
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

The Equal Deepest Vertex First Reboot:
Rebooting Network Edge Switches in a Campus Network

Motoyuki Ohmori1,a) Koji Okamura2,b)

Received: June 17, 2019, Accepted: November 29, 2019

Abstract: Even in the era of Software Defined Network (SDN) or Software Defined Infrastructure (SDI), network
edge switches still require to be rebooted for some reasons, e.g., updating a firmware, configuring a special behavior
and so on. It may be necessary to clarify how one can shorten downtime of a campus network when many switches in
the network require reboots. To this end, this paper proposes the equal deepest vertex first reboot with vertex contrac-
tion that can simultaneously reboot many network switches with less overhead downtime. This paper tries to express
a campus network in a graph theory fashion, reduce downtime overhead by vertex contraction, and proves that all
switches can be rebooted within a finite number of rebooting procedures. This paper presents an implementation of
the proposed procedures, and evaluates the proposed method in an actual campus network. The equal deepest vertex
first reboot with vertex contraction has appeared to reboot all switches by only 16-second additional overhead out of
109-second downtime in total where the ideal minimum downtime was 93 seconds in an actual campus network where
there were more than 300 network switches installed.

Keywords: Network switch, availability, firmware update, certificate replacement and maintenance reboot.

1. Introduction

Even in the era of Software Defined Network (SDN) or Soft-
ware Defined Infrastructure (SDI), network edge switches require
to be rebooted in some situations, e.g., updating a firmware, con-
figuring a special behavior and so on. We, Tottori University,
replaced almost all network switches in our campus network with
newer network switches made by AlaxalA in September 2017.
We are now facing a serious problem that an edge switch requires
a reboot to activate a new digital certificate for web authentica-
tion after installing the certificate. As a digital certificate expires
within few years or even few months, we have to periodically in-
stall a new digital certificate into all edge switches, and reboot
them. When an edge switch is rebooted, an end host becomes
disconnected, and this downtime should be minimized.

In order to minimize this sort of downtime, the order and tim-
ing to reboot an edge switch is important. Let us take an exam-
ple. In our campus network, some edge switches are upstream

switches that accommodate another downstream edge switch. If
we reboot an upstream edge switch first, a downstream edge
switch is inaccessible while the upstream edge switch is reboot-
ing. The downstream edge switch should be then rebooted af-
ter the upstream edge switch reboots and becomes up again. An
end host may be then disconnected longer in total. On the other
hand, we can shorten this downtime if we reboot a downstream

edge switch first. While the downstream edge switch is rebooting,
the upstream edge switch is still accessible. The upstream edge

1 Tottori University, Tottori 680–8550, Japan
2 Kyushu University, Motooka, Fukuoka 819–0395, Japan
a) ohmori@tottori-u.ac.jp
b) oka@ec.kyushu-u.ac.jp

switch can be, therefore, rebooted right after the downstream

edge switch is rebooted before the downstream edge switch be-
comes up. The order and timing to reboot an edge switch may be,
thus, important. We have actually experienced that we could not
access to a downstream edge switch when we rebooted upstream
and downstream edge switches at the same time. The better order
and timing may not be, however, clarified enough yet.

In order to dig into the better order and timing to reboot an edge
switch, this paper proposes the equal deepest vertex first reboot

with vertex contraction to reboot edge switches. This method
represents a campus network as an unweighted directed rooted
spanning tree graph, and contracts vertices of non-reboot switches

from a graph. This method then obtains a set of vertices of edge
switches that are in the same depth from a root vertex. This
method reboots edge switches in the deepest vertex first fashion,
i.e., rebooting the farthest edge switches from a core switch. This
method simultaneously reboots edge switches in the same depth,
and then can avoid unnecessary waiting time for a switch reboot.
This method can minimize the total downtime of a network.

Note that this paper focuses on the case where almost all of
edge switches require reboots but non-reboot switches such as
core, distribution and some edge switches do not. It is out of the
scope of this paper to reboot core and distribution switches that
may require a longer time to reboot. Also note that this paper is
an extended version of our preliminary papers [1], [2].

The rest of this paper is organized as follows. Section 2
describes the proposed rebooting procedure, the equal deepest

vertex first reboot with vertex contraction, and proves that all
switches can be rebooted within a finite number of rebooting pro-
cedures. Section 3 explains our implementation of the proposed

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

rebooting procedure including how to obtain a campus network
graph. Section 4 then evaluates the proposed method using the
prototype implementation in an actual campus network. Section 5
discusses the validity of pre-conditions in this paper and further
the applied usage of the proposed method. Section 6 refers to
related work. Section 7 finally concludes this paper.

2. Equal Deepest Vertex First Reboot with
Vertex Contraction

This section proposes the equal deepest vertex first reboot with

vertex contraction, and proves that reboots finish within a finite
number of rebooting procedures.

This section firstly presents pre-conditions of a campus net-
work in this paper. This section represents a campus network in
a graph theory fashion. This section explains vertex contraction

in order to simplify a graph of a campus network. This section
then presents how to compute a depth of a vertex in a contracted
graph using matrix computations, and proves that a vertex con-
traction can reduce matrix computations and the computations
finish within less than the maximum depth of vertices. This sec-
tion proposes the procedure to reboot switches.

2.1 Pre-Condition
Suppose a campus network holds the following pre-conditions.

(1) a core switch is installed in each campus as a root,
(2) distribution switches are directly connected to a core switch,

and accomodate edge switches,
(3) edge switches accomodate end hosts,
(4) an upstream edge switch, which is nearer toward a core

switch and directly connected to a distribution switch, may
also accommodate another downstream edge switch, which
is farther toward the core switch,

(5) non-reboot switches, i.e., core, distribution and some edge
switches, do not require to be rebooted,

(6) all switches are connected in the spanning tree, i.e., there is
no alternative path from an upstream edge switch to a down-

stream edge switch, the upstream edge switch has no other
blocked port to the downstream edge switch, the downstream

edge switch has no other discarding port to the upstream

switch,
(7) an edge switch can be accessed only via the main data net-

work, there is no additional management network that sep-
arately accomodates all edge switches and that is dedicated
for management connections only in addition to the main
data network,

(8) it is unpredictable whether an upstream edge switch is run-
ning during enough time to reboot a downstream edge switch
right after “reboot command” is entered to the upstream edge
switch due to network stability or other reasons,

(9) an edge switch is better to be rebooted in daytime, not at
midnight,

(10)an edge switch cannot be scheduled to reboot autonomously
or with other external equipment,

(11)an IP address of a core switch is given,
(12)IP addresses of other switches are not, and
(13)an IP address of a neighboring switch can be obtained by

Fig. 1 An example of a representation of a campus network.

Link Layer Discovery Protocol (LLDP) [5], Cisco Discov-
ery Protocol (CDP) or static manual definition as described
in Section 3.

Note that our proposal may be able to be applied to a campus
network where an edge switch has multiple paths toward a core
switch. We, however, assume condition (6) that assumes the
spanning tree because we do not have enough multiple paths in
our actual campus network and the multiple paths cannot be eval-
uated enough in this paper. The case where an edge switch has
multiple paths toward a core switch is out of scope of this paper,
and is future work.

It is difficult to make a whole campus network stable at the
same time. Our proposal described in later sections does not re-
boot all edge switches at the same time. Instead, we divide all
edge switches into several groups in accordance with their depths

as described later, and reboot edge switches for each depth in
turn. In this way, we may be able to support a campus network
that is not stable at the same time.

Regarding condition (9), one may consider why not reboot an
edge switch at midnight. When we reboot an edge switch, the
edge switch may never come up again, and be broken down. In
this case, we might not able to replace the broken edge switch at
midnight when we cannot physically access to the edge switch
at midnight. This broken edge switch may incur a very longer
downtime until tomorrow morning. We, therefore, assume condi-
tion (9) in this paper.

Regarding condition (11)–(13), a network topology map and
port list of switches are not accurately maintained in our campus
network. It is then almost unknown which port of which switch
is connected to which port of which switch. We, therefore, need
to be able to automatically collect these information with a few
given information such as an IP address of a core switch.

2.2 Campus Network in Graph Theory
This section presents notation of a campus network in a graph

theory fashion in this paper.
Figure 1 depicts an example of a campus network, and note

that end hosts are omitted. In Fig. 1, a campus network is repre-
sented as an unweighted directed rooted spanning tree graph G.
V(G) and E(G) then denote a set of vertices and arcs, respectively.
A switch is a vertex, and i-th switch is denoted by vi ∈ V(G). Sup-
pose non-reboot switches may not require to be rebooted due to
some reasons such that they accommodate no end host or do not
implement web authentication. Non-reboot switches depicted in
Fig. 1 are v0, v1 and v5, and they are marked by prime (′). Let v′0 be

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 2 An example of vertex contraction.

a vertex of a 0-th switch, i.e., a root. Let indeg(·) and outdeg(·)
denote indegree and outdegree of a vertex, respectively. Let v′0
be the only source vertex with indeg(v′0) = 0 in G, i.e., a core
switch, while there are sink vertices vi with outdeg(vi) = 0 which
are connected to no downstream switch. Downstream here is a
direction from the root v′0 to other vertices. On the other hand,
upstream is a direction toward a root v′0. An upstream switch vi is
then adjacent (i.e., physically and directly connected) to another
downstream switch v j by an unweighted arc viv j ∈ E(G) where
i < j. On the other hand, suppose the downstream switch v j has
no arc back to the upstream switch vi for simplicity in discussions
and computational efficiency. Note that traffic may actually go
through from v j to vi in an actual network.

2.3 Vertex Contraction
As described in Section 2.1, some of switches, non-reboot

switches, in a graph G do not require reboots. In order to con-
sider an order to reboot switches, we can contract vertices of
non-reboot switches. Note that a vertex contraction [3] here is
the same as an edge contraction in this paper since a graph G

is a spanning tree and two vertices to be contracted are always
connected. Figure 2 depicts a graph G/V ′(G) that contracts ver-
tices of non-reboot switches from a graph G depicted in Fig. 1.
Note that V ′(G) is a set of vertices of non-reboot switches, and
“/V ′(G)” represents an operation of vertex contraction of all non-

reboot switches. In Fig. 2, v′1 and v′5 are contracted. A vertex
contraction of a vertex v′j is an operation to:
(1) remove an arc viv′j,
(2) union arcs to downstream vertices of v′j to vi, and
(3) delete v′j.
Note that a root vertex v′0 may also be able to be contracted in
theory. A root vertex v′0 is, however, not contracted for simplicity
in discussions here. Note that G/V ′(G) is then a spanning tree as
well.

2.4 Computation of Depth of Vertex
A depth of a vertex is the number of arcs from a root in a graph,

and a depth of a root is 0. Let us focus on a depth in a contracted
graph G/V ′(G), not in a graph G. In Fig. 2, the depths of {v0},
{v2, v3, v4} and {v6, v7, v8, v9} are 0, 1 and 2, respectively. A depth
of each vertex can be obtained as follows.

Let A be an adjacency matrix for G/V ′(G), and ai j be an el-
ement (i, j) of A where i and j denote indices of vi and v j, re-
spectively. Let an

i j be an element (i, j) of An. Note that indices of
contracted vertices are not included in A and An.
Corollary 1. For an index of each vertex in G/V ′(G) except for
a root v0, there exists one and only one n ∈ N such that an

0 j = 1,
and n will be a depth of v j.

Proof. ai j ∈ {0, 1} since G/V ′(G) is an unweighted graph. In ac-
cordance with a nature of an adjacency matrix, if an

i j � 0 then n is
the number of vertices of a simple path from vi to v j and an

i j is the
number of simple paths. Actually an

i j ∈ {0, 1} because G/V ′(G)
is an unweighted spanning tree, and there exists only one simple

path from vi to v j if exists. There also exists one and only one
simple path from v0 to v j. There, hence, exists one and only one
n ∈ N such that an

0 j = 1, and n is then a depth of a vertex v j. �

Corollary 2. There exists m ∈ N such that Am � O and
Am+1 = O. m is then the maximum depth of vertices in a graph
G/V ′(G).

Proof. A is an upper triangular matrix because G/V ′(G) is a di-
rected graph and there are no back arc to an upstream vertex. The
main diagonal components aii of A are all zeroes since an arc
from vi to vi itself never exists. A is then a strictly upper trian-
gular matrix, and nilpotent, say with Ar = 0 [4]. A then holds
{∃m ∈ N | Am � O ∧ Am+1 = O}. The maximum depth of vertices
is then m. �

Corollary 3. Depths of all vertex can be obtained by computing
An while n ≤ m.

Proof. An = O where n > m. Since G/V ′(G) is a spanning tree,
there exists one and only one simple path from v0 to v j. For each
vertex in G/V ′(G) except for a root v0, there exists one and only
one n such that an

0 j = 1 and n ≤ m. Depths of all vertices can be
then obtained by computing An while n ≤ m. �

Let us take a look at an example of an adjacency matrix of
G/V ′(G) depicted in Fig. 2. The adjacency matrix A is expressed
in Eq. (1). The square and cube of A are Eq. (2) and Eq. (3), re-
spectively. The depth of {v2, v3, v4} and {v6, v7, v8, v9} is 1 and 2,
respectively. The maximum depth of vertices is then 2.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a00 a02 a03 a04 a06 a07 a08 a09

a20 a22 a23 a24 a26 a27 a28 a29

a30 a32 a33 a34 a36 a37 a38 a39

a40 a42 a43 a44 a46 a47 a48 a49

a60 a62 a63 a64 a66 a67 a68 a69

a70 a72 a73 a74 a76 a77 a78 a79

a80 a82 a83 a84 a86 a87 a88 a89

a90 a92 a93 a94 a96 a97 a98 a99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

A3 = 0 (3)

2.5 Equal Deepest Vertex First Reboot Procedure
We propose the equal deepest vertex first reboot to reboot the

deepest switches first. The deepest here means that the depth
from a root v0 in a contracted graph G/V ′(G) is the deepest among

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

vertices of switches that are not rebooted yet. Switches whose
vertices are in the same depth are simultaneously rebooted. Si-

multaneously here implies concurrently or parallely, and it de-
pends upon an implementation. The switches must be then con-
firmed if the switches receive reboot commands, e.g., whether
TCP acknowledgement for a segment containing reboot com-

mands is received, whether connections are closed or otherwise.
The next deepest vertices are then examined to be rebooted. In
this way, the equal deepest vertex first reboot ensures that up-
stream switches are not rebooted before downstream switches
are. This avoids the worst case where a downstream switch waits
to be rebooted after an upstream switch is rebooted and becomes
up, and then minimizes a downtime.

3. Implementation

This section presents our prototype implementation to reboot
edge switches in a campus network to activate a new digital cer-
tificate for web authentication. This section firstly explains an im-
plementation of the Networking Utilities that connect to a switch
and execute a Command Line Interface (CLI) command on the
switch. This section explains how to simultaneously find and re-
boot switches in different campuses. This section then presents
how to automatically find a switch and produce a campus net-
work graph. This section then presents how to determine whether
a switch requires a reboot or not. This section also presents how
to commit to reboot a switch.

3.1 Networking Utilities
In order to control a switch, we have implemented the Network-

ing Utilities that connect to a switch, and execute a command on
a switch. The utilities are written in Ruby, and can be run with
Ruby 1.9.3 or later. The utilities require net/telnet and net/ssh
library, and then connect to a switch by telnet or SSH. The util-
ities are free software licensed with 2-clause BSD license, and
available on https://github.com/ohmori7/netutils.

The motivation to implement the Networking Utilities with tra-
ditional telnet or SSH is that recent REST or other APIs of net-
work equipment do not support all commands, especially, com-
plicated but frequently employed commands in an actual net-
work such as Virtual Routing and Forwarding (VRF) related com-
mands. The characteristics of the utilities can be summarized as
follows.
(1) automatic network equipment discovery: the utilities sup-

port discovering a neighboring equipment using LLDP and
CDP. Simple Network Management Protocol (SNMP) [6] is
not supported because SNMP tends to burden much on a net-
work and network equipment. An operator then must give at
least an IP address of one of root switches. Other switches
are, however, not necessary to be statically defined in ad-
vance.

(2) static neighbor definition: network equipment may not be
able to run both of LLDP and CDP. The utilities support
statically defining such network equipment by an outgoing
interface, host name and IP address.

(3) vendor lock-in free: the utilities currently supports Cisco
router C1812J, Cisco catalyst 6500, 3560, 2960, AlaxalA

AX8600, AX3800, AX3650, AX2530, AX2200, AX620,
NEC IX2215, Palo Alto Networks PA-5220, PA-3020, PA-
850 and Aruba mobility controller 7210.

(4) automatic maker and product detection: the utilities can de-
tect a maker of network equipment when connecting to the
equipment. The utilities can then detect a product of the
equipment.

(5) multiple accessing methods support: the utilities can connect
to network equipment using telnet, SSH or both of them.
This feature is motivated by the fact that some switches are
configured to accept telnet only while others are SSH only
due to different system integrators or other reasons.

(6) multiple accounts support: the utilities can try multiple ac-
counts to connect to network equipment. This feature is use-
ful for privilege separation among different operators or sys-
tem integrators.

3.2 Different Graph per Campus
A campus network in a university can be represented as a sin-

gle graph, i.e., all network switches can be rooted to a single core
switch in a single campus even though there may be multiple
campuses. We, however, divide a campus network per campus,
and each campus has each root of a core switch in each campus
since a core switch cannot be a neighboring switch of another
campus due to a link issue where LLDP or CDP cannot be imple-
mented. Our implementations, however, regard switches at the
same depth from their root in their campus as being at the same
depth even though their own root core switches are different. That
is, all switches in all our campuses are simultaneously rebooted.

3.3 Automated Network Graph Production
In our campus network, a network topology map and port list

of switches are not accurately maintained. It is then almost un-
known which port of which switch is connected to which port
of which switch. In addition, the prototype implementation fo-
cuses on the case where a switch should be installed a new digital
certificate and then rebooted. There is no document that clearly
states which switch runs web authentication. In other words, we
do not know which switches should be rebooted.

We then decide to automatically build the network topology
map. To this end, we employed either LLDP or CDP on all
switches except for switches that could not run both of LLDP
and CDP. We also supported statically defining such switches as
a static neighbor of other switches.

As an IP address of a core switch in each campus is given, IP
addresses of neighboring switches are obtained by examining the
output of LLDP or CDP. All other switches are then obtained by
examining neighboring switches one by one. In order to avoid an
infinite loop, a switch is identified by a host name, and already
examined switches, i.e., upstream switches, are examined only
once.

Note that telnet or SSH connections used for a network graph
production are kept for further procedures described in later sec-
tions.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

3.4 Non-Reboot Switch Detection
We here focus on rebooting edge switches in a campus network

to activate a new digital certificate for web authentication. We de-
cided to regard network equipment as being rebooted if and only
if the following conditions hold:
(1) the network equipment is a switch,
(2) web authentication is enabled, and
(3) a switch is not rebooted after a new certificate is installed.

The former condition (2) is examined by checking to see if a
configuration of a switch includes below line:

web-authentication system-auth-control

This may require a longer time to detect since outputting a con-
figuration requires a longer time, and there would be a better way
to detect. This improvement will be future work.

The latter condition (3) is examined by comparing the output
of following commands:

show web-authentication ssl-crt

show system

The former output shows when a certificate is installed. The latter
output shows when a switch boots.

3.5 Rebooting Switches
After a network graph is produced and non-reboot switches

are detected, vertices of non-reboot switches are contracted. A
depth of each vertex from a root is then computed, all vertices
of switches are grouped by depth. In order to minimize a delay
of a reboot and avoid a network failure of SSH or telnet on a re-
boot in advance, all edge switches are kept to be logged in after
switches are detected as described in Section 3.3. If a switch can-
not be logged in during a detection, reboots of all switches can be
canceled.

The switches of the deepest vertices are then concurrently ex-
amined in the equal deepest vertex first fashion using threads. The
reason why this is concurrently, not parallely, is just because of
a Ruby implementation of threads that can run only one thread at
the same time.

When a switch is examined, its configuration is saved if nec-
essary because there may be an unsaved configuration left. If
a reboot command is executed even though there is an unsaved
configuration, a switch may interactively ask via CLI if one can
discard the unsaved configuration or not. Because it would be
difficult to automatically and properly handle this interactive dia-
logue, we here save a configuration before rebooting.

A switch is then rebooted, i.e., a reboot command is sent to a
switch. A switch is confirmed to accept a reboot command if the
switch holds one of the following conditions:
• CLI prompt is returned back to the Network Utilities, or
• a switch closes a TCP connection of a telnet or SSH connec-

tion.
In our environment, above both cases can be observed when a
switch is rebooted.

All switches of the deepest vertices to be rebooted are waited
to be confirmed to accept reboot commands. This careful confir-
mation avoids a switch to fail to be rebooted as much as possible.
After all switches are confirmed, the next deepest vertices are then
examined. The detailed process of rebooting switches is shown

Fig. 3 A pseudo code of the equal deepest vertex first reboot.

in Fig. 3.

4. Evaluations

This section evaluates the equal deepest vertex first reboot with

vertex contraction using the prototype implementation described
in Section 3 in an actual campus network. This section firstly
presents a campus network configuration and an evaluation envi-
ronment. This section then presents time to produce a network
graph, and the overhead of wating time to reboot all switches.
This section also presents the downtime before all switches are
booted.

4.1 Evaluation Environment
We, Tottori University, have three main campuses, Koyama,

Hamasaka, Yonago and tree branch offices. Koyama and Yon-
ago were connected by 10 Gbps. Koyama and Hamasaka were
connected by 1 Gbps by commercial VLAN service. The branch
offices were connected to Koyama by 1 Gbps. The number of net-
work equipment supported by the Network Utilities in our campus
network was 317 in total. The network equipment broken-down

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 1 Network equipment breakdown.

maker model number
AlaxalA AX8600S08 1
AlaxalA AX8600S16 1
AlaxalA AX260A-08T 8
AlaxalA AX2530S-08P 29
AlaxalA AX2230S-24P 65
AlaxalA AX2530S-24T 85
AlaxalA AX2530S-24T4X 3
AlaxalA AX2530S-48T 87
AlaxalA AX2530S-48T2X 8
AlaxalA AX2530S-48P2X 8
AlaxalA AX3650S-20S6XW 5
AlaxalA AX3650S-48T4XW 1
AlaxalA AX3830S-32X4QW 1
AlaxalA AX3830S-44XW 2

NEC IX2215 4
Aruba Aruba7210 2

Palo Alto PA-5220 1
Palo Alto PA-3020 1
Palo Alto PA-850 1

Cisco C3560E 1
Cisco C2960C 3
Total 317

Table 2 Networking utilities server specification.

CPU Intel(R) Xeon(R) CPU E5-2697 v2 2.70 GHz
(allocted one core)

memory 2 GB
OS CentOS 7.4.1708 (64 bit)
Programming ruby 2.5.1p57
Language (2018-03-29 revision 63029) [x86 64-linux]

by model is shown in Table 1. 13 switches and network equip-
ment were then defined as a root. The number of edge switches
to be rebooted was 288. All switches synchronized time using
Network Time Protocol (NTP) [7] and its clock error would be
within 10 ms. All switches also run Rapid Spanning Tree Proto-
col (RSTP) [8] per VLAN in order to avoid a loop.

We implemented the Network Utilities on a server running
on an ESXi as a Virtual Machine (VM) as shown in Table 2.
The server was connected to a root core switch via a non-reboot
switch, and there was no rebooted switch between the server and
the core switch. We also implemented to measure and record time
in Network Utilities.

4.2 Time to Produce Network Graph
As described in Section 3.3, a network graph is automatically

produced. If a network graph is produced within a short time,
the network graph production can be done when rebooting all
switches. If its production takes a long time, its production should
be done in advance. In order to clarify this issue, we measured
time to produce a network graph.

It took about 34.19 seconds in our campus network to auto-
matically produce a network graph. This time can be considered
to be short enough to produce a network graph at the same time
when rebooting all switches. Our implementation then produces
a network graph at the same time. Our implementation is, how-
ever, limited to connect to 64 switches at the same time. This
limitation is intended to avoid memory and CPU consumptions
that may incur a longer delay resulting from swap out. It would
be possible to increase this number or remove this limit, and these
are future work.

Table 3 Overhead to reboot switches.

depth switches waiting time (sec.)
1 100 2.82
2 128 2.86
3 42 5.74
4 18 5.40

total 288 16.82

4.3 Overhead Waiting Time to Reboot Switches
The equal deepest vertex first reboot simultaneously reboots

switches at the same depth from a root in the deepest vertex first

fashion. The equal deepest vertex first reboot then waits for all
switches at the same depth to surely receive a reboot command
before examining the next less deeper vertices. Since this wait-
ing time could be overhead, we measured this waiting time. As
shown in Table 3, the maximum depth was 4 while the actual
maximum depth, i.e., without vertex contraction, was 6. Note that
root switches, all of which were non-reboot switches, are omitted
in Table 3. All switches were waited to be rebooted for about
16.82 seconds in total. This waiting time was shorter than the
time to detect all switches and produce a network graph, 34.19
seconds, because the telnet and SSH connections were reused
when rebooting switches. Note that all switches are concurrently
rebooted as described in Section 3.5.

It can be then said that this waiting time was shortened by con-
necting to all switches before rebooting them.

In addition, the time was interestingly not correlated to the
number of switches. The number of switches at the depth 2 and 3
were 42 and 18, and they required waiting time of 5.74 and 5.40
seconds, respectively. On the other hand, the number of switches
at depth 0 and 1 are 100 and 128, and they required waiting time
of only 2.82 and 2.86 seconds, respectively. As shown Table 1,
there were many models of switches, and the difference of the
models could be the cause.

It can be also said that the vertex contraction reduces the total
waiting time because more than two seconds seems to be required
for each depth.

4.4 Downtime
When switches are rebooted, a downtime is the most impor-

tant. In this paper, a downtime is the time required to reboot all
switches requiring reboots. To be more specific, a downtime is
the time between:
• when the first rebooted switch stops forwarding packets and
• when the last rebooted switch becomes up and starts to for-

ward packets.
We then measured the downtime by RSTP logs of switches. An
upstream switch of a firstly rebooted switch could log the time
when a packet forwarding was blocked on a port to which the
firstly rebooted switch was connected. The time was regarded as
the beginning of downtime. On the other hand, the time that a
switch lastly started to forward packets on the last VLAN was re-
garded as the end of downtime. The downtime was 109 seconds.
Note that accuracy of timestamps of logs was in second.

Let us compare this downtime and the ideal minimum down-
time. The ideal reboot operation is rebooting all edge switches
requiring reboots at once. This operation ideally minimize the

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 4 Reboot time of switches.

model reboot time (sec.)
AX260A-08T 63
AX2530S-08P 74
AX2230S-24P 69
AX2530S-24T 70

AX2530S-24T4X 68
AX2530S-48T 75

AX2530S-48T2X 73
AX2530S-48P2X 93

downtime that is equal to max{vi ∈ G/V ′(G)|Treboot(vi)} where
Treboot(·) denotes the time that the edge switch, vi, reboots and
becomes up to start to forward packets. Note that this opera-
tion is ideal, and not feasible in an actual environment because
it is almost impossible for an operator to directly connect to all
switches via physical console cables, not a network. If an oper-
ator accesses to all switches via a network, an operator may not
be able to reboot all switches at the same time because an order
of arrivals of packets containing a reboot command will not be
ensured. In order to find max{Treboot(vi)}, we measured the down-
time of model of rebooted switches as shown in Table 4. Note
that models in Table 4 are filtered from those in Table 1. Table 4
shows only the downtime of rebooted switches that require re-
boots in our environment because downtimes of other switches
that do not require reboots are not related to the downtime of
equal deepest vertex first reboot in our environment. It could be
said that max{Treboot(vi)} was at least more than 93 seconds. Sup-
pose that 93 seconds was max{Treboot(vi)}, and it could be said that
the overhead of equal deepest vertex first reboot was about 16 sec-
onds. It can be said that equal deepest vertex first reboot with ver-

tex contraction can reboot switches only by approximately 17.2%
downtime increase. 16 seconds almost similar to 16.82 seconds of
waiting time as shown in Table 3. It could be, therefore, said that
overhead of equal deepest vertex first reboot with vertex contrac-

tion is resulting mainly from waiting time to confirm if a reboot
command is surely sent to a switch on a reboot.

4.5 Comparison with Manual Operation
We here compare our proposal with manual operation briefly.

Before we implemented our proposal, we needed a few days
to build recent correct network topology maps and detect edge
switches that required reboots because network maps were not
properly maitained. After that, we needed to determine the order
to reboot edge switches, and it took several hours. On the other
hand, our propsal can reduce the required time of the above op-
eration to 34.19 seconds as described in Section 4.2. It can be
said that our proposal can reduce the required time of preparation
operations described above.

In addition, a human operation to manually reboot one edge
switch required 1 second or more including switching a screen
of an operation terminal, and its required time depended upon
operators skills. Human operations might require approximately
288 seconds for 288 switches at least in our environment even
though we could not properly measure the required time because
we could not finish rebooting all switches without other opera-
tions. It can be said that our proposal can reduce the downtime
from 288 seconds to 109 seconds as described in Section 4.4.

5. Discussions

5.1 RSTP Convergence Time and Downtime
As mentioned in Section 4.4, our proposal, equal deepest ver-

tex first reboot with vertex contraction, requires the overhead of
16 seconds. This overhead may include the RSTP convergence
time. The RSTP convergence time may depend upon how fast a
rebooted edge switch can be found by other upstream or down-
stream edge switches. In our environment, the RSTP hello inter-
val was 2 seconds. The first message, Bridge Protocol Data Unit
(BPDU), of RSTP can be delayed when an edge switch is boot-
ing. The RSTP convergence time, therefore, may be more than
few seconds. The RSTP convergence time, however, may not be
most of the overhead, 16 seconds. If we can eliminate RSTP, the
RSTP convergence time can be reduced, and our proposal can
reboot all edge switches with less downtime.

5.2 Simultaneous Reboot versus Segment Reboot
One may think of organizing a reboot schedule for a depart-

ment or a section in order to avoid a critical downtime. It may be,
however, very difficult and take a long time to organize a reboot
schedule for each department or section. In addition, all ports of
all switches should be tracked, i.e., which port is connected to
which room. We actually have been unable to track all ports of
all switches for a long time, and a new switch is being installed
on an on-demand basis.

On the other hand, this paper has proposed to simultaneously
reboot all required switches. The downtime of the proposed pro-
cedure is just 109 seconds, and it could be short enough. The
proposed procedure can be executed during a lunch break or a
day off with prior notification.

It may be, however, necessary to consider a wireless Access
Point (AP) powered by PoE. If an AP is accommodated by a
PoE capable network switch and its switch should be rebooted,
a wireless network may incur a longer downtime. We actually
have experienced a longer downtime of a wireless network. This
downtime can be avoided or reduced by considering a network
configuration, and this is our future work.

5.3 Autonomous Reboot Scheduling
One may conceive to schedule a reboot by time when reboot-

ing many switches. A Cisco edge switch, indeed, has a com-
mand, reload at HH:MM, for that purpose. Because an error of
NTP [7] is within 10 ms, this scheduling method is more accu-
rate than the proposed method. The proposed method may be,
however, useful for a network equipment that does not support to
schedule a reboot. Our network switches, actually, do not have
an autonomous reboot scheduling function. In addition, the pro-
posed method may be still useful for a firmware update or a spe-
cial configuration that cannot be scheduled.

5.4 Core and Distribution Switch Reboot
Regarding core or distribution switches, they may require a re-

boot for a firmware update but they may require no downtime
using Non-Stop Forwarding (NSF) or Non-Stop Routing (NSR)
with redundant control planes. On the other hand, They may re-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

quire a reboot when configured to change the number of entries
in ARP, NDP, flow and/or filtering tables. Core or distribution
switches require a relatively longer downtime than edge switches,
and their reboots may require a special consideration. In addi-
tion, core or distribution switches usually do not implement web
authentication.

6. Related Work

Calvert et al. review the basic topological structure of the Inter-
net, and present a modeling method [9]. Their method is mainly
for a simulation experiment to generate a network topology, and
does not focus on representing a campus network in a graph the-
ory fashion.

Alderson et al. analyzed the Internet with a first-principles ap-
proach [10]. They analyzed the Internet using an actual data from
actual ISPs. Their work is very useful for understanding the In-
ternet topology. It, however, mainly focused on a tier-1 network,
and did not model an enterprise network or a campus network.

Fujitsu Limited released Converged Fabric (C-Fabric) on 2013
that was virtualizable network switches and was dedicated for a
data center [11]. C-Fabric has a function called rolling reset to
reset all switches. Rolling reset, however, requires 5 minutes for
each switch, and resets switches one by one [12]. Rolling reset,
therefore, requires a longer time to complete to reset all switches.

7. Concluding Remarks

This paper has proposed the equal deepest vertex first reboot

with vertex contraction that can simultaneously reboot many net-
work switches with less overhead downtime. This paper has ex-
pressed a campus network in a graph theory fashion, has reduced
downtime overhead by vertex contraction, and has proven that
all switches can be rebooted within a finite number of rebooting
procedures. This paper has presented an implementation of the
proposed procedures, and has evaluated the proposed method in
an actual campus network. The equal deepest vertex first reboot

with vertex contraction has appeared to reboot all switches by
only 16-second additional overhead out of 109-second downtime
in total where the ideal minimum downtime was 93 seconds in an
actual campus network where there were more than 300 network
switches installed.

References

[1] Ohmori, M. and Higashino, M.: The Equal Longest Path First Re-
boot: Rebooting Network Edge Switches in a Campus Network, IE-
ICE Technical Report, Vol.118, No.204, pp.83–89 (2018).

[2] Ohmori, M., Miyatal, N. and Suzuta, I.: AXARPS: Scalable ARP
Snooping Using Policy-Based Mirroring of Core Switches, Proc. 33rd
International Conference on Advanced Information Networking and
Applications (AINA-2019), pp.667–676 (2019).

[3] Pemmaraju, S. and Skiena, S.: Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica, Cambridge Uni-
versity Press, Cambridge, England (2003).

[4] Hesselink, W.H.: A Classification of the Nilpotent Triangular Matri-
ces, Compositio Mathematica, Vol.55, No.1, pp.89–133 (1985).

[5] IEEE Std. 802.1ab 2004: Local and Metropolitan Area Networks: Vir-
tual Bridged Local Area Networks: Station and Media Access Control
Connectivity Discovery, The IEEE Standards Association (2004).

[6] Harrington, D., Presuhn, R. and Wijnen, B.: An Architecture for
Describing Simple Network Management Protocol (SNMP) Manage-
ment Frameworks, RFC 3411 (Standard) (2002), Updated by RFCs
5343, 5590.

[7] Mills, D.: Network Time Protocol (Version 3) Specification, Imple-
mentation and Analysis, RFC 1305 (Draft Standard) (1992), Obso-
leted by RFC 5905.

[8] IEEE Std. 802.1w-2001: Local and Metropolitan Area Networks.
Rapid Reconfiguration of Spanning Tree (2002).

[9] Calvert, K.L., Doar, M.B. and Zegura, E.W.: Modeling Internet topol-
ogy, IEEE Communications Magazine, Vol.35, pp.160–163 (1997).

[10] Alderson, D., Li, L., Willinger, W. and Doyle, J.C.: Under-
standing Internet Topology: Principles, Models, and Validation,
IEEE/ACM Trans. Netw., Vol.13, No.6, pp.1205–1218 (online), DOI:
10.1109/TNET.2005.861250 (2005).

[11] Fujitsu Limited: FUJITSU Intelligent Networking and Computing
Architecture (2013), available from 〈https://pr.fujitsu.com/jp/news/
2013/05/8.html〉 (accessed 2019-01-31).

[12] Fujitsu Limited: Converged Fabric Configuration Example (2013),
available from 〈http://jp.fujitsu.com/platform/server/primergy/
manual/peripdf/ca92344-0344-05.pdf〉 (accessed 2019-01-31).

Motoyuki Ohmori was born in 1976. He
received his B.S. and M.S. degrees in
Computer Science and Communication
Engineering from Kyushu University in
1999 and 2001, respectively. He joined
the Information Processing Society of
Japan in 2001. He had been a lecturer at
Chikushi Jogakuen University since 2004.

He has been an associate professor at Tottori University since
2013. His research interest includes network architecture, mul-
ticasting, routing, mobile networking and energy efficient net-
work operation. He is a member of the IPSJ, IEICE, JSSST, IEEE
CS/ComSoc and ACM.

Koji Okamura was born in 1965. He
received the BS, MS and Ph.D. degrees
from Kyushu University in 1988, 1990,
and 1998. He worked as an Associate
Professor of Computer Center and Grad-
uate School of Information Science and
Electrical Engineering, Kyushu Univer-
sity. Since 2011, he has been a Professor

of Kyushu University. He is the Director of Cybersecurity Center
and the Vice Director of Research Institute for Information Tech-
nology, Kyushu University. He is also Vice CISO of Kyushu Uni-
versity. His current research interests are Cybersecurity for infor-
mation network and social infrastructure and advanced operation
technologies for Internet and Future Internet such as Openflow
and Virtual Network. He is also researching power-aware and
security-aware network operation and developing green power
and secure network equipment system.

c© 2020 Information Processing Society of Japan

