is considered that the training with
GAN loss did not work adequately.

Figure 5 (b) shows two examples of the completion result with
open inputs in each condition. With inputs from the test set, the
network outputs roughly shorter lines as the completion results in
most conditions while the networks could complete images cor-
rectly with inputs from the training set. The almost correct output
for the closed input suggests the over-fitting of the network. As
for the use of chord image, the MSE results gave similar results
with and without chord image, while the GAN without chord im-
age did not output any clear notes. These results suggest that use
of chord images enhances the completion results.

6.3 Results of Configuration B
Next, we observe the results of configuration B. In this experi-

Table 6 Conditions of training.

mini-batch size 20 TC 40
α 0.0004 TD 20
β 0.1 T 40

ment, chord images were always used, because the result of con-
figuration A for inputs from the test set showed that use of chord
images enhanced (or, at least, did not harm) the compensation re-
sults. Besides, we examined the effect of inserting the dropout
layers after all the convolutional layers. Since the original net-
work [12] did not use dropout, we employed dropout probability
of 0.5 after the implementation of pix2pix [14].

Figure 6 shows the examples obtained from the network with
the MSE loss. Compared with Fig. 5, basic features are almost
similar. Melodies of the closed data are almost completely re-
constructed, and that of the open data is not properly generated.
When we input open data, the network generated an unclear pat-
tern. Use of the dropout did not improve the result; rather, the
results were more and more unclear when dropout learning was
used.

Fig. 5 Examples of completion result (configuration A). Black and white
are inverted for visibility. Regions inside of red frames are comple-
tion targets.

Fig. 6 Examples of completion result (configuration B, MSE loss). Left
side: results for a closed input, Right side: results for an open input.
Top: the input images, Middle: results without dropout, Bottom: re-
sults with dropout.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 7 Examples of completion result (configuration B, GAN loss). Left
side: results for a closed input, Right side: results for an open input.
Top: the input images, Middle: results without dropout, Bottom: re-
sults with dropout.

Figure 7 shows the examples obtained from the network with
the GAN loss. The results without dropout were similar to the re-
sults of configuration A. The network did not generate any mean-
ingful results regardless of closed or open data. However, when
we introduced the dropout learning, the results became clear and
the generated melodies were different from the original ones.

6.4 Evaluation of Originality of the Generated Melodies
From the results of the previous experiments, we found that

the network could complete the masked melody under the com-
bination of configuration B, GAN loss, and dropout. Thus, we
evaluated the generated melody through two experiments.

Before the experiments, we converted an image into a MIDI
format file with monophonic melody. The conversion was per-
formed as follows. First, in each row (corresponding to the time)
of the generated melody area of the completed melody image, the
pixel with the maximum value was substituted with the value of
1, and all the other pixels were substituted with 0. With this sub-
stitution, the resulting image had only one pixel with the value
1 for each row and thus could be converted into a monophonic
melody. We used the same rules used in converting score data to
an image inversely to convert the image into notes.

It is not easy to evaluate the automatically-generated melody.
Thus, we examined two different approaches. In the first ap-
proach, we objectively tested the results. Since the network was
trained using the training data, the generated melodies could be
similar to the melody included in the training data.

First, we defined the similarity between the two melodies. Let
A = {ai j} and B = {bi j} be the matrices of melody images with
the same size, where the value of a specific row and column cor-
responds to the value of a pixel. We assume ai j, bi j ∈ {0, 1}. Then
the similarity between the two melody images is as follows.

S (A, B) =
A � B

max
(∑

i, j ai j,
∑

i, j bi j

) (5)

Here, � is the element-wise product. This value is the fraction of
coinciding notes in the two melodies, and it becomes one when
the two melodies are identical.

Using this similarity, we calculated the originality of melody A

with respect to the training data X as follows.

O(A,X) = 1 −max{S (A, Xi,m)|Xi,m ∈ X} (6)

where Xi,m is the image of m-th measure in the i-th melody. In this
experiment, 1 ≤ i ≤ 16240 and 1 ≤ m ≤ 4 because one melody

Fig. 8 Distribution of originality.

Table 7 Evaluation criteria.

Score Evaluation
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

image has four measures. O(A,X) = 0 means that the melody A

is included in the training data.
Figure 8 shows the distribution of originality for the original

melodies and completed ones using a violin plot. We can see
that frequency of the low originality of the completed melody
is higher than that of the original melody, that suggests that the
completion network tends to use the melody in the training data
to complete the missing melody. However, there are completed
melodies with higher originality, that means the network could
generate new melodies that were not included in the training data.

6.5 Subjective Evaluation
Next, we conducted a subjective evaluation experiment. The

subject listened to the original melody and the completed melody
and evaluated the naturalness in the five-scale grade.

We asked the subjects to pay attention to “whether the gen-
erated melody connects the surrounding melodies naturally.” In
addition, we also instructed the subject to consider “whether the
generated melody is in harmony with the chord reproduced as
an accompaniment” as a secondary criterion. Finally, the subject
scored each of generated melodies according to the evaluation
words shown in Table 7.

For comparison, we examined an example-based melody com-
pletion method. This method chooses a measure in the training
data that appears in the same chord progression as the melody
to be completed. We determined the measure used for comple-
tion as follows. The system receives the four-measure melody
image and the corresponding chord image as well as the melody
completion network, and the information of the measure to be
interpolated. From the database, the system searches for code
images that match the code image for which the chord progres-
sion of one measure to be complemented is input and list them
up. Next, for each melody image corresponding to these code
images, the similarity to the input melody image is calculated for
the three measures other than the measure to be completed. This
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Fig. 9 Result of subjective evaluation. * denotes 5%-significant difference.

similarity is calculated by the method proposed in the previous
section. Then we choose the melody image with the highest sim-
ilarity, and the corresponding measure to the masked part is used
for completion.

This method assures that the complement result perfectly
matches to the code progression, but the result has no original-
ity.

The sample presented to the subject was prepared as follows.
First, out of 2,816 melodies included in the test data, we chose
414 samples where the four measures consisted of one phrase.
Next, the chord progression patterns of the second measure in
these samples were counted, then we chose 90 melodies by strat-
ified sampling so that the chose samples had an almost uni-
form distribution of chord progression. The second measure of
these 90 melodies was edited using the proposed method and the
similarity-based complement method. Finally, a total of 270 sam-
ples were obtained by combining the original melodies and the
generated melodies.

For these samples, we created MIDI data in which accompani-
ment corresponding to the melody are played simultaneously, and
synthesized waveform data using Musescore2. In order to allow
the subject to pay attention to the melody itself, we used a square
wave as the tone of the melody and the piano as the accompani-
ment. The tempo of all melodies was 120 BPM.

We randomly presented the samples to the subjects so that a
subject did not know how a melody was prepared. We made a
group of subjects with three subjects. A total of 90 samples were
presented to one subject in a group, and evaluation was made
sample by sample. All of 270 samples were presented to three
subjects in a group so that one sample was presented to only one
subject in a group. On the evaluation, we disclosed to the subjects
that the second measure may be completed.

We employed twelve subjects (four groups) who were students
in their 20s (two males and ten females). Seven of them had mu-
sic experience, of whom 3 had experience in writing and arrang-
ing.

Figure 9 shows the result of subjective evaluation. ORG, CNN
and SBC are the original, completion by the proposed method,
and completion by similarity, respectively. Welch’s t-test with
Bonferroni correction was performed on the results at a signifi-
cance level of 5%. As a result, we observed a significant differ-

Fig. 10 Distribution of evaluation grade.

ences between ORG and CNN and between ORG and SBC. We
did not find significant difference between CNN and SBC. Al-
though the melody by the proposed method is somewhat unnatu-
ral compared to the original melody, the average of the evaluation
values is between “normal” and “good.” This result suggests that
the proposed method gave a reasonably good result.

Figure 10 shows the ratio of each evaluation value to the total
number of evaluations for each method. Looking at the CNN re-
sults, the ratio of the evaluation values 1 and 4 is larger than that
of ORG and SBC, and the ratio of 5 is smaller.

7. Discussion

7.1 Analysis of Unnatural Completion Results
In this section, we examine the results for making further dis-

cussion. Figure 11 shows examples of the well-completed re-
sults. The top result is an example of completing the third mea-
sure. The completed melody sounds natural to the chord in the
measure and the surrounding melody. The bottom result is an ex-
ample of completing the second measure. The first three notes
are the same as the original ones, and the following notes have a
similar melody with a different rhythm.

Next, let us look at examples with low evaluation scores. There
are several reasons why the completion result sounds unnatural,
such as:
(1) Extremely short notes and short rests appear,
(2) Dissonant notes for the chord are used, and
(3) Rhythm is different from that of the surrounding melody.

Figure 12 is an example of (1) and (2). The circled part of the
score is an example of the problem (1). This result happens be-
cause the completion result is not a clear line but a blurred pattern.
Since we employed an algorithm explained in section 6.4, a note
in a specific time is determined considering only the pixel value
of that time. Thus, when the generation result is not a clear line,
the resulting melody fluctuates. This problem could be improved
by improving the algorithm to convert the image into notes so that
the temporal naturalness is considered.

Moreover, in the example of Fig. 12, notes of F appear in the
first and third beats. However, the chord of this measure (the sec-
ond measure) is D7 whose components are D, F#, A, and C. Thus,
the F notes are dissonant to this chord. This result could happen
because the frequency of this chord is low. This problem could
be treated by increasing the amount and variation of the training

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 11 Examples of good completion results.

Fig. 12 Examples of unnatural completion result (fragmented and dissonant
notes).

Fig. 13 Examples of unnatural completion result (unnatural rhythm).

data.
We observed only a few examples of the problem (3). These

results happen when the length of the notes in the completed mea-
sure and that of the surrounding measures are different. Figure 13
shows such an example. In this example, 16th notes frequently
appear in the 1st and 4th measure, while no 16th note appears in
the completed measure (the 2nd measure). As a result, the com-
pleted measure and other measures have a different rhythm, and
the result sounds unnatural. This could be improved to consider
the average length of a note when converting the generated image
to notes. Currently, we regard a continuous line in the image as
one note. However, considering the rhythm pattern, we can split
the line into multiple notes so that it fits the predicted rhythm.

7.2 Originality and Human Evaluation Score
As shown in Fig. 8, completed melodies have lower originality

than the original melody. On the other hand, as shown in Fig. 10,
the completed melodies have fair evaluation scores. Here, we
investigate relationship between the originality and human evalu-
ation score. If the originality of a melody is low, that means the
completed melody exists in the training data, thus it may sound

Fig. 14 Smoothed 2-D distribution of originality and human evaluation
score.

Table 8 Statistical test of correlation between originality and human evalu-
ation.

Method Correlation coefficient p-value
Original 0.11 0.298
Completed −0.21 0.0502

more natural.
Figure 14 shows the 2-D smoothed distribution contour of

originality and human evaluation score for the original melody
and the completed melody. Figure 14 (a) is the distribution of
the original melodies, and Fig. 14 (b) is that of the completed
melodies. It is clear that the originality of the original melodies
is higher than that of the completed melody. We see a cluster
of higher originality (around 0.25) and lower evaluation score
(around 1.7) in Fig. 14 (b), which may correspond to the bad com-
pletion results explained in the previous section. However, most
of the completed melodies have a distribution where originality
and evaluation score look independent.

Table 8 shows the Pearson’s correlation coefficients between
originality and human evaluation score for the original and com-
pleted melodies. The correlation coefficients of the original and
completed melodies seems to have positive and negative corre-
lations respectively. However, according to t-test of correlation
coefficients, we could not find any statsitically significant corre-
lation at 5% level for either melodies. It does not necessarily
imply that the originality and human evaluation is independent,
but we can say the relationship between those variables would be
weak even if it existed.
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7.3 Amount of Training Data and Melody Image Configu-
ration

Next, we discuss the amount of training data and the com-
pletion result. We conducted experiments for configurations A
and B, and obtained better result for configuration B. That result
seems to be related to the amount of training data. The original
image inpainting network was trained using eight million images,
while we used only 16 thousands to 20 thousands of melody im-
ages. With more training data, we expect that we can train better
model for larger melody image such as configuration A.

7.4 Melody Completion and Image Inpainting
Finally, we discuss the difference between our task and image

inpainting to which Iizuka’s original network was applied. There
are several differences between natural images and melody im-
ages. The pixel values of melody images are almost zero, and
chord image is superimposed into the melody image. Besides the
difference of input images, our network has several differences
from the original one. First, size and position of mask images
are very limited compared with the image inpainting task. Sec-
ond, we introduced the label smoothing and dropout that were not
used in the original network.

Although there are several differences, the basic concept of our
network is same as the one for image inpainting. The success of
the network for melody completion seems to show the universal
ability of the completion network using CNN and GAN.

8. Conclusion

We proposed a melody completion network which completes
melody by applying an image completion network which is based
on CNN and is trained in the framework of GAN. From the
results, it was confirmed that the network could complete rea-
sonably the melody images under a certain condition. Through
the evaluation experiments, we confirmed that the network could
generate original melodies that were not included in the training
data, and the quality of the completed melody is not significantly
different from the result of the example-based method.

As described in the discussion, we still have several problems,
especially the algorithm to convert the resulting image into actual
notes. This problem should be solved in the future.
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