
IPSJ SIG Technical Report

Preliminary Investigation of Machine
Learning-based Subcarrier Selection for AoA

Estimation Using Wi-Fi CSI

Zesheng Cai1 Takuya Maekawa1 Takahiro Hara1 Kazuya Ohara2

Tomoki Murakami3 Hirantha Abeysekera3

Abstract: With the rapid development of wireless sensing technologies, context awareness based on Wi-Fi
channel state information (CSI) has been actively studied. Specifically, methods for estimating the angle
of arrival (AoA) extracted from CSI attract researchers’ attention for its ability to reveal the signal paths
from a transmitter to receiver. However, different subcarriers in CSI have different sensitivities and thus
it is essential to exploit suitable subcarriers for AoA estimation. Traditional approaches are limited to the
number of CSI packets and specialized capture devices, decreasing the opportunity for deployment. In this
work, we propose to select the proper subcarriers even with one single packet for AoA estimation by utilizing
machine learning without specialized devices. Our system exploits the fine-grained compressed channel state
information with common IEEE 802.11ac devices and thus has the potential to be widely deployed. Instead
of selecting antenna pairs from CSI measurements, which has limited combinations due to the number of
receiver antennas, the developed algorithm studies the properties of subcarriers within all antenna pairs and
tries to find the subcarriers with small AoA errors by using classification and regression method, e.g., Ran-
dom Forest and Support Vector Regression (SVR) in our system. Our extensive experiments demonstrate
that our system can accurately select the proper subcarriers with high environmental robustness for AoA
estimation using Wi-Fi CSI.
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1. Introduction

With the rapid development of ubiquitous sensing tech-

nologies, context awareness is an important research topic

and has been used in quite a number of real world services

and applications, such as health monitoring, target local-

ization, and user authentication. For example, the Tanita

[1] designs a sleeping mat with embedded pressure sensor to

monitor users’ sleep status. Systems like [2] have used dedi-

cated cameras for gesture recognition. However, comparing

to traditional techniques using peripheral devices such as

camera and wearable device [3], Wi-Fi sensing, which can

work in non-line-of-sight (NLOS) scenarios and is much eas-

ier to deploy, has a fast growth with the increasing popular-

ity of wireless devices.

Prior work in Wi-Fi sensing mainly relies on the Re-

ceived Signal Strength Indicator (RSSI), which is one coarse-

grained channel information from Wi-Fi. More recently, in-

stead of using RSSI, the Channel State Information (CSI)

has been widely used for Wi-Fi sensing [4]. Specifically, CSI

consists of both amplitude and phase information in subcar-
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rier level with the development of Multiple-Input Multiple-

Output (MIMO) technology, which can provide more fine-

grained channel information, thus CSI is one ideal informa-

tion for different sensing purposes. In ArrayTrack [5] and

SpotFi [6], the authors leverage the angle of arrival (AoA),

which extracted from CSI phase information, and combine

with multiple access points (APs) to achieve indoor localiza-

tion with decimeter level errors. And systems like Widar [7]

and WiDir [8] take advantage of Doppler effect to develop

human tracking systems. Moreover, another new direction,

such as MultiTrack [9], builds one system which can recog-

nize human activities with limited users. Among the vari-

ous of sensing systems above, AoA reveals the signal paths

from transmitter to receiver and thus plays one important

role when dealing with CSI phase information. However,

different subcarriers have different wavelengths, leading to

the different sensitivities for indoor multipath environments.

Those subcarriers which cannot reveal the direct path should

be filtered out. In order to solve the fluctuation in different

subcarriers, in recent years researchers began to turn their

attentions to subcarrier selection. Among those efforts, [10]

simply selects subcarriers by observation of obvious pattern;

while [11], [12] and [13] set one sliding time window to ex-

tract the features for subcarrier selection. Even though these
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works are still in the exploratory stage, they offer a poten-

tially method to get rid of the sensitivities towards different

subcarriers. Unfortunately, these works are heuristic and

cannot work in one single CSI packet, since AoA usually

can be extracted from one packet. Thus, it is necessary

to find a more suitable method to select subcarriers when

calculating AoA from CSI phase information.

To address these issues, our work aims to select subcarri-

ers for AoA estimation by using machine learning technolo-

gies. Comparing to traditional subcarrier selection meth-

ods, our method can work even with one single packet. We

show it is possible to select subcarriers with one more rea-

sonable method by using off-the-shelf Wi-Fi devices. This

will largely increase the opportunity for wide deployment

and the accuracy of AoA estimation. Indeed, our subcarrier

selection method only needs to train the model previously

with Random Forest or Support Vector Regression (SVR),

which is much easier to deploy than setting up experimen-

tal thresholds. Additionally, our model can also work well

in different environments by training in multiple positions.

This is because that our model gains independent from en-

vironments by studying the hidden features of CSI phase

in multiple positions. Furthermore, unlike previous works,

which use off-the-shelf Wi-Fi network interface cards (NIC),

e.g., Intel Wi-Fi Link 5300 NIC [14] or Atheros AR9580

chipset [15] with IEEE 802.11n to capture CSI, our work

captures compressed CSI and thus it can be deployed on a

large variety of devices which support IEEE 802.11ac.

In this paper, we design a subcarrier selection method by

using machine learning technologies with commodity Wi-

Fi devices. We train a model by using the captured CSI

phase data with devices that support IEEE 802.11ac stan-

dard. To train this model, for each packet we captured, we

process data calibration to remove the environmental and

internal noises. The cleansed CSI phase data is then used

to calculate AoA by Multiple Signal Classification (MUSIC)

algorithm [16]. For each subcarrier of one single packet,

we extract the information of the peak in MUSIC spectrum

as labeled data for machine learning. And we also extract

some features from the CSI phase for each packet. We imple-

ment both classification and regression method of machine

learning technologies to evaluate its performance with ex-

tensive experiments. The experimental results demonstrate

that our method can achieve high accuracy when selecting

subcarriers. We also show that our method highly robust

under various environments.

The main contributions of this work can be summarized

as follows:

• As far as we know, this is the first work that applied ma-

chine learning technologies into subcarrier selection for

AoA estimation. This work provides a new approach for

signal processing when handling sensitive subcarriers.

• We evaluated the developed method with extensive ex-

periments. As a result, we found our method can have

a higher accuracy of estimated AoA comparing to other

subcarrier selection methods.

2. Realted Work

2.1 AoA Estimation

There has been extensive research in the literature on Wi-

Fi based AoA estimation. ArrayTrack [5] utilizes MUSIC

algorithm to estimate AoA with multiple antennas. Addi-

tionally, SpotFi [6] calculates both AoA and ToF with MU-

SIC algorithm and achieves higher accuracy. Moreover, to

reduce the calculation cost, [17] calculates AoA with a mod-

ified matrix pencil algorithm instead of MUSIC algorithm.

Furthermore, ROArray [18] uses sparse recovery to retrieve

AoA information with high accuracy even under low signal-

noise ratio (SNR). Comparing to these works, we aim to

improve the accuracy of estimated AoA by selecting subcar-

riers for MUSIC algorithm.

2.2 Subcarrier Selection

In general, the approaches for subcarrier selection can be

divided into three categories: observation-based selection,

variance-based selection, and relation-based selection.

Observation-based selection. Many research efforts

have been done by selecting CSI subcarriers with observa-

tion. [10] tries to find the periodic patterns of CSI sub-

carriers caused by human respiration in time-domain. They

select subcarriers which have the same patterns with human

respiration. PhaseBeat [19] utilizes the mean absolute de-

viation of CSI phase difference data from every subcarrier

and chooses the subcarriers with maximum mean absolute

deviations as selected subcarriers. These methods however

all require obvious differences between different subcarriers.

Variance-based selection. Comparing to observation-

based selection, variance-based selection is much more com-

mon when handling sensitive subcarriers. WiStep [13] and

[11] calculate the variance of the CSI within a moving win-

dow in time series and select the subcarriers with larger vari-

ance. These works aim for activity recognition and thus de-

sire to assign more weights to these subcarriers with higher

sensitivity for subcarrier selection.

Relation-based selection. The relation-based selec-

tion is most related to our work. [20] defines one periodic-

ity level based on root-mean-square-error (RMSE) to select

the subcarriers with higher periodicity level scores for res-

piration monitoring. [12] leverages the correlation between

neighboring subcarriers to define one covariance-based scor-

ing function and removes the subcarriers with lower scores.

Moreover, [21] utilizes Principal Component Analysis (PCA)

technique to extract the principal components from the cor-

related CSI measurements so that the uncorrelated noises

in different subcarriers are reduced. Although these ap-

proaches perform well in their works, they rely on large time

series CSI measurements.

Comparing to these existing approaches, our method can

provide a better way to select subcarriers by using machine

learning technologies. Additionally, our method relies on

only one single packet, which means that for every packet

we captured we can find the best subcarriers to use.
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3. System Design

3.1 Preliminaries

Since there are some technical terms and formulations in

our work, we will give a brief introduction in this section.

3.1.1 Channel State Information

CSI is one fine-grained physical layer (PHY) information

which characterizes how wireless signals propagate from the

transmitter (Tx) to the receiver (Rx) at certain carrier fre-

quencies. In the frequency domain, this propagation model

can be expressed as:

y(f ; t) = H(f ; t)x(f ; t) +Nnoise (1)

where y(f ; t) and x(f ; t) denote the received and transmit-

ted signal vectors of frequency f in time t, respectively,

Nnoise is the additive Gaussian noise vector, and H(f ; t)

represents the channel’s frequency response matrix, which

we call it CSI.

For an indoor environment with NLOS components [4],

each CSI entry of subcarrier i can also be formulated as:

h(fi; t) =
N∑

n=1

an(t)e
−j2πfiτn(t) (2)

where N is the number of multipath, an(t) and τn(t) are

the amplitude attenuation and the propagation delay from

nth path, and fi is the central frequency of subcarrier i.

3.1.2 Compressed CSI

With the tools released in [14] and [15], we can get a

CSI measurement consisting of 30 matrices with dimensions

NTx ×NRx from one physical frame, where NTx and NRx

represent the number of antennas of the transmitter and re-

ceiver, respectively. However, these tools all rely on special-

ized hardware such as Intel 5300 NIC and Atheros AR9580

to capture CSI, which largely limits CSI’s practical applica-

tions.

Recently, with the development of IEEE 802.11ac stan-

dard, the CSI matrix is compressed with a sequence of an-

gles of Givens rotation matrices, which diagonalize the right-

singular vectors v of the CSI matrix H [22]. As an example,

for a CSI matrix with size of 1×3 (NTx = 1 and NRx = 3),

then v =
[
v1 v2 v3

]T
can be decomposed into four

angles of Givens rotation given by

ϕ11 = ̸ (v1)− ̸ (v3)

ϕ21 = ̸ (v2)− ̸ (v3)

ψ21 = tan−1

(
|v2|
|v1|

)

ψ31 = tan−1

(√
|v3|2

|v1|2 + |v2|2

) (3)

Here, {ϕij} are the relative phase differences between com-

ponents and {ψij} represent the relative amplitudes, and we

call them compressed CSI in IEEE 802.11ac.

Additionally, compressed CSI can be transmitted in any

devices which support IEEE 802.11ac standard and we can

get original CSI from compressed CSI with Equation (3).
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(a) Wi-Fi arriving model (b) MUSIC spectrum

Fig. 1: Wi-Fi signal arriving model and one MUSIC spec-

trum example

This reveals that compressed CSI can be easier to access

comparing to traditional tools.

3.1.3 MUSIC Algorithm

MUSIC algorithm is one well-known method which uti-

lizes the phase difference between consecutive antennas to

calculate AoA. As illustrated in Fig. 1a, let us assume that

M antennas are arranged in a linear array with equal spac-

ing of d between consecutive antennas while the signal is

arriving with angle θ like system in [5]. Then the propaga-

tion delay τ in Equation (2) related to the first antenna at

mth antenna can be introduced as d×(m−1)×(sin θ)×f/c,
where c is the speed of light and f is the frequency of the

transmitted signal. So the AoA can be considered as one

vector of phase shift at the antenna array.

Thus for all antennas in this linear array, the relative

phase can be written as:

a(θ) =
[
1, ϕ(θ), . . . , ϕM−1(θ)

]⊤
(4)

where ϕ(θ) = e−j2πfd(sin θ)/c.

Additionally, the received signal with n transmitted sig-

nals can be written as:

X(t) =
n∑

i=1

a (θi) si(t) +N(t) (5)

where si(t) and θi are the ith transmitted signal and the

AoA of ith transmitted signal, respectively, and N(t) is

the Gaussian noise. According to [16], the correlation ma-

trix Rxx(t) of the received signal X(t) can be decomposed

into signal space and noise space using eigen-decomposition.

Consequently, Rxx(t) has M eigenvectors, and the noise

space is composed with minimum of (M − n) eigenvectors;

while the remainder of eigenvectors compose signal space.

In order to calculate AoA, MUSIC calculates the spec-

trum of noise space EN = [e1, . . . , eM−n] as follows:

PMUSIC(θ) =
1

aH(θ)ENEH
Na(θ)

(6)

Thus the AoA can be considering as the peak of this spec-

trum. Fig. 1b shows one example of MUSIC spectrum. As

we can see in Fig. 1b, the AoA calculated from the peak of

this MUSIC spectrum (the blue line) is close to the real AoA

(the red line). This convinces us that MUSIC is one ideal

algorithm for calculating AoA from CSI data.

3.2 Challenges

Our goal is to select subcarriers of best environmental ro-

bustness from a single pair of IEEE 802.11ac devices. In
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Fig. 2: Examples of MUSIC spectrums from different sub-

carriers within one single CSI packet
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Fig. 3: Overview of system flow

order to build such system, a number of challenges need to

be addressed.

System Robustness. The placement of Wi-Fi devices

in real-world environments could change over times, and the

collected CSI measurements are usually noisy. Thus our sys-

tem should be able to provide accurate subcarrier selecting

with various distances between the Tx and Rx. In addi-

tion, our system should be able to work even in different

environments.

Selecting with Single Packets. As mentioned in Sec-

tion 3.1.3, MUSIC algorithm can work with one single sub-

carrier. However, commodity Wi-Fi devices have less than

6 antennas as suggested in [5] (which is 3 antennas in our

case), thus the MUSIC spectrums are usually not the same

between different subcarriers as shown in Fig. 2. Unlike tra-

ditional methods, our system should be able to select sub-

carriers of best performances within even one single packet.

3.3 System Overview

The basic idea of our system is to capture the unique

property of subcarriers within one single packet for sub-

carrier selection leveraging machine learning technologies.

Since AoA is only related to phase difference between con-

secutive antennas as mentioned in Section 3.1.3, the subcar-

riers of best performances with the same AoA should have

the same patterns. As illustrated in Fig. 3, unlike previous

methods [14] [15] which use specialized devices, our system

takes as input compressed CSI measurements from Wi-Fi

links between two IoT devices which support IEEE 802.11ac

standard. Additionally, we need one extra device installed

with Wireshark to monitor the compressed CSI feedback be-

tween Tx and Rx. Thus we use a StickPC as this monitor

to capture the compressed CSI. Given the compressed CSI,

one recovering process is first deployed to get the original

CSI with phase information. And to remove ambient noises

which cause propagation delay offsets in CSI phase, we de-

ploy one calibration process to sanitize CSI phase.

(a) Before calibration (b) After calibration

Fig. 4: Relative phase of one packet before and after data

calibration

Next we will present the core components of our system,

Model based Subcarrier Selection. After CSI recovering and

phase calibration, we select the subcarriers based on the

model which we train it in offline stage. Specially, in the

offline stage, for each packet we extract 15 subcarrier do-

main features within one slipping window as input of our

model. Moreover, we propose two different kinds of meth-

ods, e.g., classification model labeling and regression model

labeling to construct our model. For each kind of methods,

we evaluate different models to find the best one.

Finally, with the offline model, we select the subcarriers

with best performance for every packet and apply them into

MUSIC algorithm to get the AoA which is stable to environ-

ment changes. We leave the detailed presentation of Offline

Model Training to Section 4.

4. Offline Model Training

4.1 Phase Calibration

To ensure reliable feature extraction for our model con-

struction, we preprocess the raw CSI measurements with

phase unwrapping, which is effective on eliminating the en-

vironmental interferences and ambient noises. We observe

that the raw relative phase at different antennas has obvi-

ous discontinuities between consecutive subcarriers when it

reaches to an extreme value, +π or −π. To suppress such

discontinuity, we reconstruct the continuous phase variation

by adding or subtracting 2π if the phase jump between two

consecutive subcarriers is larger than or equal to 2π.

Besides the phase offset, the relative phase is also easily

affected by the construction within Tx and Rx. And such

effect will cause that different antennas may have different

propagation delay τ even with 0 degree of AoA. In order to

eliminate the above effects, we calibrate Tx and Rx with the

pre-collected CSI measurements with AoA of 0 degree at dis-

tance of 0.5m. For the pre-collected CSI measurement, we

calculate the offsets from the average relative phase within

all antennas (which equals to 3 in our case) for each subcar-

rier and we set them as the benchmarks. Additionally, for

every subcarrier of the later packet, we add the correspond-

ing benchmark as phase offset into its relative phase. Fig. 4

shows the example scenarios with AoA of 0 degree, in which

the relative phase should have the same value. We observe

that the relative phase after calibration can have almost the

same value while the previous one cannot.
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4.2 Feature Extraction

To capture the unique characteristics from subcarriers

with best performances, it is essential to extract effective

and reliable features from the CSI measurements. Consid-

ering that MUSIC algorithm is related to the relative phase

difference between consecutive antennas, we aim to extract

features from this relative phase difference between each pair

of consecutive antennas (which is 2 pairs for 3 antennas in

our case).

In our system, instead of extracting features from time do-

main, we extract features from the subcarrier domain within

each packet. We extract 6 subcarrier domain features with

respect to the relative phase difference mentioned above,

including maximum, minimum, mean, skewness, kurtosis

and standard deviation, within one window, which the cen-

tral of this window is our target subcarrier. Additionally,

inspired by [12], we also calculate the average covariance for

each pair of subcarriers between the target subcarrier and

the rest in this window. We empirically set this window size

as 7 and extract the 6×2+1 feature points for each subcar-

rier. Moreover, in order to utilize the original information

of relative phase difference, we add the offsets between the

target subcarrier and the average relative phase difference

of all subcarriers as features for each pair of consecutive an-

tennas. Thus, 15 feature points will be extracted for each

subcarrier.

4.3 Model Labeling

To fit our model by using machine learning technologies,

we use the results of MUSIC algorithm as our labels. We

observe that there are 4 kinds of MUSIC spectrum results

when applying MUSIC algorithm to one single subcarrier as

shown in Fig. 5, e.g., one direct path in Fig. 5a, one re-

flected path in Fig. 5b, combination of one direct path and

one reflected path in Fig. 5c, and the others in Fig. 5d due

to high noises. We consider that those subcarriers which

the direct path accounts for a large proportion should be se-

lected. In particular, we propose two kinds of methods, e.g.,

classification and regression method, to train our model.

Classification Model Labeling. We label the sub-

carriers with ’Small Error’ and ’Large Error’ to distinguish

whether this subcarrier should be selected or not as shown

in Fig. 5. For the MUSIC spectrum with only one peak,

we label this subcarrier as ’Small Error’ if there is only one

peak and the error between this peak and the true AoA is

less than a threshold Θ1 (which is 10 degrees in our case);

while we label it as ’Large Error’ if the error is greater than

this threshold. For the MUSIC spectrum with more than

one peak, we label this subcarrier as ’Small Error’ if there is

one peak with error less than Θ1 and in the meantime ratio

with respect to spectrum value between this peak and the

highest peak is greater than a threshold Θ2 (which is 0.8 in

our case); while we label it as ’Large Error’ otherwise.

Regression Model Labeling. The same as classifi-

cation model labeling, but we label the subcarrier with the

error between its true AoA and predicted AoA from MUSIC

(a) Direct path only, labeled as
’Small Error’ or ’-9’

(b) Reflected path only, la-
beled as ’Large Error’ or ’-45’

(c) Combination of multiple
paths, labeled as ’Small Error’
or ’-3’

(d) Combination of multiple
paths with high noises, labeled
as ’Large Error’ or ’-41’

Fig. 5: Examples of MUSIC spectrums for one subcarrier

and their corresponding classification and regression labels,

respectively

spectrum for regression purpose. For the MUSIC spectrum

with only one peak, we label this subcarrier with the error

between its peak and true AoA. And for the MUSIC spec-

trum with more than one peak, if there is one peak that

with corresponding values greater than Θ1 and Θ2, we label

this subcarrier with the error between this peak and true

AoA; while we label this subcarrier with the error between

its highest peak and true AoA otherwise.

4.4 Model Building

Since we get the feature and label for each subcarrier, we

adapt Random Forest and SVR for classification and regres-

sion, respectively. The detail of these two algorithms will not

be discussed in this work. For each model we trained, we

select all the subcarriers that predicted as ’Small Error’ for

classification model, and we select the first K subcarriers

with small predicted AoA errors for our regression model.

In addition, we also evaluate other models which will be

mentioned in Section 5.3.2.

5. Performance Evaluation

5.1 Experimental Methodology

Devices and Network. We emulate the Wi-Fi Network

in IoT environments with a single Wi-Fi adapter (i.e., AOY-

OOL AC1200) on one laptop (ASUS UX550VD-7700) con-

nected to a commercial wireless Access Point (NTT Router)

in an 802.11ac Wi-Fi network. The number of antennas

of Wi-Fi adapter and AP are 2 and 3, respectively. We

set the Wi-Fi adapter as our transmitter and AP as our

receiver. Additionally, we capture the compressed CSI be-

tween this link by using one StickPC (Intel Compute Stick

STK2m364CC), which runs Centos Linux7 and is installed

with Wireshark for packet capturing. For each packet, we

extract the compressed CSI for 52 subcarriers in a 5200MHz

channel. In our experiments, we use the compressed CSI be-

tween the first antenna of adapter and all three antennas of

AP for our evaluation.
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Fig. 6: Illustration of experimental setup

Environment and AoA. We conduct experiments in

meeting room 1 and meeting room 2 with the size of 12m

×7.5m and 25.5m ×10.5m, respectively. Fig. 6 shows the

experimental setups of AP in each meeting room, and the

grey blocks represent desks. For each meeting room, we

collect CSI with distance to AP from 0.5m to 3m with an

interval of 0.5m. And for each distance, we collect CSI with

AoA from 0 degree to 360 degrees with an interval of 30

degrees, ignoring 90 degrees and 270 degrees since almost

all subcarriers in our experiments are labeled with ’Large

Error’ in these conditions. This is probably because MUSIC

algorithm cannot work in such degrees. In each position, we

capture 150 packets for use and overall we get 150× 11× 52

subcarriers for each distance.

5.2 Overall performance

We first present the performance of our proposed system

in both meeting room 1 and meeting room 2, and we select

CSI measurements with distance 2m as our test data. As

shown in Fig. 7 and Fig. 8, which represent the confusion

matrix of classification and the distribution of regression re-

sults, respectively. We observe that, for our classification

model, our random forest model can achieve around 80% ac-

curacy in both environments for the subcarriers with ’Large

Error’ which should not be selected. Even our classification

model only achieves around 55% accuracy for the subcarriers

with ’Small Error’ which should be selected, these subcar-

riers have no harmful effects on our results whether they

are selected or not. In addition, we predict the AoA error

instead of AoA in our regression model. We observe that

in both environments, our SVR model has almost the same

results between predicted AoA error with the true AoA er-

ror for small AoA errors less than 10 degrees, as the red

boxes shown in Fig. 8. Since we do not use the subcarriers

with larger predicted AoA errors for subcarrier selection,

these subcarriers also have no harmful effects on our results

whether they are selected or not.

Additionally, we also compare the performance of our

model with PhaseBeat [19], WiStep [13], and original no se-

lection method with selected subcarriers K = 6 as shown in

Fig. 9. We select subcarriers with these different methods

and apply MUSIC algorithm to calculate their AoA errors.

We observe that both our methods have smaller AoA errors

in these different environments. It indicates that our meth-

ods can provide better performance for subcarrier selection.

(a) Classification in Room 1 (b) Classification in Room 2

Fig. 7: Confusion matrix under different environments

(a) Regression in Room 1 (b) Regression in Room 2

Fig. 8: Regression results under different environments

(a) CDF of AoA error in Room
1

(b) CDF of AoA error in Room
2

Fig. 9: Performance comparison of AoA error with selected

subcarriers K = 6 under different environments

(a) RMSE of AoA error in Room 1

(b) RMSE of AoA error in Room 2

Fig. 10: Performance comparison of AoA error with differ-

ent number of selected subcarriers K under different envi-

ronments

5.3 Discussion and Limitation

5.3.1 Impact of selected number

To evaluate the influence of the number of selected sub-

carriers within one packet, we show the RMSE of AoA error
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(a) Different classification in
Room 1

(b) Different classification in
Room 2

Fig. 11: Performance comparison with different classifica-

tion models under different environments

changes in respect to K as shown in Fig. 10. Notice that

since our classification model do not rely onK, we use all the

selected subcarriers or the firstK subcarriers when there are

no selected subcarriers in that packet in order to compare

these different methods. We observe that our model still

has better performance under different K. Our system thus

is a more proper subcarrier system comparing to the previ-

ous works. To the best of our knowledge, our work is the

first to apply machine learning technologies into subcarrier

selection for AoA estimation.

5.3.2 Impact of model

We next test the different machine learning models as

shown in Fig. 11 and Fig. 12. We observe that among all

classification models that we tested, Random Forest model

has the best performance for the recall of ’Large Error’;

while all of them have low recall of ’Small Error’, but these

values have no harmful effects as we discussed in Section

5.2. Additionally, we set up three RMSE measurements to

evaluate our regression model. We evaluate the RMSE of

all regression results as all performance. We represent the

RMSE between the subcarriers with true AoA error less than

10 degrees and their corresponding predicted AoA errors as

true AoA error <10 degrees. Moreover, we represent the

RMSE between the subcarriers with predicted AoA error

less than 10 degrees and their corresponding true AoA er-

rors as predict AoA error <10 degrees. All of these RMSE

measurements evaluate the performance of our regression

model and should have low values for the model with best

performance, especially for predict AoA error <10 degree.

Overall, we observe that SVR model has the best perfor-

mance and we select it as our regression model.

5.3.3 Impact of distance

We also study the impact of test data with different dis-

tances and the results are shown in Fig. 13. We observe that

our model can have a better performance for almost all test

data. This result demonstrates that our system can effec-

tively select the proper subcarriers. But for larger distance

such as 3m shown in Fig. 13a, the RMSE of all methods

extremely higher than other places, this is possibly because

of the limitation of MUSIC algorithm with limited antennas.

Consequently, we cannot label the subcarriers which should

be selected properly for such test data.

(a) RMSE of regression error in Room 1

(b) RMSE of regression error in Room 2

Fig. 12: Performance comparison of regression error with

different regression models under different environments

(a) RMSE of AoA error in Room 1

(b) RMSE of AoA error in Room 2

Fig. 13: Performance comparison of AoA error with differ-

ent distances as test data under different environments

5.3.4 Impact of environment

To further analyze the impact of different environments

on our system performance, we evaluate our model trained

in one meeting room and test in another meeting room, re-

spectively. We present the results of our classification and

regression in Fig. 14. From both classification and regres-

sion result, we observe that our model can still have a good

performance for the subcarriers that should not be selected.

It indicates that our system has a good environmental ro-

bustness even in different environments.

ⓒ 2020 Information Processing Society of Japan 7

Vol.2020-MBL-94 No.55
Vol.2020-UBI-65 No.55

2020/3/3



IPSJ SIG Technical Report

(a) Classification in Room 1 (b) Classification in Room 2

(c) RMSE of regression error in different rooms

Fig. 14: Performance comparison in different environments

5.3.5 Limitation

Our system aims for proper subcarrier selection for even

one single packet. However, there are some limitations, e.g.,

we observe that our system can achieve high performance for

the subcarriers that should not be selected. But our system

cannot distinguish the subcarriers that should be selected

and thus some important features of these subcarriers may

be ignored. We leave this discussion in our feature work. In

future, we will also explore to introduce some pre-processing

progress and more advanced machine learning technologies

to improve our model performance in more complex indoor

environments.

6. Conclusion

In this paper, we show that subcarriers in AoA estimation

can be selected by utilizing machine learning. In particu-

lar, our system exploits fine-grained compressed CSI from

802.11ac devices to select subcarriers with both classifica-

tion and regression methods. Our system grounded on CSI

measurements has the capability to achieve accurate subcar-

rier selection even for one single packet. Extensive experi-

ments in different environments confirm that our proposed

approach using Random Forest and SVR can achieve com-

parable or even better accuracies as compared to existing

approaches which need a period of CSI. This machine learn-

ing based approach opens up a new direction in selecting

proper subcarriers during signal processing for AoA estima-

tion.
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